搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚合物分散液晶薄膜的极化特性及其对电光性能的影响

陈昊鹏 聂永杰 李国倡 魏艳慧 胡昊 鲁广昊 李盛涛 朱远惟

引用本文:
Citation:

聚合物分散液晶薄膜的极化特性及其对电光性能的影响

陈昊鹏, 聂永杰, 李国倡, 魏艳慧, 胡昊, 鲁广昊, 李盛涛, 朱远惟

Polarization characteristics of polymer dispersed liquid crystal films and their effects on electro-optical properties

Chen Hao-Peng, Nie Yong-Jie, Li Guo-Chang, Wei Yan-Hui, Hu Hao, Lu Guang-Hao, Li Sheng-Tao, Zhu Yuan-Wei
PDF
HTML
导出引用
  • 液晶含量和外加电场类型是影响聚合物分散液晶薄膜电光性能的重要因素, 而对薄膜微观形貌的分析并不能直接反映电光性能的变化机理. 因此本文以液晶材料E7和光聚物NOA65共混制备的聚合物分散液晶薄膜作为研究对象, 通过对其极化特性的研究, 揭示了在不同液晶含量和不同类型电场下极化过程对薄膜电光性能的调控规律和微观机制. 结果表明, 在10–1—106 Hz频率范围内, 薄膜在低频、中频和高频存在3个松弛极化过程, 分别为热离子极化、界面极化和转向极化. 通过Arrhenius公式拟合计算了各极化过程的活化能, 发现随着液晶含量的增大, 转向极化的活化能从0.88 eV下降至0.83 eV, 导致液晶分子转向的阈值场强和饱和场强降低. 相比于交流电场, 直流电场下热离子极化形成内建电场, 导致阈值场强和饱和场强大幅增大, 而极化弛豫时间的延长会导致响应时间的延长. 此项研究对进一步分析和提升聚合物分散液晶薄膜的电光性能具有指导意义.
    The electro-optical properties of polymer dispersed liquid crystal film vary with liquid crystal content and externally applied electric field, but the analysis of the film morphology cannot directly reflect the mechanism of electro-optical properties. Therefore, the polymer dispersed liquid crystal film prepared by blending liquid crystal material E7 and photopolymer NOA65 is used. Herein, the dielectric polarization regulated electro-optical properties and their related mechanisms under different liquid crystal content and electric fields are revealed. The results show that in a frequency range of 10–1–106 Hz, the film exhibits three relaxation processes respectively at low frequency, medium frequency and high frequency, which are generated by thermionic polarization, interfacial polarization and orientation polarization. According to the Arrhenius equation, the activation energy values of such polarization processes are calculated. It is found that with the increase of liquid crystal content, the activation energy of orientation polarization decreases from 0.88 eV to 0.83 eV, leading the threshold field strength and the saturation field strength of the diversion of liquid crystal molecule to decrease. Thermionic polarization under DC electric field forms an internal electric field, which causes the threshold field strength and saturation field strength to increase greatly, as compared with the scenarios under AC electric field. Such a thermionic polarization also leads the polarization relaxation time to increase, resulting in the extension of response time. This study is of guiding significance in further analyzing and improving the electro-optical properties of polymer dispersed liquid crystal films.
      通信作者: 聂永杰, nieyongjie@stu.xjtu.edu.cn ; 朱远惟, zhuyuanwei@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51907148)、中国南方电网科技项目(批准号: YNKJXM20190717)、云南省基础研究计划(批准号: 202001AU070062)和电工材料电气绝缘全国重点实验室(批准号: EIPE23407)资助的课题.
      Corresponding author: Nie Yong-Jie, nieyongjie@stu.xjtu.edu.cn ; Zhu Yuan-Wei, zhuyuanwei@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51907148), the Science and Technology Project of China Southern Power Grid, China (Grant No. YNKJXM20190717), the Basic Research Plan of Yunnan Province, China (Grant No. 202001AU070062), and the State Key Laboratory of Electrical Insulation and Power Equipment, China (Grant No. EIPE23407).
    [1]

    Shen W B, Wang L, Zhong T J, Chen G, Li C X, Chen M, Zhang C H, Zhang L Y, Li K X, Yang Z, Yang H 2019 Polymer 160 53Google Scholar

    [2]

    Hu G, Chen H X, Liu Z Q, Zhang S, Zhou Y, Zhu B L, Gu H Z 2020 Liq. Cryst. 47 1582Google Scholar

    [3]

    Zhong T J, Mandle R J, Goodby J W, Zhang L Y, Zhang C H 2019 Polym. Adv. Technol. 30 2781Google Scholar

    [4]

    Li C X, Chen M, Shen W B, Chen G, Zhang L Y, Yang H 2019 Liq. Cryst. 46 1718Google Scholar

    [5]

    聂永杰, 景钰, 张萌, 陈昊鹏, 赵现平, 赵腾飞, 项恩新, 王科, 鲁广昊, 朱远惟 2021 中国电力 54 144Google Scholar

    Nie Y J, Jing Y, Zhang M, Chen H P, Zhao X P, Zhao T F, Xiang E X, Wang K, Lu G H, Zhu Y W 2021 Electric Power 54 144Google Scholar

    [6]

    Nie Y J, Zhang M, Zhu Y W, Jing Y, Shi W L, Li G P, Chen H P, Jiang Y H, Zhao X P, Zhao T F, Lu G H, Li S T 2021 Materials 14 5901Google Scholar

    [7]

    龙洁, 李九生 2021 物理学报 70 074201Google Scholar

    Long J, Li J S 2021 Acta Phys. Sin. 70 074201Google Scholar

    [8]

    Hemaida A, Ghosh A, Sundaram S, Mallick T K 2020 Sol. Energy 195 185Google Scholar

    [9]

    李文萃, 刘永刚, 宣丽 2011 物理学报 60 046101Google Scholar

    Li W C, Liu Y G, Xuan L 2011 Acta Phys. Sin. 60 046101Google Scholar

    [10]

    Zhang W C, Fan D H, Gong Y L, Liang W L 2021 Liq. Cryst. 48 1643Google Scholar

    [11]

    Jiang J H, McGraw G, Ma R Q, Brown J, Yang D K 2017 Opt. Express 25 3327Google Scholar

    [12]

    Seo J, Nam S, Jeong J, Lee C, Kim H, Kim Y 2015 ACS Appl. Mater. Interfaces 7 504Google Scholar

    [13]

    Nasir N, Hong H R, Rehman M A, Kumar S, Seo Y 2020 RSC Adv. 10 32225Google Scholar

    [14]

    Meng X S, Li J, Lin Y Q, Liu X D, Zhao J W, Li D C, He Z H 2022 Crystals 12 163Google Scholar

    [15]

    Shi Z H, He Z M, Li C S, Miao Z C, Wang D, Luan Y, Li Y Z, Zhao Y Z 2022 Appl. Mater. Today 29 101622Google Scholar

    [16]

    Zhao Y Z, Li J Q, Yu Y, Zhao Y, Guo Z, Yao R J, Gao J J, Zhang Y M, Wang D 2022 Molecules 27 7265Google Scholar

    [17]

    陈菲, 徐荣青, 李若舟, 严静 2018 液晶与显示 33 631Google Scholar

    Chen F, Xu R Q, Li R Z, Yan J 2018 Chin. J. Liq. Cryst. Disp. 33 631Google Scholar

    [18]

    Liang Z, Zhao Y Z, Gao H, Wang D, Miao Z C, Cao H, Yang Z, He W L 2021 Liq. Cryst. 48 2016Google Scholar

    [19]

    Nasir N, Kumar S, Kim M, Nguyen V, Suleman M, Park H M, Lee S, Kang D, Seo Y 2022 ACS Appl. Energy mater. 5 6986Google Scholar

    [20]

    Meng X S, Li J, Lin Y Q, Liu X D, Liu N N, Ye W J, Li D C, He Z H 2021 Liq. Cryst. 48 1791Google Scholar

    [21]

    Zhu Y W, Qiao N, Dong S Q, Qu G H, Chen Y, Lu W L, Qin Z Z, Li D F, Wu K N, Nie Y J, Liu B, Li S T, Lu G H 2022 Chem. Mater. 34 6505Google Scholar

    [22]

    成鹏飞, 李盛涛, 李建英 2012 物理学报 61 187302Google Scholar

    Cheng P F, Li S T, Li J Y 2012 Acta Phys. Sin. 61 187302Google Scholar

    [23]

    李国倡, 李盛涛 2019 物理学报 68 239401Google Scholar

    Li G C, Li S T 2019 Acta Phys. Sin. 68 239401Google Scholar

    [24]

    Li G C, Zhou X G, Li X J, Wei Y H, Hao C C, Li S T, Lei Q Q 2020 High Volt. 5 280Google Scholar

    [25]

    Yang J J, Wang Z C, Feng H, Wei Y H, Li G C, Zhu Y C, Hao C C, Lei Q Q, Li S T 2023 Ceram. Int. 49 14057Google Scholar

    [26]

    李盛涛, 王辉, 林春江, 李建英 2013 物理学报 62 087701Google Scholar

    Li S T, Wang H, Lin C J, Li J Y 2013 Acta Phys. Sin. 62 087701Google Scholar

    [27]

    Costa M R, Altafim R A C, Mammana A P 2001 Liq. Cryst. 28 1779Google Scholar

    [28]

    Islam R, Papathanassiou A N, Chan-Yu-King R, Roussel F 2016 Appl. Phys. Lett. 109 182901Google Scholar

  • 图 1  (a)电光性能测试和(b)介电性能测试的样品示意图

    Fig. 1.  Sample diagram of (a) electro-optical property test and (b) dielectric property test.

    图 2  电光测试系统示意图

    Fig. 2.  Schematic diagram of electro-optical test system.

    图 3  PDLC薄膜的M''

    Fig. 3.  M'' spectrum of PDLC film.

    图 4  (a) 25 ℃和(b) –40 ℃下不同液晶含量PDLC薄膜的介电损耗谱

    Fig. 4.  Dielectric loss spectrum of PDLC films with different liquid crystal content at (a) 25 ℃ and (b) –40 ℃.

    图 5  PDLC薄膜的极化活化能 (a) 50%, (b) 60%, (c) 70%和(d)极化活化能随液晶含量的变化趋势

    Fig. 5.  Polarization activation energy of PDLC films: (a) 50%, (b) 60%, (c) 70%, and (d) variation trend of polarization activation energy with liquid crystal content.

    图 6  交流电场下, 不同液晶含量PDLC薄膜 (a)电场强度-透过率关系; (b)阈值场强和饱和场强

    Fig. 6.  (a) E-T relationship and (b) Eth and Esat of different liquid crystal content PDLC films under AC electric field.

    图 7  直流电场和交流电场下PDLC薄膜的透过率对比图

    Fig. 7.  Transmittance comparison of PDLC films in DC and AC electric fields.

    图 8  直流电场下, 不同液晶含量PDLC薄膜 (a)电场强度-透过率关系; (b)阈值场强和饱和场强

    Fig. 8.  (a) E-T relationship and (b) Eth and Esat of different liquid crystal content PDLC films under DC electric field.

    图 9  (a)交流电场和(b)直流电场下PDLC薄膜的响应特性

    Fig. 9.  Response characteristics of PDLC films under (a) AC and (b) DC electric field.

  • [1]

    Shen W B, Wang L, Zhong T J, Chen G, Li C X, Chen M, Zhang C H, Zhang L Y, Li K X, Yang Z, Yang H 2019 Polymer 160 53Google Scholar

    [2]

    Hu G, Chen H X, Liu Z Q, Zhang S, Zhou Y, Zhu B L, Gu H Z 2020 Liq. Cryst. 47 1582Google Scholar

    [3]

    Zhong T J, Mandle R J, Goodby J W, Zhang L Y, Zhang C H 2019 Polym. Adv. Technol. 30 2781Google Scholar

    [4]

    Li C X, Chen M, Shen W B, Chen G, Zhang L Y, Yang H 2019 Liq. Cryst. 46 1718Google Scholar

    [5]

    聂永杰, 景钰, 张萌, 陈昊鹏, 赵现平, 赵腾飞, 项恩新, 王科, 鲁广昊, 朱远惟 2021 中国电力 54 144Google Scholar

    Nie Y J, Jing Y, Zhang M, Chen H P, Zhao X P, Zhao T F, Xiang E X, Wang K, Lu G H, Zhu Y W 2021 Electric Power 54 144Google Scholar

    [6]

    Nie Y J, Zhang M, Zhu Y W, Jing Y, Shi W L, Li G P, Chen H P, Jiang Y H, Zhao X P, Zhao T F, Lu G H, Li S T 2021 Materials 14 5901Google Scholar

    [7]

    龙洁, 李九生 2021 物理学报 70 074201Google Scholar

    Long J, Li J S 2021 Acta Phys. Sin. 70 074201Google Scholar

    [8]

    Hemaida A, Ghosh A, Sundaram S, Mallick T K 2020 Sol. Energy 195 185Google Scholar

    [9]

    李文萃, 刘永刚, 宣丽 2011 物理学报 60 046101Google Scholar

    Li W C, Liu Y G, Xuan L 2011 Acta Phys. Sin. 60 046101Google Scholar

    [10]

    Zhang W C, Fan D H, Gong Y L, Liang W L 2021 Liq. Cryst. 48 1643Google Scholar

    [11]

    Jiang J H, McGraw G, Ma R Q, Brown J, Yang D K 2017 Opt. Express 25 3327Google Scholar

    [12]

    Seo J, Nam S, Jeong J, Lee C, Kim H, Kim Y 2015 ACS Appl. Mater. Interfaces 7 504Google Scholar

    [13]

    Nasir N, Hong H R, Rehman M A, Kumar S, Seo Y 2020 RSC Adv. 10 32225Google Scholar

    [14]

    Meng X S, Li J, Lin Y Q, Liu X D, Zhao J W, Li D C, He Z H 2022 Crystals 12 163Google Scholar

    [15]

    Shi Z H, He Z M, Li C S, Miao Z C, Wang D, Luan Y, Li Y Z, Zhao Y Z 2022 Appl. Mater. Today 29 101622Google Scholar

    [16]

    Zhao Y Z, Li J Q, Yu Y, Zhao Y, Guo Z, Yao R J, Gao J J, Zhang Y M, Wang D 2022 Molecules 27 7265Google Scholar

    [17]

    陈菲, 徐荣青, 李若舟, 严静 2018 液晶与显示 33 631Google Scholar

    Chen F, Xu R Q, Li R Z, Yan J 2018 Chin. J. Liq. Cryst. Disp. 33 631Google Scholar

    [18]

    Liang Z, Zhao Y Z, Gao H, Wang D, Miao Z C, Cao H, Yang Z, He W L 2021 Liq. Cryst. 48 2016Google Scholar

    [19]

    Nasir N, Kumar S, Kim M, Nguyen V, Suleman M, Park H M, Lee S, Kang D, Seo Y 2022 ACS Appl. Energy mater. 5 6986Google Scholar

    [20]

    Meng X S, Li J, Lin Y Q, Liu X D, Liu N N, Ye W J, Li D C, He Z H 2021 Liq. Cryst. 48 1791Google Scholar

    [21]

    Zhu Y W, Qiao N, Dong S Q, Qu G H, Chen Y, Lu W L, Qin Z Z, Li D F, Wu K N, Nie Y J, Liu B, Li S T, Lu G H 2022 Chem. Mater. 34 6505Google Scholar

    [22]

    成鹏飞, 李盛涛, 李建英 2012 物理学报 61 187302Google Scholar

    Cheng P F, Li S T, Li J Y 2012 Acta Phys. Sin. 61 187302Google Scholar

    [23]

    李国倡, 李盛涛 2019 物理学报 68 239401Google Scholar

    Li G C, Li S T 2019 Acta Phys. Sin. 68 239401Google Scholar

    [24]

    Li G C, Zhou X G, Li X J, Wei Y H, Hao C C, Li S T, Lei Q Q 2020 High Volt. 5 280Google Scholar

    [25]

    Yang J J, Wang Z C, Feng H, Wei Y H, Li G C, Zhu Y C, Hao C C, Lei Q Q, Li S T 2023 Ceram. Int. 49 14057Google Scholar

    [26]

    李盛涛, 王辉, 林春江, 李建英 2013 物理学报 62 087701Google Scholar

    Li S T, Wang H, Lin C J, Li J Y 2013 Acta Phys. Sin. 62 087701Google Scholar

    [27]

    Costa M R, Altafim R A C, Mammana A P 2001 Liq. Cryst. 28 1779Google Scholar

    [28]

    Islam R, Papathanassiou A N, Chan-Yu-King R, Roussel F 2016 Appl. Phys. Lett. 109 182901Google Scholar

  • [1] 韦宜政, 孙超, 朱启轩. 浅海矢量声场极化特性的深度分布规律(已撤稿). 物理学报, 2024, 73(9): 094302. doi: 10.7498/aps.73.20231767
    [2] 高建, 李建英. 限域相变对热致变色环氧绝缘材料介电松弛特性的影响. 物理学报, 2023, 72(10): 107701. doi: 10.7498/aps.72.20230253
    [3] 王鹏, 潘凤春, 郭晶晶, 李婷婷, 王旭明. 用双稳态势场模型研究观点转变的驱动-响应关系. 物理学报, 2020, 69(6): 060501. doi: 10.7498/aps.69.20191516
    [4] 汪杨, 赵伶玲. 单原子Lennard-Jones体黏弹性弛豫时间. 物理学报, 2020, 69(12): 123101. doi: 10.7498/aps.69.20200138
    [5] 王文钊, 胡碧涛, 郑皓, 屠小青, 高朋林, 闫松, 郭文传, 闫海洋. 一种可用于极化3He实验的新型磁场系统. 物理学报, 2018, 67(17): 176701. doi: 10.7498/aps.67.20180571
    [6] 任晓霞, 申凤娟, 林歆悠, 郑瑞伦. 石墨烯低温热膨胀和声子弛豫时间随温度的变化规律. 物理学报, 2017, 66(22): 224701. doi: 10.7498/aps.66.224701
    [7] 张克声, 朱明, 唐文勇, 欧卫华, 蒋学勤. 可激发气体振动弛豫时间的两频点声测量重建算法. 物理学报, 2016, 65(13): 134302. doi: 10.7498/aps.65.134302
    [8] 屈少华, 曹万强. 球形无规键无规场模型研究弛豫铁电体极化效应. 物理学报, 2014, 63(4): 047701. doi: 10.7498/aps.63.047701
    [9] 孙凯, 何志群, 梁春军. 多温度阶梯退火对有机聚合物太阳能电池器件性能的影响. 物理学报, 2014, 63(4): 048801. doi: 10.7498/aps.63.048801
    [10] 黄旭东, 冯玉军, 唐帅. 掺镧锆锡钛酸铅陶瓷极化强度变化量对电子发射电流强度的影响. 物理学报, 2012, 61(8): 087702. doi: 10.7498/aps.61.087702
    [11] 陈龙天, 程用志, 聂彦, 龚荣洲. 人工异向介质调控电磁波极化特性的实验与仿真研究. 物理学报, 2012, 61(9): 094203. doi: 10.7498/aps.61.094203
    [12] 贾雅琼, 王殊, 朱明, 张克声, 袁飞阁. 气体声弛豫过程中有效比热容与弛豫时间的分解对应关系. 物理学报, 2012, 61(9): 095101. doi: 10.7498/aps.61.095101
    [13] 赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓. A位等价与非等价取代对(K0.5Na0.5)NbO3陶瓷极化的影响. 物理学报, 2011, 60(10): 107701. doi: 10.7498/aps.60.107701
    [14] 王兵, 吴秀清. 双色噪声驱动光学双稳系统的弛豫时间研究. 物理学报, 2011, 60(7): 074214. doi: 10.7498/aps.60.074214
    [15] 杨凤霞, 张端明, 邓宗伟, 姜胜林, 徐 洁, 李舒丹. 基体电导率对0-3型铁电复合材料高压极化行为及损耗的影响. 物理学报, 2008, 57(6): 3840-3845. doi: 10.7498/aps.57.3840
    [16] 顾晓玲, 郭 霞, 吴 迪, 徐丽华, 梁 庭, 郭 晶, 沈光地. GaN基多量子阱发光二极管的极化效应和载流子不均匀分布及其影响. 物理学报, 2007, 56(8): 4977-4982. doi: 10.7498/aps.56.4977
    [17] 朱振业, 王 彪, 郑 跃, 王 海, 李青坤, 李晨亮. 应力作用下铁电超晶格BaTiO3/SrTiO3的结构和极化的第一性原理研究. 物理学报, 2007, 56(10): 5986-5989. doi: 10.7498/aps.56.5986
    [18] 刘 洪, 蒲朝辉, 龚小刚, 王志红, 黄惠东, 李言荣, 肖定全, 朱建国. (111)取向(Pb,La)TiO3铁电薄膜中90°纳米带状畴与热释电性能的研究. 物理学报, 2006, 55(11): 6123-6128. doi: 10.7498/aps.55.6123
    [19] 徐任信, 陈 文, 周 静. 聚合物电导率对0-3型压电复合材料极化性能的影响. 物理学报, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
    [20] 郭冠军, 苏 林, 毕思文. 风成海面的极化辐射. 物理学报, 2005, 54(5): 2448-2452. doi: 10.7498/aps.54.2448
计量
  • 文章访问数:  4245
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-24
  • 修回日期:  2023-06-28
  • 上网日期:  2023-07-06
  • 刊出日期:  2023-09-05

/

返回文章
返回