搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅海矢量声场极化特性的深度分布规律(已撤稿)

韦宜政 孙超 朱启轩

引用本文:
Citation:

浅海矢量声场极化特性的深度分布规律(已撤稿)

韦宜政, 孙超, 朱启轩

Depth distribution law of polarization characteristics of vector acoustic field in shallow sea (Retracted)

Wei Yi-Zheng, Sun Chao, Zhu Qi-Xuan
PDF
HTML
导出引用
  • 海洋波导环境中声场的极化特性可为水下目标探测提供新思路, 因此对极化特性进行研究很有意义. 本文将Stokes参数扩展到宽带形式, 利用非平稳相位近似方法对公式进行简化, 降低了理论推导的复杂性, 并揭示了极化特性在声源深度及声源对称深度具有显著变化特性的物理机理. 数值仿真结果表明: 使用非平稳相位近似进行简化后的公式是有效的, 可以较好地表征出极化特性的深度分布规律; 同时, 通过对宽带Stokes参数归一化, 可以去除水平距离对极化特性深度分布规律的影响; 随后, 以归一化宽带Stokes参数为研究对象, 分析了声源频率、声源深度、声速剖面及海水深度等参数对极化特性深度分布规律的影响. 通过RHUM-RUM实验数据处理结果验证了非平稳相位近似的有效性和归一化宽带Stokes参数的距离无关性质. 相关结论可为基于矢量场极化特性的被动目标深度估计提供理论依据.
    The polarization of the acoustic field in the ocean waveguide environment is a unique property that can be measured by using a particle velocity sensor in the water column. It can provide new ideas for locating and detecting the underwater target, so it is interesting to study the polarization. The polarization of a monochromatic signal has been described by the Stokes parameters, a set of four real-valued quantities in previous work. In this work, the Stokes parameters are extended to the broadband form, and the expression is simplified by using the nonstationary phase approximation, which reduces the complexity of the theoretical derivation and reveals the physical mechanism behind the significant variations in polarization with source depth and symmetrical depth. Theoretical analysis shows that the polarization characteristics in the ideal waveguide vary significantly in the sea surface, the sea bottom, the depth of the sound source and symmetrical depth. In this work the numerical simulation is used to verify the theoretical analysis and study the relationship between range and integral bandwidth when nonstationary phase approximation method is effective. The numerical results demonstrate that the simplified expression using the nonstationary phase approximation is effective and can better characterize the depth distribution characteristics of the polarization. Additionally, by normalizing the broadband Stokes parameters, the effect of range on the depth distribution characteristics of polarization can be removed. It means that the normalized broadband Stokes parameters are in theory free of the range and depend on the environment, the receiver depth and the source depth, which have the potential to be used for source depth estimation. Subsequently, focusing on normalized broadband Stokes parameters, we analyzes the effects of parameters such as source frequency, source depth, sound speed profile and water depth on the depth distribution characteristics of polarization. The analysis results show that environmental factors have great influence on the depth distribution characteristics of polarization. In the end, the validity of the nonstationary phase approximation and the range-independent property of the normalized broadband Stokes parameters are verified by the results of the RHUM-RUM experimental data processing. The findings provide a theoretical basis for passive target depth estimation based on polarization.

    撤稿:《浅海矢量声场极化特性的深度分布规律》[物理学报 2022, 73(10): 247502]

    宋凯欣, 闵书刚, 高俊奇, 张双捷, 毛智能, 沈莹, 储昭强. 撤稿:《浅海矢量声场极化特性的深度分布规律》. 物理学报, 2024, 73(10): 247502. doi: 10.7498/aps.73.109902
      通信作者: 孙超, csun@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11534009)资助的课题.
      Corresponding author: Sun Chao, csun@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11534009).
    [1]

    休罗夫V 著 (贾志富 译) 2011 海洋矢量声学(北京: 国防工业出版社)第2—5页

    Shchurov V (translated by Jia Z F) 2011 Vector Acoustics of the Ocean (Beijing: National Defense Industry Press) pp2–5

    [2]

    姜哲, 郭骅 1991 声学学报 16 330Google Scholar

    Jiang Z, Guo H 1991 Acta Acust. 16 330Google Scholar

    [3]

    Li J F, Pascal J C, Carles C 1998 J. Acoust. Soc. Am. 103 962Google Scholar

    [4]

    Shi C, Zhao R, Long Y, Yang S, Wang Y, Chen H, Ren J, Zhang X 2019 Natl. Sci. Rev. 6 707Google Scholar

    [5]

    Bliokh K Y, Nori F 2019 Phys. Rev. B 99 020301Google Scholar

    [6]

    Long Y, Ge H, Zhang D, Xu X, Ren J, Lu M H, Bao M, Chen H, Chen Y F 2020 Natl. Sci. Rev. 7 1024Google Scholar

    [7]

    Long Y, Zhang D, Yang C, Ge J, Chen H, Ren J 2020 Nat. Commun. 11 4716Google Scholar

    [8]

    Shchurov V A, Kuleshov V P, Cherkasov A V 2011 Acoust. Phys. 57 851Google Scholar

    [9]

    D’Spain G L, Hodgkiss W S 1991 J. Acoust. Soc. Am. 90 2300Google Scholar

    [10]

    Dall'Osto D R, Dahl P H 2013 J. Acoust. Soc. Am. 134 109Google Scholar

    [11]

    Dahl P H, Dall'Osto D R 2020 IEEE J. Oceanic Eng. 45 131Google Scholar

    [12]

    Dahl P H, Dall'Osto D R 2021 IEEE J. Oceanic Eng. 47 680Google Scholar

    [13]

    刘伟 2014 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Liu W 2014 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [14]

    Du B, Zhang W, Shi X 2016 IEEE/OES China Ocean Acoustics (COA) Harbin, China, August 8, 2016 pp1−3

    [15]

    韩雪 2020 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Han X 2020 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [16]

    Bonnel J, Flamant J, Dall'Osto D R, Le Bihan N, Dahl P H 2021 J. Acoust. Soc. Am. 150 1897Google Scholar

    [17]

    玻恩M, 沃尔夫 E 著 (杨葭荪 译) 2016 光学原理: 光的传播、干涉和衍射的电磁理论(北京: 电子工业出版社)第20—27页

    Born M, Wolf E (translated by Yang J S) 2016 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Beijing: Publishing House of Electronics Industry) pp20–27

    [18]

    Dahl P H, Bonnel J 2022 J. Acoust. Soc. Am. 151 3818Google Scholar

    [19]

    Dahl P H, Dall'Osto D R, Hodgkiss W S 2023 J. Acoust. Soc. Am. 154 1482Google Scholar

    [20]

    Flamant J, Bonnel J 2023 J. Acoust. Soc. Am. 153 3012Google Scholar

    [21]

    延森 F B, 库珀曼 W A, 波特 M B, 施米特 H 著 (周利生, 王鲁军, 杜栓平 译) 2017 计算海洋声学 (第2版) (北京: 国防工业出版社)第272—275页

    Jensen F B, Kuperman W A, Porter M B, Schmidt H (translated by Zhou L S, Wang L J, Du S P) 2017 Computational Ocean Acoustics (2nd Ed.) (Beijing: National Defense Industry Press) pp272–275

    [22]

    Tsekhmistrenko M, Sigloch K, Hosseini K, Barruol G 2021 Nat. Geosci. 14 612Google Scholar

    [23]

    Trabattoni A, Barruol G, Dréo R, Boudraa A 2023 J. Acoust. Soc. Am. 153 260Google Scholar

  • 图 1  横波的极化现象 (a) 线极化; (b) 圆极化; (c) 椭圆极化

    Fig. 1.  Polarization of transverse wave: (a) Linear polarization; (b) circular polarization; (c) elliptical polarization.

    图 2  质点椭圆运动轨迹

    Fig. 2.  Elliptical path of acoustic particle motion.

    图 3  归一化Stokes参数与极化状态的关系

    Fig. 3.  Relation between normalized Stokes parameters and polarization states.

    图 4  $ {D_N}(z) $随$z$变化曲线

    Fig. 4.  Curve of $ {D_N}(z) $ with $z$.

    图 5  $ {E_N}(z) $随$z$变化曲线

    Fig. 5.  Curve of $ {E_N}(z) $ with z.

    图 6  理想固体海底等声速波导环境下宽带Stokes参数深度分布曲线 (a) $S_0^{\left[ {{f_1}, {f_2}} \right]}$; (b) $S_1^{\left[ {{f_1}, {f_2}} \right]}$; (c) $S_2^{\left[ {{f_1}, {f_2}} \right]}$; (d) $S_3^{\left[ {{f_1}, {f_2}} \right]}$

    Fig. 6.  Broadband Stokes parameters depth distribution curves for an ideal solid seabed isovelocity environment: (a) $S_0^{\left[ {{f_1}, {f_2}} \right]}$; (b) $S_1^{\left[ {{f_1}, {f_2}} \right]}$; (c) $S_2^{\left[ {{f_1}, {f_2}} \right]}$; (d) $S_3^{\left[ {{f_1}, {f_2}} \right]}$.

    图 7  不同积分带宽条件下$S_0^{\left[ {{f_1}, {f_2}} \right]}$的误差值随距离的变化

    Fig. 7.  Error value with range for different integration bandwidth.

    图 8  非平稳相位近似成立距离${r_1}$与积分带宽的关系

    Fig. 8.  Relationship between ${r_1}$ and integration bandwidth

    图 9  Pekeris波导环境下宽带Stokes参数深度分布曲线 (a) $S_0^{\left[ {{f_1}, {f_2}} \right]}$; (b) $S_1^{\left[ {{f_1}, {f_2}} \right]}$; (c) $S_2^{\left[ {{f_1}, {f_2}} \right]}$; (d) $S_3^{\left[ {{f_1}, {f_2}} \right]}$

    Fig. 9.  Broadband Stokes parameters depth distribution curves for Pekeris waveguide: (a) $S_0^{\left[ {{f_1}, {f_2}} \right]}$; (b) $S_1^{\left[ {{f_1}, {f_2}} \right]}$; (c) $S_2^{\left[ {{f_1}, {f_2}} \right]}$; (d) $S_3^{\left[ {{f_1}, {f_2}} \right]}$.

    图 10  Pekeris波导环境下归一化宽带Stokes参数深度分布曲线 (a) 归一化宽带Stokes参数$s_1^{\left[ {{f_1}, {f_2}} \right]}$; (b) 归一化宽带Stokes参数$s_3^{\left[ {{f_1}, {f_2}} \right]}$

    Fig. 10.  Normalized broadband Stokes parameters depth distribution curves for Pekeris waveguide: (a) Normalized broadband Stokes parameter $s_1^{\left[ {{f_1}, {f_2}} \right]}$; (b) normalized broadband Stokes parameter $s_3^{\left[ {{f_1}, {f_2}} \right]}$.

    图 11  Pekeris波导环境下归一化宽带Stokes参数的深度-距离分布 (a) 归一化宽带Stokes参数$s_1^{\left[ {{f_1}, {f_2}} \right]}$; (b) 归一化宽带Stokes参数$s_3^{\left[ {{f_1}, {f_2}} \right]}$

    Fig. 11.  Depth-range distribution of normalized broadband Stokes parameters for Pekeris waveguide: (a) Normalized broadband Stokes parameter $s_1^{\left[ {{f_1}, {f_2}} \right]}$; (b) normalized broadband Stokes parameter $s_3^{\left[ {{f_1}, {f_2}} \right]}$.

    图 12  不同频率范围的归一化宽带Stokes参数深度分布曲线 (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(带宽$ {f_{{\text{c1}}}} $—125 Hz); (b) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(带宽$ {f_{{\text{c1}}}} $—250 Hz); (c) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(带宽$ {f_{{\text{c1}}}} $—500 Hz) ; (d) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(带宽$ {f_{{\text{c1}}}} $—125 Hz) ; (e) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(带宽$ {f_{{\text{c1}}}} $—250 Hz) ; (f) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(带宽$ {f_{{\text{c1}}}} $—500 Hz)

    Fig. 12.  Normalized broadband Stokes parameters depth distribution curves for different frequency ranges: (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$($ {f_{{\text{c1}}}} $− 125 Hz); (b) $s_1^{\left[ {{f_1}, {f_2}} \right]}$($ {f_{{\text{c1}}}} $−250 Hz); (c) $s_1^{\left[ {{f_1}, {f_2}} \right]}$($ {f_{{\text{c1}}}} $- 500 Hz); (d) $s_3^{\left[ {{f_1}, {f_2}} \right]}$($ {f_{{\text{c1}}}} $−125 Hz); (e) $s_3^{\left[ {{f_1}, {f_2}} \right]}$($ {f_{{\text{c1}}}} $−250 Hz); (f) $s_3^{\left[ {{f_1}, {f_2}} \right]}$($ {f_{{\text{c1}}}} $− 500 Hz)

    图 13  不同声源深度的归一化宽带Stokes参数深度分布 (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$; (b) $s_3^{\left[ {{f_1}, {f_2}} \right]}$

    Fig. 13.  Normalized broadband Stokes parameters depth distributions for different sound source depths: (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$; (b) $s_3^{\left[ {{f_1}, {f_2}} \right]}$.

    图 14  声速剖面示意图

    Fig. 14.  Sound speed profile.

    图 15  不同声速剖面的归一化宽带Stokes参数深度分布曲线 (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(正梯度); (b) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(负梯度); (c) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(负跃层); (d) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(正梯度); (e) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(负梯度); (f) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(负跃层)

    Fig. 15.  Normalized broadband Stokes parameters depth distribution curves for different sound speed profiles: (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(positive gradient); (b) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(negative gradient); (c) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(negative thermocline); (d) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(positive gradient); (e) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(negative gradient); (f) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(negative thermocline).

    图 16  不同海深环境的归一化宽带Stokes参数深度分布曲线 (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(海深50 m); (b) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(海深100 m); (c) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(海深200 m); (d) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(海深50 m); (e) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(海深100 m); (f) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(海深200 m)

    Fig. 16.  Normalized broadband Stokes parameters depth distribution curves for different depths of water column: (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(depth 50 m); (b) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(depth 100 m); (c) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(depth 200 m); (d) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(depth 50 m); (e) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(depth 100 m); (f) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(depth 200 m).

    图 17  声压通道倒谱图

    Fig. 17.  Cepstrogram of pressure channel.

    图 18  目标方位估计结果

    Fig. 18.  Results of ship azimuth estimation.

    图 19  质点振速信号的时频图 (a) 水平质点振速${v_r}$; (b) 垂直质点振速${v_z}$

    Fig. 19.  Spectrogram of the particle velocity: (a) horizontal particle velocity ${v_r}$; (b) vertical particle velocity ${v_z}$.

    图 20  归一化宽带Stokes参数随时间的变化 (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$; (b) $s_2^{\left[ {{f_1}, {f_2}} \right]}$; (c) $s_3^{\left[ {{f_1}, {f_2}} \right]}$

    Fig. 20.  Time-varying curves of the normalized broadband Stokes parameters: (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$; (b) $s_2^{\left[ {{f_1}, {f_2}} \right]}$; (c) $s_3^{\left[ {{f_1}, {f_2}} \right]}$.

  • [1]

    休罗夫V 著 (贾志富 译) 2011 海洋矢量声学(北京: 国防工业出版社)第2—5页

    Shchurov V (translated by Jia Z F) 2011 Vector Acoustics of the Ocean (Beijing: National Defense Industry Press) pp2–5

    [2]

    姜哲, 郭骅 1991 声学学报 16 330Google Scholar

    Jiang Z, Guo H 1991 Acta Acust. 16 330Google Scholar

    [3]

    Li J F, Pascal J C, Carles C 1998 J. Acoust. Soc. Am. 103 962Google Scholar

    [4]

    Shi C, Zhao R, Long Y, Yang S, Wang Y, Chen H, Ren J, Zhang X 2019 Natl. Sci. Rev. 6 707Google Scholar

    [5]

    Bliokh K Y, Nori F 2019 Phys. Rev. B 99 020301Google Scholar

    [6]

    Long Y, Ge H, Zhang D, Xu X, Ren J, Lu M H, Bao M, Chen H, Chen Y F 2020 Natl. Sci. Rev. 7 1024Google Scholar

    [7]

    Long Y, Zhang D, Yang C, Ge J, Chen H, Ren J 2020 Nat. Commun. 11 4716Google Scholar

    [8]

    Shchurov V A, Kuleshov V P, Cherkasov A V 2011 Acoust. Phys. 57 851Google Scholar

    [9]

    D’Spain G L, Hodgkiss W S 1991 J. Acoust. Soc. Am. 90 2300Google Scholar

    [10]

    Dall'Osto D R, Dahl P H 2013 J. Acoust. Soc. Am. 134 109Google Scholar

    [11]

    Dahl P H, Dall'Osto D R 2020 IEEE J. Oceanic Eng. 45 131Google Scholar

    [12]

    Dahl P H, Dall'Osto D R 2021 IEEE J. Oceanic Eng. 47 680Google Scholar

    [13]

    刘伟 2014 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Liu W 2014 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [14]

    Du B, Zhang W, Shi X 2016 IEEE/OES China Ocean Acoustics (COA) Harbin, China, August 8, 2016 pp1−3

    [15]

    韩雪 2020 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Han X 2020 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [16]

    Bonnel J, Flamant J, Dall'Osto D R, Le Bihan N, Dahl P H 2021 J. Acoust. Soc. Am. 150 1897Google Scholar

    [17]

    玻恩M, 沃尔夫 E 著 (杨葭荪 译) 2016 光学原理: 光的传播、干涉和衍射的电磁理论(北京: 电子工业出版社)第20—27页

    Born M, Wolf E (translated by Yang J S) 2016 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Beijing: Publishing House of Electronics Industry) pp20–27

    [18]

    Dahl P H, Bonnel J 2022 J. Acoust. Soc. Am. 151 3818Google Scholar

    [19]

    Dahl P H, Dall'Osto D R, Hodgkiss W S 2023 J. Acoust. Soc. Am. 154 1482Google Scholar

    [20]

    Flamant J, Bonnel J 2023 J. Acoust. Soc. Am. 153 3012Google Scholar

    [21]

    延森 F B, 库珀曼 W A, 波特 M B, 施米特 H 著 (周利生, 王鲁军, 杜栓平 译) 2017 计算海洋声学 (第2版) (北京: 国防工业出版社)第272—275页

    Jensen F B, Kuperman W A, Porter M B, Schmidt H (translated by Zhou L S, Wang L J, Du S P) 2017 Computational Ocean Acoustics (2nd Ed.) (Beijing: National Defense Industry Press) pp272–275

    [22]

    Tsekhmistrenko M, Sigloch K, Hosseini K, Barruol G 2021 Nat. Geosci. 14 612Google Scholar

    [23]

    Trabattoni A, Barruol G, Dréo R, Boudraa A 2023 J. Acoust. Soc. Am. 153 260Google Scholar

  • [1] 韦宜政, 孙超, 朱启轩. 撤稿:《浅海矢量声场极化特性的深度分布规律》. 物理学报, 2024, 73(10): 109902. doi: 10.7498/aps.73.109902
    [2] 陈昊鹏, 聂永杰, 李国倡, 魏艳慧, 胡昊, 鲁广昊, 李盛涛, 朱远惟. 聚合物分散液晶薄膜的极化特性及其对电光性能的影响. 物理学报, 2023, 72(17): 177701. doi: 10.7498/aps.72.20230664
    [3] 王冬, 郭良浩, 刘建军, 戚聿波. 一种基于warping变换的浅海脉冲声源被动测距方法. 物理学报, 2016, 65(10): 104302. doi: 10.7498/aps.65.104302
    [4] 屈少华, 曹万强. 球形无规键无规场模型研究弛豫铁电体极化效应. 物理学报, 2014, 63(4): 047701. doi: 10.7498/aps.63.047701
    [5] 屈科, 胡长青, 赵梅. 利用时域波形快速反演海底单参数的方法. 物理学报, 2013, 62(22): 224303. doi: 10.7498/aps.62.224303
    [6] 林旺生, 梁国龙, 付进, 张光普. 浅海矢量声场干涉结构形成机理及试验研究. 物理学报, 2013, 62(14): 144301. doi: 10.7498/aps.62.144301
    [7] 黄旭东, 冯玉军, 唐帅. 掺镧锆锡钛酸铅陶瓷极化强度变化量对电子发射电流强度的影响. 物理学报, 2012, 61(8): 087702. doi: 10.7498/aps.61.087702
    [8] 陈龙天, 程用志, 聂彦, 龚荣洲. 人工异向介质调控电磁波极化特性的实验与仿真研究. 物理学报, 2012, 61(9): 094203. doi: 10.7498/aps.61.094203
    [9] 刘丽娟, 颉录有, 陈展斌, 蒋军, 董晨钟. 镁原子碰撞激发微分截面和Stokes参数的理论研究. 物理学报, 2012, 61(10): 103102. doi: 10.7498/aps.61.103102
    [10] 陆文, 严卫, 王蕊, 王迎强. 全极化微波辐射计姿态对观测亮温的影响及消除. 物理学报, 2012, 61(1): 018401. doi: 10.7498/aps.61.018401
    [11] 赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓. A位等价与非等价取代对(K0.5Na0.5)NbO3陶瓷极化的影响. 物理学报, 2011, 60(10): 107701. doi: 10.7498/aps.60.107701
    [12] 杨凤霞, 张端明, 邓宗伟, 姜胜林, 徐 洁, 李舒丹. 基体电导率对0-3型铁电复合材料高压极化行为及损耗的影响. 物理学报, 2008, 57(6): 3840-3845. doi: 10.7498/aps.57.3840
    [13] 顾晓玲, 郭 霞, 吴 迪, 徐丽华, 梁 庭, 郭 晶, 沈光地. GaN基多量子阱发光二极管的极化效应和载流子不均匀分布及其影响. 物理学报, 2007, 56(8): 4977-4982. doi: 10.7498/aps.56.4977
    [14] 朱振业, 王 彪, 郑 跃, 王 海, 李青坤, 李晨亮. 应力作用下铁电超晶格BaTiO3/SrTiO3的结构和极化的第一性原理研究. 物理学报, 2007, 56(10): 5986-5989. doi: 10.7498/aps.56.5986
    [15] 刘 洪, 蒲朝辉, 龚小刚, 王志红, 黄惠东, 李言荣, 肖定全, 朱建国. (111)取向(Pb,La)TiO3铁电薄膜中90°纳米带状畴与热释电性能的研究. 物理学报, 2006, 55(11): 6123-6128. doi: 10.7498/aps.55.6123
    [16] 徐任信, 陈 文, 周 静. 聚合物电导率对0-3型压电复合材料极化性能的影响. 物理学报, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
    [17] 张春福, 郝 跃, 游海龙, 张金凤, 周小伟. 界面电偶极子对GaN/AlGaN/GaN光电探测器紫外/太阳光选择比的影响. 物理学报, 2005, 54(8): 3810-3814. doi: 10.7498/aps.54.3810
    [18] 刘义保, 庞文宁, 丁海兵, 尚仁成. 电子-光子符合散射实验中受激原子态电荷云分布的研究. 物理学报, 2005, 54(8): 3554-3558. doi: 10.7498/aps.54.3554
    [19] 郭冠军, 苏 林, 毕思文. 风成海面的极化辐射. 物理学报, 2005, 54(5): 2448-2452. doi: 10.7498/aps.54.2448
    [20] 刘义保, 庞文宁, 丁海兵, 尚仁成. 电子散射的钠原子受激态取向参数研究. 物理学报, 2005, 54(11): 5121-5125. doi: 10.7498/aps.54.5121
计量
  • 文章访问数:  1083
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-07
  • 修回日期:  2024-03-07
  • 上网日期:  2024-03-12
  • 刊出日期:  2024-05-05

/

返回文章
返回