-
针对浅海波导中存在的底质参数失配造成水平阵难以正确获取目标深度的问题, 在未知底质参数条件下, 提出了一种基于简正波强度匹配的目标深度估计方法. 通过波数域波束形成技术估计波导中各阶简正波的水平波数和强度, 在简正波模态函数特征方程的基础上利用有限差分法对简正波模态函数进行反演, 计算估计和反演简正波强度之间的匹配度, 最终实现目标深度估计. 基于水平均匀线列阵的仿真结果表明, 所提的算法无需底质参数即可实现对浅海目标深度较为准确的估计. 同时分析了算法在不同的底质参数、阵列孔径、声源频率、信噪比和声速失配条件下的深度估计性能. 结果表明, 所提方法不受底质参数失配的影响, 同时对声速失配较为稳健, 在阵元数不少于128, 频带范围为$50— 150{\text{ Hz}}$, 阵元信噪比大于$ - 10{\text{ dB}}$的条件下可对全海深目标深度进行有效估计. 最终利用南海浅海的海试数据对所提方法的可行性进行了验证.A novel target depth estimation method based on normal mode intensity match is proposed for shallow water environment by using horizontal array to overcome the performance degradation observed in traditional approaches under the condition that seabed parameters are not matched. Firstly, horizontal wavenumbers and normal mode intensities are estimated through wavenumber domain beamforming. Secondly, modal function of normal mode inversion is performed by solving the modal function characteristic equation by using the finite difference method. Thirdly, the match degree between inverted and estimated normal mode intensities is evaluated to estimate target depth. The numerical simulation results show that the proposed method can accurately estimate the target depth in shallow water scenarios without knowing the seabed parameters. Furthermore, the performance of the method is analyzed under different conditions including different seabed parameters, array apertures and source frequencies. The results reveal three conclusions: 1) the mismatch of seabed parameters has no influence on the method; 2) the effective performance of full depth source estimation requires no less than 128 array elements, $50 - 150{\text{ Hz}}$ a frequency band range of 50-150 Hz, and the signal-to-noise radio of the element on a horizontal line array exceeding –10 dB $ - 10{\text{ dB}}$; 3) the method has robust performance against sound speed profile mismatch. Finally, the feasibility of the proposed method is validated by the experimental data received by a horizontally towing 77-element array during the shallow-water sea trial in the South China Sea.
-
Keywords:
- seabed parameters /
- shallow water /
- horizontal array /
- depth estimation
-
图 4 $20{\text{ m}}$声源深度下简正波水平波数与强度仿真结果 (a) 理论与估计水平波数; (b) 低阶简正波理论与估计水平波数; (c) 理论与估计简正波强度
Fig. 4. Simulation results of normal mode wavenumbers and intensities at $20{\text{ m}}$source depth: (a) Theoretical and estimated horizontal wavenumbers; (b) theoretical and estimated horizontal wavenumbers of low order normal modes; (c) theoretical and estimated normal mode intensities.
图 11 $30{\text{ m}}$声源深度下简正波水平波数与强度仿真结果 (a) 理论与估计水平波数; (b) 低阶简正波理论与估计水平波数; (c) 理论与估计简正波强度
Fig. 11. Simulation results of normal mode wavenumbers and intensities at $30{\text{ m}}$source depth: (a) Theoretical and estimated horizontal wavenumbers; (b) theoretical and estimated horizontal wavenumbers of low order normal modes; (c) theoretical and estimated normal mode intensities.
图 12 不同底质参数下深度估计结果 (a) MFP(无失配); (b) 波数域匹配方法(无失配); (c) 本文所提方法(无失配); (d) MFP(失配); (e) 波数域匹配方法(失配); (f) 本文所提方法(失配)
Fig. 12. Results of depth estimation in different seabed parameters: (a) MFP (without mismatch); (b) wavenumber domain match method (without mismatch); (c) proposed method (without mismatch); (d) MFP (mismatch); (e) wavenumber domain match method (mismatch); (f) proposed method (mismatch).
图 13 不同信噪比下深度估计结果 (a) MFP (${\text{SNR}} = - 15{\text{ dB}}$); (b) 波数域匹配 (${\text{SNR}} = - 15{\text{ dB}}$); (c) 本文方法 (${\text{SNR}} = $$ - 15{\text{ dB}}$); (d) MFP (${\text{SNR}} = - 10{\text{ dB}}$); (e) 波数域匹配 (${\text{SNR}} = - 10{\text{ dB}}$); (f) 本文方法 (${\text{SNR}} = - 10{\text{ dB}}$); (g) MFP (${\text{SNR}} = $$ - 5{\text{ dB}}$); (h) 波数域匹配; (${\text{SNR}} = - 5{\text{ dB}}$); (i) 本文方法 (${\text{SNR}} = - 5{\text{ dB}}$)
Fig. 13. Results of depth estimation in different SNR: (a) MFP (${\text{SNR}} = - 15{\text{ dB}}$); (b) wavenumber domain match method (${\text{SNR}} = - 15{\text{ dB}}$); (c) proposed method (${\text{SNR}} = - 15{\text{ dB}}$); (d) MFP (${\text{SNR}} = - 10{\text{ dB}}$); (e) wavenumber domain match method (${\text{SNR}} = - 10{\text{ dB}}$); (f) proposed method (${\text{SNR}} = - 10{\text{ dB}}$); (g) MFP (${\text{SNR}} = - 5{\text{ dB}}$); (h) wavenumber domain match method (${\text{SNR}} = - 5{\text{ dB}}$); (i) proposed method (${\text{SNR}} = - 5{\text{ dB}}$).
图 14 不同$\delta $下深度估计结果 (a) MFP ($\delta = 5{\text{ m/s}}$); (b) 波数域匹配 ($\delta = 5{\text{ m/s}}$); (c) 本文方法 ($\delta = 5{\text{ m/s}}$); (d) MFP ($\delta = $$ 10{\text{ m/s}}$); (e) 波数域匹配 ($\delta = 10{\text{ m/s}}$); (f) 本文方法 ($\delta = 10{\text{ m/s}}$); (g) MFP ($\delta = 15{\text{ m/s}}$); (h) 波数域匹配; ($\delta = 15{\text{ m/s}}$); (i) 本文方法 ($\delta = 15{\text{ m/s}}$)
Fig. 14. Results of depth estimation in different $\delta $: (a) MFP ($\delta = 5{\text{ m/s}}$); (b) wavenumber domain match method ($\delta = 5{\text{ m/s}}$); (c) proposed method ($\delta = 5{\text{ m/s}}$); (d) MFP ($\delta = 10{\text{ m/s}}$); (e) wavenumber domain match method ($\delta = 10{\text{ m/s}}$); (f) proposed method ($\delta = 10{\text{ m/s}}$); (g) MFP ($\delta = 15{\text{ m/s}}$); (h) wavenumber domain match method ($\delta = 15{\text{ m/s}}$); (i) proposed method ($\delta = 15{\text{ m/s}}$).
图 16 海试数据处理结果 (a) 估计水平波数; (b) 波数域波束形成; (c) $160{\text{ Hz}}$处反演简正波模态函数; (d) 估计目标深度; (e) $1 — $$ 5{\text{ m}}$内估计目标深度
Fig. 16. Results of experiment data processing: (a) Estimated horizontal wavenumbers; (b) wavenumber domain beamforming; (c) modal functions of normal mode at $160{\text{ Hz}}$by inverting; (d) estimated target depth; (e) estimated target depth between $1$ and $5{\text{ m}}$.
-
[1] Bucker H P 1988 J. Acoust. Soc. Am. 87 571
[2] Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Oceanic Eng. 18 401
Google Scholar
[3] Krolik J L 1992 J. Acoust. Soc. Am. 92 1408
Google Scholar
[4] Schmidt H, Kuperman W A, Scheer E K 1990 J. Acoust. Soc. Am. 88 1851
Google Scholar
[5] 李建龙, 潘翔 2008 声学学报 33 205
Google Scholar
Li J L, Pan X 2008 Acta Acustica 33 205
Google Scholar
[6] 杨坤德, 马远良, 邹士新, 雷波 2006 声学学报 31 496
Google Scholar
Yang K D, Ma Y L, Zou S X, Lei B 2006 Acta Acustica 31 496
Google Scholar
[7] 王奇, 王英民, 魏志强 2020 声学学报 45 475
Wang Q, Wang Y M, Wei Z Q 2020 Acta Acustica 45 475
[8] Hursky P, Hodgkiss W S, Kuperman W A 2001 J. Acoust. Soc. Am. 109 1355
Google Scholar
[9] Dosso S E, Wilmut M J 2008 J. Acoust. Soc. Am. 124 82
Google Scholar
[10] Dosso S E, Wilmut M J 2013 JASA Express Lett. 133 274
[11] Li X L, Xu Y J, Gao W, Wang H Z, Wang L 2024 Remote Sens. 16 2227
Google Scholar
[12] Akins F H, Kuperman W A 2020 JASA Express Lett. 2 074802
[13] Yang T C 2014 J. Acoust. Soc. Am. 135 1218
Google Scholar
[14] Yang T C 2019 J. Acoust. Soc. Am. 146 4740
Google Scholar
[15] 周玉媛, 孙超, 谢磊, 刘宗伟 2023 物理学报 72 084302
Google Scholar
Zhou Y Y, Sun C, Xie L, Liu Z W 2023 Acta Phys. Sin. 72 084302
Google Scholar
[16] 孟瑞洁, 周士弘, 李风华, 戚聿波 2019 物理学报 68 134304
Google Scholar
Meng R J, Zhou S H, Li F H, Qi Y B 2019 Acta Phys. Sin. 68 134304
Google Scholar
[17] 王宣, 孙超, 李明杨, 张少东 2022 物理学报 71 084304
Google Scholar
Wang X, Sun C, Li M Y, Zhang S D 2022 Acta Phys. Sin. 71 084304
Google Scholar
[18] Bogart C W, Yang T C 1994 J. Acoust. Soc. Am. 96 1677
Google Scholar
[19] Nicolas B, Mars J, Lacoume J 2006 EURASIP J. Adv. Signal Process. 65901 1
[20] Zhang Y K, Yang Q L, Yang K D 2023 Ocean Eng. 286 115502
Google Scholar
[21] Liang G L, Zhang Y F, Zou N, Wang J J 2018 Math. Prob. Eng. 7824671 7824671
[22] Premus V E, Helfrick M N 2013 J. Acoust. Soc. Am. 133 4019
Google Scholar
[23] 李天宇, 李宇, 黄海宁, 杨习山 2021 声学学报 46 497
Li T Y, Li Y, Huang H N, Yang X S 2021 Acta Acustica 46 497
[24] 李鹏, 章新华, 付留芳, 曾祥旭 2017 物理学报 66 084301
Google Scholar
Li P, Zhang X H, Fu L F, Zeng X X 2017 Acta Phys. Sin. 66 084301
Google Scholar
[25] Zhang H C, Zhou S H, Liu C P, Qi Y B 2024 J. Acoust. Soc. Am. 156 1148
Google Scholar
[26] Du Z Y, Hao Y, Qiu L H, Li C M, Liang G L 2024 J. Acoust. Soc. Am. 156 2989
Google Scholar
[27] 汪德昭, 尚尔昌 2013 水声学(第二版)(北京: 科学出版社) 第74页
Wang D Z, Shang E C 2013 Hydroacoustics (2nd Ed. ) (Beijing: Science Press) p74
[28] 芬恩 B 延森, 威廉 A 库珀曼, 亨利克 施米特著 (周利生, 王鲁军, 杜栓平译) 2017 计算海洋声学(北京: 国防工业出版社)第286—287页
Jensen F B, Kuperman W A, Porter M B, Schimit H(translated by Zhou L S, Wang L J, Du S P)2017 Computational Ocean Acoustics (Beijing: National Defense Industry Press) pp286—287
[29] Li X L, Wang P Y 2021 JASA Express Lett. 1 126002
Google Scholar
[30] Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) p1
[31] 国家标准化管理委员会 2024 GB/T 44042-2024(北京: 国家标准化管理委员会)第三部分
Standardization Administration of the People’s Republic of China 2024 GB/T 44042-2024 (Beijing: Standardization Administration of the People’s Republic of China) Part3
计量
- 文章访问数: 384
- PDF下载量: 15
- 被引次数: 0