-
针对浅海波导中存在的底质参数失配造成水平阵难以正确获取目标深度的问题,在未知底质参数条件下,提出了一种基于简正波强度匹配的目标深度估计方法。通过波数域波束形成技术估计波导中各阶简正波的水平波数和强度,在简正波模态函数特征方程的基础上利用有限差分法对简正波模态函数进行反演,计算估计和反演简正波强度之间的匹配度,最终实现目标深度估计。基于水平均匀线列阵的仿真结果表明,所提的算法无需底质参数即可实现对浅海目标深度较为准确的估计。同时分析了算法在不同的底质参数、阵列孔径、声源频率、信噪比和声速失配条件下的深度估计性能,结果表明所提方法不受底质参数失配的影响,同时对声速失配较为稳健,在阵元数不少于128,频带范围为50-150Hz,阵元信噪比大于-10dB的条件下可对全海深目标深度进行有效估计。最终利用南海浅海的海试数据对所提方法的可行性进行了验证。A novel target depth estimation method based on normal mode intensity match is proposed for shallow water environment using horizontal array to overcome the performance degradation observed in conventional approaches under seabed parameters mismatch condition. First, horizontal wavenumbers and normal mode intensities are estimated through wavenumber domain beamforming. Second, modal function of normal mode inversion is performed by solving the modal function characteristic equation through finite difference method. Third, the match degree between inverted and estimated normal mode intensities is evaluated to estimate target depth. Numerical simulation results demonstrate that the proposed method can achieve accurate target depth estimation in shallow water scenarios without knowledge of seabed parameters. Furthermore performance of the method is analyzed under varying conditions including different seabed parameters, array apertures and source frequencies. The results reveal three conclusions: (1) mismatch of seabed parameters has no impact on the method; (2) effective performance of all depth source estimation requires not less than 128 array elements, 50-150Hz frequency band range and the signal-to-noise radio in the element on a horizontal line array exceeds -10dB; (3) the method has robust performance against sound speed profile mismatch. Finally, the feasibility of the proposed method is validated through experimental data received by a horizontal towed 77-elements array during a shallow-water sea trial at the South China Sea.
-
Keywords:
- Seabed parameters /
- Shallow water /
- Horizontal array /
- Depth estimation
-
[1] Bucker H P 1988J. Acoust. Soc. Am. 87 571
[2] Baggeroer B, Kuperman W A, Mikhalevsky P N 1993IEEE J. Oceans Eng. 18 401
[3] Krolik J L 1992J. Acoust. Soc. Am. 92 1408
[4] Schmidt H, Kuperman W A, Scheer E K 1990J. Acoust. Soc. Am. 88 1851
[5] Li J L, Pan X 2008Acta. Acustica. 33 205(in Chinese) [李建龙,潘翔2008声学学报33 205]
[6] Yang K D, Ma Y L, Zou S X, Lei B 2006Acta. Acustica. 31 496(in Chinese) [杨坤德,马远良,邹士新,雷波2006声学学报31 496]
[7] Wang Q, Wang Y M, Wei Z Q 2020Acta. Acustica. 45 475(in Chinese) [王奇,王英民,魏志强2020声学学报45 475]
[8] Hursky P, Hodgkiss W S, Kuperman W A 2001J. Acoust. Soc. Am. 109 1355
[9] Dosso S E, Wilmut M J 2008J. Acoust. Soc. Am. 124 82
[10] Dosso S E, Wilmut M J 2013JASA Express Lett. 133 274
[11] Li X L, Xu Y J, Gao W, Wang H Z, Wang L 2024Remote Sens. 16 2227
[12] Akins F H, Kuperman W A 2020JASA Express Lett. 2 074802
[13] Yang T C 2014J. Acoust. Soc. Am. 135 1218
[14] Yang T C 2019J. Acoust. Soc. Am. 146 4740
[15] Zhou Y Y, Sun C, Xie L, Liu Z W 2023Acta Phys. Sin. 72 084302(in Chinese) [周玉媛,孙超,谢磊,刘宗伟2023物理学报72 084302]
[16] Meng R J, Zhou S H, Li F H, Qi Y B 2019Acta Phys. Sin. 68 184304(in Chinese) [孟瑞洁,周士弘,李风华,戚聿波2019物理学报68 184304]
[17] Wang X, Sun C, Li M Y, Zhang S D 2022Acta Phys. Sin. 71 084304(in Chinese) [王宣,孙超,李明杨,张少东2022物理学报71 084304]
[18] Bogart C W, Yang T C 1994J. Acoust. Soc. Am. 96 1677
[19] Nicolas B, Mars J, Lacoume J 2006Eurasip J. Adv. Signal Process. 65901 1
[20] Zhang Y K, Yang Q L, Yang K D 2023Ocean Eng. 286 1
[21] Liang G L, Zhang Y F, Zou N 2018Math. Probl. Eng. 7824671 1
[22] Premus V E, Helfrick M N 2013J. Acoust. Soc. Am. 133 4019
[23] Li T Y, Li Y, Huang H N, Yang X S 2021Acta. Acustica. 46 497(in Chinese) [李天宇,李宇,黄海宁,杨习山2021声学学报46 497]
[24] Li P, Zhang X H, Fu L F, Zeng X X 2017Acta Phys. Sin. 66 084301(in Chinese) [李鹏,章新华,付留芳,曾祥旭2017物理学报66 084301]
[25] Zhang H C, Zhou S H, Liu C P, Qi Y B 2024J. Acoust. Soc. Am. 156 1148
[26] Du Z Y, Hao Y, Qiu L H, Li C M, Liang G L 2024J. Acoust. Soc. Am. 156 2989
[27] Wang D Z, Shang E C 2013Hydroacoustics (2nd Ed.) (Beijing: Science Press) p74(in Chinese) [汪德昭,尚尔昌2013水声学(第二版)(北京:科学出版社)第74页]
[28] Jensen F B, Kuperman W A, Porter M B, Schimit H(translated by Zhou L S, Wang L J, Du S P)2017Computational Ocean Acoustics (Beijing: National Defense Industry Press) pp286—287(in Chinese)[芬恩B延森,威廉A库珀曼,亨利克施米特著(周利生,王鲁军,杜栓平译) 2017计算海洋声学(北京:国防工业出版社)第286—287页]
[29] Li X L, Wang P Y 2021JASA Express Lett. 1 126002
[30] Porter M B 1991The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) p1
[31] Standardization Administration of the People’s Republic of China 2024GB/T 44042-2024 (Beijing: Standardization Administration of the People’s Republic of China) Part3(in Chinese) [国家标准化管理委员会2024 GB/T 44042-2024(北京: 国家标准化管理委员会)第三部分]
计量
- 文章访问数: 201
- PDF下载量: 9
- 被引次数: 0