搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于简正波强度匹配的浅海水平阵目标深度估计方法

殷敬伟 尹家瑞 曹然 黄春龙 李理

引用本文:
Citation:

基于简正波强度匹配的浅海水平阵目标深度估计方法

殷敬伟, 尹家瑞, 曹然, 黄春龙, 李理

A target depth estimation method in shallow water based on matched normal mode intensity

YIN Jingwei, YIN Jiarui, CAO Ran, HUANG Chunlong, LI Li
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 针对浅海波导中存在的底质参数失配造成水平阵难以正确获取目标深度的问题, 在未知底质参数条件下, 提出了一种基于简正波强度匹配的目标深度估计方法. 通过波数域波束形成技术估计波导中各阶简正波的水平波数和强度, 在简正波模态函数特征方程的基础上利用有限差分法对简正波模态函数进行反演, 计算估计和反演简正波强度之间的匹配度, 最终实现目标深度估计. 基于水平均匀线列阵的仿真结果表明, 所提的算法无需底质参数即可实现对浅海目标深度较为准确的估计. 同时分析了算法在不同的底质参数、阵列孔径、声源频率、信噪比和声速失配条件下的深度估计性能. 结果表明, 所提方法不受底质参数失配的影响, 同时对声速失配较为稳健, 在阵元数不少于128, 频带范围为$50— 150{\text{ Hz}}$, 阵元信噪比大于$ - 10{\text{ dB}}$的条件下可对全海深目标深度进行有效估计. 最终利用南海浅海的海试数据对所提方法的可行性进行了验证.
    A novel target depth estimation method based on normal mode intensity match is proposed for shallow water environment by using horizontal array to overcome the performance degradation observed in traditional approaches under the condition that seabed parameters are not matched. Firstly, horizontal wavenumbers and normal mode intensities are estimated through wavenumber domain beamforming. Secondly, modal function of normal mode inversion is performed by solving the modal function characteristic equation by using the finite difference method. Thirdly, the match degree between inverted and estimated normal mode intensities is evaluated to estimate target depth. The numerical simulation results show that the proposed method can accurately estimate the target depth in shallow water scenarios without knowing the seabed parameters. Furthermore, the performance of the method is analyzed under different conditions including different seabed parameters, array apertures and source frequencies. The results reveal three conclusions: 1) the mismatch of seabed parameters has no influence on the method; 2) the effective performance of full depth source estimation requires no less than 128 array elements, $50 - 150{\text{ Hz}}$ a frequency band range of 50-150 Hz, and the signal-to-noise radio of the element on a horizontal line array exceeding –10 dB $ - 10{\text{ dB}}$; 3) the method has robust performance against sound speed profile mismatch. Finally, the feasibility of the proposed method is validated by the experimental data received by a horizontally towing 77-element array during the shallow-water sea trial in the South China Sea.
  • 图 1  浅海水平分层波导模型

    Fig. 1.  Model of shallow water horizontal layered waveguide.

    图 2  有限差分网格

    Fig. 2.  Finite difference grids.

    图 3  仿真使用的浅海波导模型

    Fig. 3.  Model of shallow water waveguide used in simulation.

    图 4  $20{\text{ m}}$声源深度下简正波水平波数与强度仿真结果 (a) 理论与估计水平波数; (b) 低阶简正波理论与估计水平波数; (c) 理论与估计简正波强度

    Fig. 4.  Simulation results of normal mode wavenumbers and intensities at $20{\text{ m}}$source depth: (a) Theoretical and estimated horizontal wavenumbers; (b) theoretical and estimated horizontal wavenumbers of low order normal modes; (c) theoretical and estimated normal mode intensities.

    图 5  70 Hz处反演简正波模态函数

    Fig. 5.  Modal functions of normal mode in $70{\text{ Hz}}$by inverting.

    图 6  目标深度估计结果 (a) 目标深度$1 — 99{\text{ m}}$; (b) 目标深度$52{\text{ m}}$

    Fig. 6.  Results of depth estimation: (a) Source depth of $1 - 99{\text{ m}}$; (b) source depth of $52{\text{ m}}$.

    图 7  不同阵列孔径下深度估计结果 (a) 水平阵阵元数64; (b) 水平阵阵元数128; (c) 声源深度$52$ m与$69{\text{ m}}$

    Fig. 7.  Results of depth estimation in different array aperture: (a) Number of horizontal array sensors is 64; (b) number of horizontal array sensors is 128; (c) source depth of $52$m and $69{\text{ m}}$.

    图 8  不同波导深度下$\delta $与$N$的关系

    Fig. 8.  Relationship between number of sensor and $\delta $in different waveguide depth.

    图 9  $\delta $与$\Delta B$的关系

    Fig. 9.  Relationship between $\delta $and bandwidth $\Delta B$.

    图 10  不同频率下深度估计结果 (a) 频率$30{\text{ Hz}}$; (b) 频率$100{\text{ Hz}}$; (c) 频率$200{\text{ Hz}}$

    Fig. 10.  Results of depth estimation in different frequency: (a) Frequency is $30{\text{ Hz}}$; (b) frequency is $100{\text{ Hz}}$; (c) frequency is $200{\text{ Hz}}$.

    图 11  $30{\text{ m}}$声源深度下简正波水平波数与强度仿真结果 (a) 理论与估计水平波数; (b) 低阶简正波理论与估计水平波数; (c) 理论与估计简正波强度

    Fig. 11.  Simulation results of normal mode wavenumbers and intensities at $30{\text{ m}}$source depth: (a) Theoretical and estimated horizontal wavenumbers; (b) theoretical and estimated horizontal wavenumbers of low order normal modes; (c) theoretical and estimated normal mode intensities.

    图 12  不同底质参数下深度估计结果 (a) MFP(无失配); (b) 波数域匹配方法(无失配); (c) 本文所提方法(无失配); (d) MFP(失配); (e) 波数域匹配方法(失配); (f) 本文所提方法(失配)

    Fig. 12.  Results of depth estimation in different seabed parameters: (a) MFP (without mismatch); (b) wavenumber domain match method (without mismatch); (c) proposed method (without mismatch); (d) MFP (mismatch); (e) wavenumber domain match method (mismatch); (f) proposed method (mismatch).

    图 13  不同信噪比下深度估计结果 (a) MFP (${\text{SNR}} = - 15{\text{ dB}}$); (b) 波数域匹配 (${\text{SNR}} = - 15{\text{ dB}}$); (c) 本文方法 (${\text{SNR}} = $$ - 15{\text{ dB}}$); (d) MFP (${\text{SNR}} = - 10{\text{ dB}}$); (e) 波数域匹配 (${\text{SNR}} = - 10{\text{ dB}}$); (f) 本文方法 (${\text{SNR}} = - 10{\text{ dB}}$); (g) MFP (${\text{SNR}} = $$ - 5{\text{ dB}}$); (h) 波数域匹配; (${\text{SNR}} = - 5{\text{ dB}}$); (i) 本文方法 (${\text{SNR}} = - 5{\text{ dB}}$)

    Fig. 13.  Results of depth estimation in different SNR: (a) MFP (${\text{SNR}} = - 15{\text{ dB}}$); (b) wavenumber domain match method (${\text{SNR}} = - 15{\text{ dB}}$); (c) proposed method (${\text{SNR}} = - 15{\text{ dB}}$); (d) MFP (${\text{SNR}} = - 10{\text{ dB}}$); (e) wavenumber domain match method (${\text{SNR}} = - 10{\text{ dB}}$); (f) proposed method (${\text{SNR}} = - 10{\text{ dB}}$); (g) MFP (${\text{SNR}} = - 5{\text{ dB}}$); (h) wavenumber domain match method (${\text{SNR}} = - 5{\text{ dB}}$); (i) proposed method (${\text{SNR}} = - 5{\text{ dB}}$).

    图 14  不同$\delta $下深度估计结果 (a) MFP ($\delta = 5{\text{ m/s}}$); (b) 波数域匹配 ($\delta = 5{\text{ m/s}}$); (c) 本文方法 ($\delta = 5{\text{ m/s}}$); (d) MFP ($\delta = $$ 10{\text{ m/s}}$); (e) 波数域匹配 ($\delta = 10{\text{ m/s}}$); (f) 本文方法 ($\delta = 10{\text{ m/s}}$); (g) MFP ($\delta = 15{\text{ m/s}}$); (h) 波数域匹配; ($\delta = 15{\text{ m/s}}$); (i) 本文方法 ($\delta = 15{\text{ m/s}}$)

    Fig. 14.  Results of depth estimation in different $\delta $: (a) MFP ($\delta = 5{\text{ m/s}}$); (b) wavenumber domain match method ($\delta = 5{\text{ m/s}}$); (c) proposed method ($\delta = 5{\text{ m/s}}$); (d) MFP ($\delta = 10{\text{ m/s}}$); (e) wavenumber domain match method ($\delta = 10{\text{ m/s}}$); (f) proposed method ($\delta = 10{\text{ m/s}}$); (g) MFP ($\delta = 15{\text{ m/s}}$); (h) wavenumber domain match method ($\delta = 15{\text{ m/s}}$); (i) proposed method ($\delta = 15{\text{ m/s}}$).

    图 15  试验态势

    Fig. 15.  Experimental situation.

    图 16  海试数据处理结果 (a) 估计水平波数; (b) 波数域波束形成; (c) $160{\text{ Hz}}$处反演简正波模态函数; (d) 估计目标深度; (e) $1 — $$ 5{\text{ m}}$内估计目标深度

    Fig. 16.  Results of experiment data processing: (a) Estimated horizontal wavenumbers; (b) wavenumber domain beamforming; (c) modal functions of normal mode at $160{\text{ Hz}}$by inverting; (d) estimated target depth; (e) estimated target depth between $1$ and $5{\text{ m}}$.

  • [1]

    Bucker H P 1988 J. Acoust. Soc. Am. 87 571

    [2]

    Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Oceanic Eng. 18 401Google Scholar

    [3]

    Krolik J L 1992 J. Acoust. Soc. Am. 92 1408Google Scholar

    [4]

    Schmidt H, Kuperman W A, Scheer E K 1990 J. Acoust. Soc. Am. 88 1851Google Scholar

    [5]

    李建龙, 潘翔 2008 声学学报 33 205Google Scholar

    Li J L, Pan X 2008 Acta Acustica 33 205Google Scholar

    [6]

    杨坤德, 马远良, 邹士新, 雷波 2006 声学学报 31 496Google Scholar

    Yang K D, Ma Y L, Zou S X, Lei B 2006 Acta Acustica 31 496Google Scholar

    [7]

    王奇, 王英民, 魏志强 2020 声学学报 45 475

    Wang Q, Wang Y M, Wei Z Q 2020 Acta Acustica 45 475

    [8]

    Hursky P, Hodgkiss W S, Kuperman W A 2001 J. Acoust. Soc. Am. 109 1355Google Scholar

    [9]

    Dosso S E, Wilmut M J 2008 J. Acoust. Soc. Am. 124 82Google Scholar

    [10]

    Dosso S E, Wilmut M J 2013 JASA Express Lett. 133 274

    [11]

    Li X L, Xu Y J, Gao W, Wang H Z, Wang L 2024 Remote Sens. 16 2227Google Scholar

    [12]

    Akins F H, Kuperman W A 2020 JASA Express Lett. 2 074802

    [13]

    Yang T C 2014 J. Acoust. Soc. Am. 135 1218Google Scholar

    [14]

    Yang T C 2019 J. Acoust. Soc. Am. 146 4740Google Scholar

    [15]

    周玉媛, 孙超, 谢磊, 刘宗伟 2023 物理学报 72 084302Google Scholar

    Zhou Y Y, Sun C, Xie L, Liu Z W 2023 Acta Phys. Sin. 72 084302Google Scholar

    [16]

    孟瑞洁, 周士弘, 李风华, 戚聿波 2019 物理学报 68 134304Google Scholar

    Meng R J, Zhou S H, Li F H, Qi Y B 2019 Acta Phys. Sin. 68 134304Google Scholar

    [17]

    王宣, 孙超, 李明杨, 张少东 2022 物理学报 71 084304Google Scholar

    Wang X, Sun C, Li M Y, Zhang S D 2022 Acta Phys. Sin. 71 084304Google Scholar

    [18]

    Bogart C W, Yang T C 1994 J. Acoust. Soc. Am. 96 1677Google Scholar

    [19]

    Nicolas B, Mars J, Lacoume J 2006 EURASIP J. Adv. Signal Process. 65901 1

    [20]

    Zhang Y K, Yang Q L, Yang K D 2023 Ocean Eng. 286 115502Google Scholar

    [21]

    Liang G L, Zhang Y F, Zou N, Wang J J 2018 Math. Prob. Eng. 7824671 7824671

    [22]

    Premus V E, Helfrick M N 2013 J. Acoust. Soc. Am. 133 4019Google Scholar

    [23]

    李天宇, 李宇, 黄海宁, 杨习山 2021 声学学报 46 497

    Li T Y, Li Y, Huang H N, Yang X S 2021 Acta Acustica 46 497

    [24]

    李鹏, 章新华, 付留芳, 曾祥旭 2017 物理学报 66 084301Google Scholar

    Li P, Zhang X H, Fu L F, Zeng X X 2017 Acta Phys. Sin. 66 084301Google Scholar

    [25]

    Zhang H C, Zhou S H, Liu C P, Qi Y B 2024 J. Acoust. Soc. Am. 156 1148Google Scholar

    [26]

    Du Z Y, Hao Y, Qiu L H, Li C M, Liang G L 2024 J. Acoust. Soc. Am. 156 2989Google Scholar

    [27]

    汪德昭, 尚尔昌 2013 水声学(第二版)(北京: 科学出版社) 第74页

    Wang D Z, Shang E C 2013 Hydroacoustics (2nd Ed. ) (Beijing: Science Press) p74

    [28]

    芬恩 B 延森, 威廉 A 库珀曼, 亨利克 施米特著 (周利生, 王鲁军, 杜栓平译) 2017 计算海洋声学(北京: 国防工业出版社)第286—287页

    Jensen F B, Kuperman W A, Porter M B, Schimit H(translated by Zhou L S, Wang L J, Du S P)2017 Computational Ocean Acoustics (Beijing: National Defense Industry Press) pp286—287

    [29]

    Li X L, Wang P Y 2021 JASA Express Lett. 1 126002Google Scholar

    [30]

    Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) p1

    [31]

    国家标准化管理委员会 2024 GB/T 44042-2024(北京: 国家标准化管理委员会)第三部分

    Standardization Administration of the People’s Republic of China 2024 GB/T 44042-2024 (Beijing: Standardization Administration of the People’s Republic of China) Part3

  • [1] 韦宜政, 孙超, 朱启轩. 撤稿:《浅海矢量声场极化特性的深度分布规律》. 物理学报, doi: 10.7498/aps.73.109902
    [2] 邓玉鑫, 刘雄厚, 杨益新. 浅海环境中用于目标深度属性判别的线谱起伏特征量分析. 物理学报, doi: 10.7498/aps.73.20231911
    [3] 康娟, 彭朝晖, 何利, 李晟昊, 于小涛. 基于多层水平变化浅海海底模型的低频反演方法. 物理学报, doi: 10.7498/aps.73.20231715
    [4] 韦宜政, 孙超, 朱启轩. 浅海矢量声场极化特性的深度分布规律(已撤稿). 物理学报, doi: 10.7498/aps.73.20231767
    [5] 周玉媛, 孙超, 谢磊, 刘宗伟. 基于波束-波数域非相干匹配的浅海运动声源深度估计方法. 物理学报, doi: 10.7498/aps.72.20222361
    [6] 李晓彬, 孙超, 刘雄厚. 浅海负跃层中利用互相关输出峰值迁移曲线的声源深度判别. 物理学报, doi: 10.7498/aps.71.20211987
    [7] 王宣, 孙超, 李明杨, 张少东. 不确定浅海环境中水平阵角度域子空间检测. 物理学报, doi: 10.7498/aps.71.20211742
    [8] 张少东, 孙超, 谢磊, 刘雄厚, 王宣. 浅海波导环境不确定性对声源功率估计的影响. 物理学报, doi: 10.7498/aps.70.20210852
    [9] 李赫, 郭新毅, 马力. 利用海洋环境噪声空间特性估计浅海海底分层结构及地声参数. 物理学报, doi: 10.7498/aps.68.20190824
    [10] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别. 物理学报, doi: 10.7498/aps.68.20190221
    [11] 李鹏, 章新华, 付留芳, 曾祥旭. 一种基于模态域波束形成的水平阵被动目标深度估计. 物理学报, doi: 10.7498/aps.66.084301
    [12] 郭俊媛, 杨士莪, 朴胜春, 莫亚枭. 基于超指向性多极子矢量阵的水下低频声源方位估计方法研究. 物理学报, doi: 10.7498/aps.65.134303
    [13] 王冬, 郭良浩, 刘建军, 戚聿波. 一种基于warping变换的浅海脉冲声源被动测距方法. 物理学报, doi: 10.7498/aps.65.104302
    [14] 戚聿波, 周士弘, 张仁和, 张波, 任云. 水平变化浅海声波导中模态特征频率与声源距离被动估计. 物理学报, doi: 10.7498/aps.63.044303
    [15] 屈科, 胡长青, 赵梅. 利用时域波形快速反演海底单参数的方法. 物理学报, doi: 10.7498/aps.62.224303
    [16] 姚天亮, 刘海峰, 许建良, 李伟锋. 基于最大Lyapunov指数不变性的混沌时间序列噪声水平估计. 物理学报, doi: 10.7498/aps.61.060503
    [17] 张同伟, 杨坤德, 马远良, 黎雪刚. 浅海中水平线列阵深度对匹配场定位性能的影响. 物理学报, doi: 10.7498/aps.59.3294
    [18] 余赟, 惠俊英, 陈阳, 孙国仓, 滕超. 浅海低频声场中目标深度分类方法研究. 物理学报, doi: 10.7498/aps.58.6335
    [19] 钱祖文, 邵道远. 关于浅海声参量阵的应用. 物理学报, doi: 10.7498/aps.35.1374
    [20] 尚尔昌, 张仁和. 浅海远程混响理论. 物理学报, doi: 10.7498/aps.24.260
计量
  • 文章访问数:  384
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-01
  • 修回日期:  2025-05-08
  • 上网日期:  2025-05-13

/

返回文章
返回