搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于模态域波束形成的水平阵被动目标深度估计

李鹏 章新华 付留芳 曾祥旭

引用本文:
Citation:

一种基于模态域波束形成的水平阵被动目标深度估计

李鹏, 章新华, 付留芳, 曾祥旭

A modal domain beamforming approach for depth estimation by a horizontal array

Li Peng, Zhang Xin-Hua, Fu Liu-Fang, Zeng Xiang-Xu
PDF
导出引用
  • 水面水下目标分辨与识别一直是被动声呐探测领域的难题. 利用一种水平阵模态域波束形成算法获得已知方位目标声源的各阶模态强度,将其与不同深度的各阶参考模态强度进行匹配,最终实现了对声源的深度估计. 仿真结果表明,该算法可以在信噪比为-10 dB的情况下,用300 Hz带宽的信号样本,实现对声源深度的有效估计. 系统分析了不同参数和不同波导条件对该方法目标深度估计性能的影响. 其中,阵元数越多,模态样本数越多,计算频段越宽,方位估计精度越高,有效阵长越长,深度估计的性能越好. 阵元间距和波导深度的变化不会影响该方法的深度估计性能,并且该方法的深度估计性能在声速剖面、海底参数等波导条件存在扰动时具有鲁棒性.
    Distinguishing and recognizing water targets and underwater targets has been the focus of passive sonar detection. The depth of the target is closely related to the physical characteristics of the signal. In the shallow water waveguide, the normal mode theory can be used to give a good explanation to the acoustic signal physical properties. In this paper, a new method of beam forming in horizontal array modal domain is proposed. Under the condition of predicting target azimuth, the difference in acoustic path between the horizontal array elements corresponding to the direction of the target signal can be calculated according to the azimuthal information, and the phase delay of each normal mode component of the acoustic signal can be obtained. The horizontal wave number varies with order of normal mode, so each order of the normal mode has a specific phase delay. By using the beam forming principle, when the phase of a certain order of normal mode is compensated for, the output of the superposition of the signal on each element is the modal intensity of the normal mode. After obtaining the target signal modal intensity of each order, based on the shallow water condition, the modal intensities of sound source excitation at different depths are obtained as the reference mode intensities of the sound source at corresponding depths in the shallow water waveguide by simulating on Kracken software. Then, calculating the correlation coefficient between the target signal modal intensity of each order and the reference modal intensity of the sound source at each depth, we search for the maximum value of the correlation coefficient. The reference depth corresponding to the maximum value of the correlation peak is the estimated value of the target depth calculated by the method. Based on physical causes and characteristics of the normal modes, in this paper, the influences of the parameters such as the element number of horizontal array, depth of receiving array, signal-to-noise ratio, velocity profile, waveguide depth, azimuthal estimation accuracy, effective array length and application frequency band on the performance of this method are analyzed. The simulation results show that the algorithm can estimate the depth of the sound source effectively by using the signal sample with a bandwidth of 300 Hz when the signal-to-noise ratio is -10 dB. The wider the frequency band, the longer the effective array length, and the more the array element number, the higher the accuracy of azimuth estimation will be, which will bring beneficial effects to the depth estimation with the method. In addition, the depth estimation performance of the proposed method is still robust when the waveguide conditions such as the velocity profile and the seafloor parameters are disturbed.
      通信作者: 李鹏, 124588315@qq.com
    • 基金项目: 国家自然科学基金(批准号:61271443,61471378)资助的课题.
      Corresponding author: Li Peng, 124588315@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271443, 61471378).
    [1]

    Yang K D, Ma Y L 2006 Acta Acustica 31 399 (in Chinese) [杨坤德, 马远良 2006 声学学报 31 399]

    [2]

    Xiao C 2011 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [肖传 2011 博士学位论文(杭州: 浙江大学)]

    [3]

    Kim K, Seong W, Lee K 2010 IEEE J. Oceans Eng. 35 120

    [4]

    Cargar R M, Zurk L M 2013 J. Acoust. Soc. Am. 133 320

    [5]

    Premus V E, Ward J, Richmond C D 2004 IEEE Conference on Signals, Systems and Computers, Pacific Grove, November 7-10, 2004 p1415

    [6]

    Premus V E, Backman D A 2007 IEEE Conference on Signals, Systems and Computers, Pacific Grove, November 4-7, 2007 p1272

    [7]

    Dosso S E, Wilmut M J 2009 J. Acoust. Soc. Am. 125 717

    [8]

    Jemmott C W, Culver R L 2011 IEEE J. Oceans Eng. 36 696

    [9]

    Dosso S E, Wilmut M J 2013 J. Acoust. Soc. Am. 133 274

    [10]

    Sun G C 2008 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [孙国仓 2008 博士学位论文(哈尔滨: 哈尔滨工程大学)]

    [11]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2008 Acta Phys. Sin. 57 5742 (in Chinese) [余赟, 惠俊英, 赵安邦, 孙国仓, 滕超 2008 物理学报 57 5742]

    [12]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2009 Acta Phys. Sin. 58 6335 (in Chinese) [余赟, 惠俊英, 陈阳, 孙国仓, 滕超 2009 物理学报 58 6335]

    [13]

    Hui J Y, Sun G C, Zhao A B 2008 Acta Acustica 33 300 (in Chinese) [惠俊英, 孙国仓, 赵安邦 2008 声学学报 33 300]

    [14]

    Yand T C 2014 J. Acoust. Soc. Am. 135 1218

    [15]

    Okopal G, Loughlin P J, Cohen L 2008 J. Acoust. Soc. Am. 128 832

    [16]

    Li K, Fang S L, An L 2012 Acta Phys. Sin. 62 094303 (in Chinese) [李焜, 方世良, 安良 2012 物理学报 62 094303]

    [17]

    Premus V E, Helfrick M N 2013 J. Acoust. Soc. Am. 133 4019

    [18]

    Zhang B H, Zhang X H, Liu J X 2011 Technical Acoustics 30 17 (in Chinese) [张本辉, 章新华, 刘家轩 2011 声学技术 30 17]

    [19]

    Kang C Y, Zhang X H, Han D 2009 Technical Acoustics 28 90 (in Chinese) [康春玉, 章新华, 韩东 2009 声学技术 28 90]

    [20]

    He X Y, Jiang X Z, Li Q H 2004 Acta Acustica 29 533 (in Chinese) [何心怡, 蒋兴舟, 李启虎 2004 声学学报 29 533]

    [21]

    Wang H, Kaveh M 1985 IEEE TASSP 33 823

    [22]

    Xu H B, Cao L, Wu D J 1993 J. Huazhong Univ. of Sci. Tech. 21 36 (in Chinese) [许海波, 曹力, 吴大进 1993 华中理工大学学报 21 36]

    [23]

    Wang N, Huang X S 2001 Science China Series A 31 857 (in Chinese) [王宁, 黄晓圣 2001 中国科学 31 857]

    [24]

    He Y J 2005 M. S. Thesis (Harbin: Harbin Engineering University) (in Chinese) [何永军 2005 硕士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [25]

    Tian T 2009 Sonar Technology (Harbin: Harbin Engineering University Press) p67 (in Chinese) [田坦 2009 声呐技术 (哈尔滨:哈尔滨工程大学出版社) 第67页]

    [26]

    He Z Y, Zhao Y F 1981 Foundnational Theory of Acoustics (Beijing: National Defense Industry Press) p113 (in Chinese) [何祚镛, 赵玉芳 1981 声学理论基础(北京: 国防工业出版社) 第113页]

  • [1]

    Yang K D, Ma Y L 2006 Acta Acustica 31 399 (in Chinese) [杨坤德, 马远良 2006 声学学报 31 399]

    [2]

    Xiao C 2011 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [肖传 2011 博士学位论文(杭州: 浙江大学)]

    [3]

    Kim K, Seong W, Lee K 2010 IEEE J. Oceans Eng. 35 120

    [4]

    Cargar R M, Zurk L M 2013 J. Acoust. Soc. Am. 133 320

    [5]

    Premus V E, Ward J, Richmond C D 2004 IEEE Conference on Signals, Systems and Computers, Pacific Grove, November 7-10, 2004 p1415

    [6]

    Premus V E, Backman D A 2007 IEEE Conference on Signals, Systems and Computers, Pacific Grove, November 4-7, 2007 p1272

    [7]

    Dosso S E, Wilmut M J 2009 J. Acoust. Soc. Am. 125 717

    [8]

    Jemmott C W, Culver R L 2011 IEEE J. Oceans Eng. 36 696

    [9]

    Dosso S E, Wilmut M J 2013 J. Acoust. Soc. Am. 133 274

    [10]

    Sun G C 2008 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [孙国仓 2008 博士学位论文(哈尔滨: 哈尔滨工程大学)]

    [11]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2008 Acta Phys. Sin. 57 5742 (in Chinese) [余赟, 惠俊英, 赵安邦, 孙国仓, 滕超 2008 物理学报 57 5742]

    [12]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2009 Acta Phys. Sin. 58 6335 (in Chinese) [余赟, 惠俊英, 陈阳, 孙国仓, 滕超 2009 物理学报 58 6335]

    [13]

    Hui J Y, Sun G C, Zhao A B 2008 Acta Acustica 33 300 (in Chinese) [惠俊英, 孙国仓, 赵安邦 2008 声学学报 33 300]

    [14]

    Yand T C 2014 J. Acoust. Soc. Am. 135 1218

    [15]

    Okopal G, Loughlin P J, Cohen L 2008 J. Acoust. Soc. Am. 128 832

    [16]

    Li K, Fang S L, An L 2012 Acta Phys. Sin. 62 094303 (in Chinese) [李焜, 方世良, 安良 2012 物理学报 62 094303]

    [17]

    Premus V E, Helfrick M N 2013 J. Acoust. Soc. Am. 133 4019

    [18]

    Zhang B H, Zhang X H, Liu J X 2011 Technical Acoustics 30 17 (in Chinese) [张本辉, 章新华, 刘家轩 2011 声学技术 30 17]

    [19]

    Kang C Y, Zhang X H, Han D 2009 Technical Acoustics 28 90 (in Chinese) [康春玉, 章新华, 韩东 2009 声学技术 28 90]

    [20]

    He X Y, Jiang X Z, Li Q H 2004 Acta Acustica 29 533 (in Chinese) [何心怡, 蒋兴舟, 李启虎 2004 声学学报 29 533]

    [21]

    Wang H, Kaveh M 1985 IEEE TASSP 33 823

    [22]

    Xu H B, Cao L, Wu D J 1993 J. Huazhong Univ. of Sci. Tech. 21 36 (in Chinese) [许海波, 曹力, 吴大进 1993 华中理工大学学报 21 36]

    [23]

    Wang N, Huang X S 2001 Science China Series A 31 857 (in Chinese) [王宁, 黄晓圣 2001 中国科学 31 857]

    [24]

    He Y J 2005 M. S. Thesis (Harbin: Harbin Engineering University) (in Chinese) [何永军 2005 硕士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [25]

    Tian T 2009 Sonar Technology (Harbin: Harbin Engineering University Press) p67 (in Chinese) [田坦 2009 声呐技术 (哈尔滨:哈尔滨工程大学出版社) 第67页]

    [26]

    He Z Y, Zhao Y F 1981 Foundnational Theory of Acoustics (Beijing: National Defense Industry Press) p113 (in Chinese) [何祚镛, 赵玉芳 1981 声学理论基础(北京: 国防工业出版社) 第113页]

  • [1] 汪磊, 黄益旺, 郭霖, 任超. 浅海粗糙海底声散射建模及声场特性. 物理学报, 2024, 73(3): 034301. doi: 10.7498/aps.73.20231472
    [2] 邓玉鑫, 刘雄厚, 杨益新. 浅海环境中用于目标深度属性判别的线谱起伏特征量分析. 物理学报, 2024, 73(13): 134301. doi: 10.7498/aps.73.20231911
    [3] 周玉媛, 孙超, 谢磊, 刘宗伟. 基于波束-波数域非相干匹配的浅海运动声源深度估计方法. 物理学报, 2023, 72(8): 084302. doi: 10.7498/aps.72.20222361
    [4] 李晓彬, 孙超, 刘雄厚. 浅海负跃层中利用互相关输出峰值迁移曲线的声源深度判别. 物理学报, 2022, 71(13): 134302. doi: 10.7498/aps.71.20211987
    [5] 张士钊, 朴胜春. 倾斜弹性海底条件下浅海声场的简正波相干耦合特性分析. 物理学报, 2021, 70(21): 214304. doi: 10.7498/aps.70.20211013
    [6] 孔德智, 孙超, 李明杨, 卓颉, 刘雄厚. 深海波导中基于采样简正波模态降维处理的广义似然比检测. 物理学报, 2019, 68(17): 174301. doi: 10.7498/aps.68.20190700
    [7] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别. 物理学报, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [8] 蒋光禹, 孙超, 谢磊, 刘雄厚. 表面声道对深海风成噪声垂直空间特性的影响规律. 物理学报, 2019, 68(2): 024302. doi: 10.7498/aps.68.20181794
    [9] 戚聿波, 周士弘, 张仁和. 浅海波导中折射类简正波的warping变换. 物理学报, 2016, 65(13): 134301. doi: 10.7498/aps.65.134301
    [10] 秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于. 三维绝热简正波-抛物方程理论及应用. 物理学报, 2016, 65(3): 034301. doi: 10.7498/aps.65.034301
    [11] 孙梅, 周士弘. 大深度接收时深海直达波区的复声强及声线到达角估计. 物理学报, 2016, 65(16): 164302. doi: 10.7498/aps.65.164302
    [12] 郭晓乐, 杨坤德, 马远良, 杨秋龙. 一种基于简正波模态消频散变换的声源距离深度估计方法. 物理学报, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302
    [13] 梁国龙, 陶凯, 王晋晋, 范展. 声矢量阵宽带目标波束域变换广义似然比检测算法. 物理学报, 2015, 64(9): 094303. doi: 10.7498/aps.64.094303
    [14] 郭晓乐, 杨坤德, 马远良. 一种基于简正波模态频散的远距离宽带海底参数反演方法. 物理学报, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [15] 苏林, 马力, 宋文华, 郭圣明, 鹿力成. 声速剖面对不同深度声源定位的影响. 物理学报, 2015, 64(2): 024302. doi: 10.7498/aps.64.024302
    [16] 莫亚枭, 朴胜春, 张海刚, 李丽. 水平变化波导中的简正波耦合与能量转移. 物理学报, 2014, 63(21): 214302. doi: 10.7498/aps.63.214302
    [17] 余 赟, 惠俊英, 赵安邦, 孙国仓, 滕 超. Pekeris波导中简正波的复声强及其应用. 物理学报, 2008, 57(9): 5742-5748. doi: 10.7498/aps.57.5742
    [18] 张仁和, 朱柏贤. 指向性辐射器的简正波声场. 物理学报, 1983, 32(4): 490-496. doi: 10.7498/aps.32.490
    [19] 唐应吾. 具有随机起伏表面的正声速梯度浅海中的简正波声场. 物理学报, 1976, 25(6): 481-486. doi: 10.7498/aps.25.481
    [20] 张仁和. 浅海表面声道中的简正波声场. 物理学报, 1975, 24(3): 200-209. doi: 10.7498/aps.24.200
计量
  • 文章访问数:  7629
  • PDF下载量:  270
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-27
  • 修回日期:  2017-01-16
  • 刊出日期:  2017-04-05

/

返回文章
返回