搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声矢量阵宽带目标波束域变换广义似然比检测算法

梁国龙 陶凯 王晋晋 范展

引用本文:
Citation:

声矢量阵宽带目标波束域变换广义似然比检测算法

梁国龙, 陶凯, 王晋晋, 范展

Broadband target beam-space transformation in generalized likelihood ratio test using acoustic vector sensor array

Liang Guo-Long, Tao Kai, Wang Jin-Jin, Fan Zhan
PDF
导出引用
  • 为了解决水下声矢量信号处理中的宽带目标被动探测问题, 提出了一种波束域的检测算法. 该算法借鉴人眼对空间谱的检测原理, 对波束域数据进行广义似然比检测. 首先结合干扰抑制问题和矢量环境噪声场特性, 探讨了波束域变换矩阵的设计准则, 并推导了解析解的形式; 然后在假定已知不含目标波束个数的情况下, 构建了波束域的概率密度模型, 并对模型中的未知参量进行最大似然估计, 进而给出了广义似然比检测器的形式; 最后应用信息论准则, 给出了不含目标波束个数的估计方法. 理论分析与仿真实验表明, 该算法在强目标干扰, 以及背景噪声功率谱起伏、时变等环境下, 始终具有更好的系统增益和恒虚警率特性. 湖上试验的结果进一步验证了算法的有效性.
    Aiming at the problem of passive detection of broadband sources in underwater acoustic vector signal processing, a novel detection algorithm based on beam-space transformation is proposed. The principle of spatial spectrum detection with human eyes is employed for reflerence, and the generalized likelihood ratio test (GLRT) is applied to the beam-space. First, the design criterion of beam-space transformation matrix is studied for the compreflensive consideration of the environment of multiple targets and the characteristic of vector ambient noise field, so that the analytical solution is obtained. Second, assuming that the number of beams not containing the target signal is given, the probability density function (PDF) model of beam-space data is constructed, and the new GLR test is made by calculating the maximum likelihood estimate of the unknown variables in PDF. Finally, the information of theoretical criterion is adopted in order to estimate the number of beams not containing target signals. The processing gain and the threshold value of this test statistics are also discussed, and the specific implement is explained in detail. Theoretical analysis and simulation results show that under the complex conditions of strong target interference and ambient noise with undulated and time-variant power spectrum, the proposed algorithm can give the processing result with higher gain and detection threshold at constant false alarm rate (CFAR); the results of lake experiment further prove the favorable and robust detection performance.
    • 基金项目: 国家自然科学基金(批准号: 51279043, 61201411, 51209059)和水声技术重点实验室基金(批准号: 9140C200203110C2003)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51279043, 61201411, 51209059), and the Science and Technology Foundation of State Key Laboratory of Underwater Acoustic Technology Laboratory, China (Grant No. 9140C200203110C2003).
    [1]

    Nehorai A, Yang D S, Paldi E 1994 IEEE Trans. Signal Process. 42 2481

    [2]

    Hawkes M, Nehorai A 2001 IEEE J. Oceanic Eng. 26 337

    [3]

    Lin W S, Liang G L, Fu J, Zang G P 2013 Acta Phys. Sin. 62 144301 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2013 物理学报 62 144301]

    [4]

    Lin W S, Liang G L, Fu J, Zang G P 2014 Acta Phys. Sin. 63 034306 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2014 物理学报 63 034306]

    [5]

    Harry L V T,(translated by Tang J) 2008 Optimum Array Processing (Beijing: Tsinghua University Press) pp323-326 (in Chinese) [Harry L V T 著 (汤俊译) 2008 最优阵列处理技术(北京: 清华大学出版社)第323-326页]

    [6]

    Yan S F, Hou C H, Ma X C, Ma Y L 2007 J. Acoust Soc. Am 121 46

    [7]

    Liao B, Tsui K M, Chan S C 2011 IEEE Trans. Antennas Propag. 59 3477

    [8]

    Sun H H, Yan S F, Svensson U P 2011 IEEE Trans. Audio Speech Lang. Process. 19 1045

    [9]

    Yu Z L, Ser W, Er M H, Gu Z H, Li Y Q 2009 IEEE Trans. Signal Process. 57 2615

    [10]

    Xiao X, Xu L, Li Q W 2013 Chin. Phys. B 22 094101

    [11]

    Zhang B X, Liu D D, Shi F F, He F D 2013 Chin. Phys. B 22 014302

    [12]

    Wang Y, Wu W F, Fan Z, Liang G L 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2014 物理学报 63 154303]

    [13]

    You H, Huang J G, Shi W T 2009 Acta Acoustic 32 527 (in Chinese) [游鸿, 黄建国, 史文涛 2009 声学学报 32 527]

    [14]

    Zhou W, Hui J Y 2010 Acta Armamentarhii 31 1188 (in Chinese) [周伟, 惠俊英 2010 兵工学报 31 1188]

    [15]

    Kelly E J 1986 IEEE Trans. on Aerosp. Electron. Syst. 22 115

    [16]

    Robey F C, Fuhrmann D R, Kelly E J, Nitzberg R 1992 IEEE Trans. on Aerosp. Electron. Syst. 28 208

    [17]

    Conte E, Maio A De, Ricci G 2001 IEEE Trans. Signal Process. 49 1336

    [18]

    Shuai X, Kong L, Yang J 2010 Signal Processing 90 16

    [19]

    Bandiera F, Besson O, Ricci G 2010 IEEE Trans. Signal Process. 58 5391

    [20]

    Shang X Q, Song H J 2012 Journal of Electronic & Information Technology 34 128 (in Chinese) [尚秀芹, 宋红军, 陈倩, 闫贺 2012 电子与信息学报 34 128]

    [21]

    Ma Q M, Wang X Y 2008 Acta Armamentarhii 29 153 (in Chinese) [马启明, 王宣银, 杜栓平 2008 兵工学报 29 153]

    [22]

    Hassanien A, Vorobyov S A 2009 IEEE Signal Process. Lett. 16 22

    [23]

    Richmond C D 1996 IEEE Trans. Signal Process. 44 305

  • [1]

    Nehorai A, Yang D S, Paldi E 1994 IEEE Trans. Signal Process. 42 2481

    [2]

    Hawkes M, Nehorai A 2001 IEEE J. Oceanic Eng. 26 337

    [3]

    Lin W S, Liang G L, Fu J, Zang G P 2013 Acta Phys. Sin. 62 144301 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2013 物理学报 62 144301]

    [4]

    Lin W S, Liang G L, Fu J, Zang G P 2014 Acta Phys. Sin. 63 034306 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2014 物理学报 63 034306]

    [5]

    Harry L V T,(translated by Tang J) 2008 Optimum Array Processing (Beijing: Tsinghua University Press) pp323-326 (in Chinese) [Harry L V T 著 (汤俊译) 2008 最优阵列处理技术(北京: 清华大学出版社)第323-326页]

    [6]

    Yan S F, Hou C H, Ma X C, Ma Y L 2007 J. Acoust Soc. Am 121 46

    [7]

    Liao B, Tsui K M, Chan S C 2011 IEEE Trans. Antennas Propag. 59 3477

    [8]

    Sun H H, Yan S F, Svensson U P 2011 IEEE Trans. Audio Speech Lang. Process. 19 1045

    [9]

    Yu Z L, Ser W, Er M H, Gu Z H, Li Y Q 2009 IEEE Trans. Signal Process. 57 2615

    [10]

    Xiao X, Xu L, Li Q W 2013 Chin. Phys. B 22 094101

    [11]

    Zhang B X, Liu D D, Shi F F, He F D 2013 Chin. Phys. B 22 014302

    [12]

    Wang Y, Wu W F, Fan Z, Liang G L 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2014 物理学报 63 154303]

    [13]

    You H, Huang J G, Shi W T 2009 Acta Acoustic 32 527 (in Chinese) [游鸿, 黄建国, 史文涛 2009 声学学报 32 527]

    [14]

    Zhou W, Hui J Y 2010 Acta Armamentarhii 31 1188 (in Chinese) [周伟, 惠俊英 2010 兵工学报 31 1188]

    [15]

    Kelly E J 1986 IEEE Trans. on Aerosp. Electron. Syst. 22 115

    [16]

    Robey F C, Fuhrmann D R, Kelly E J, Nitzberg R 1992 IEEE Trans. on Aerosp. Electron. Syst. 28 208

    [17]

    Conte E, Maio A De, Ricci G 2001 IEEE Trans. Signal Process. 49 1336

    [18]

    Shuai X, Kong L, Yang J 2010 Signal Processing 90 16

    [19]

    Bandiera F, Besson O, Ricci G 2010 IEEE Trans. Signal Process. 58 5391

    [20]

    Shang X Q, Song H J 2012 Journal of Electronic & Information Technology 34 128 (in Chinese) [尚秀芹, 宋红军, 陈倩, 闫贺 2012 电子与信息学报 34 128]

    [21]

    Ma Q M, Wang X Y 2008 Acta Armamentarhii 29 153 (in Chinese) [马启明, 王宣银, 杜栓平 2008 兵工学报 29 153]

    [22]

    Hassanien A, Vorobyov S A 2009 IEEE Signal Process. Lett. 16 22

    [23]

    Richmond C D 1996 IEEE Trans. Signal Process. 44 305

  • [1] 卫容宇, 李军, 张大命, 王炜皓. 纠缠态量子探测系统的恒虚警检测方法研究. 物理学报, 2022, 71(1): 010303. doi: 10.7498/aps.71.20211121
    [2] 尹旭坤, 董磊, 武红鹏, 刘丽娴, 邵晓鹏. 面向SF6气体绝缘设备故障检测的光声CO气体传感器设计和优化. 物理学报, 2021, 70(17): 170701. doi: 10.7498/aps.70.20210532
    [3] 卫容宇, 李军, 张大命, 王炜皓. 纠缠态量子探测系统的恒虚警检测方法研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211121
    [4] 曹保锋, 李鹏, 李小强, 张雪芹, 宁王师, 梁睿, 李欣, 胡淼, 郑毅. 基于强耦合Duffing振子的微弱脉冲信号检测与参数估计. 物理学报, 2019, 68(8): 080501. doi: 10.7498/aps.68.20181856
    [5] 刘进军, 冷永刚, 赖志慧, 谭丹. 基于频域信息交换的随机共振研究. 物理学报, 2016, 65(22): 220501. doi: 10.7498/aps.65.220501
    [6] 胡进峰, 张亚璇, 李会勇, 杨淼, 夏威, 李军. 基于最优滤波器的强混沌背景中谐波信号检测方法研究. 物理学报, 2015, 64(22): 220504. doi: 10.7498/aps.64.220504
    [7] 杨波, 卜雄洙, 王新征, 于靖. 高斯噪声和弱正弦信号驱动的时间差型磁通门传感器. 物理学报, 2014, 63(20): 200702. doi: 10.7498/aps.63.200702
    [8] 汪波, 李豫东, 郭旗, 刘昌举, 文林, 玛丽娅, 孙静, 王海娇, 丛忠超, 马武英. 60Co-γ射线辐照CMOS有源像素传感器诱发暗信号退化的机理研究. 物理学报, 2014, 63(5): 056102. doi: 10.7498/aps.63.056102
    [9] 黄锦旺, 李广明, 冯久超, 晋建秀. 一种无线传感器网络中的混沌信号重构算法. 物理学报, 2014, 63(14): 140502. doi: 10.7498/aps.63.140502
    [10] 郝本建, 李赞, 万鹏武, 司江勃. 传感器网络基于特征值分解的信号被动定位技术. 物理学报, 2014, 63(5): 054304. doi: 10.7498/aps.63.054304
    [11] 黄锦旺, 冯久超, 吕善翔. 混沌信号在无线传感器网络中的盲分离. 物理学报, 2014, 63(5): 050502. doi: 10.7498/aps.63.050502
    [12] 祁浩, 王福豹, 邓宏. 基于无线传感器网络的地震信号特征提取方法研究. 物理学报, 2013, 62(10): 104301. doi: 10.7498/aps.62.104301
    [13] 许雪梅, 戴鹏, 杨兵初, 尹林子, 曹建, 丁一鹏, 曹粲. 光声池中微弱光声信号检测. 物理学报, 2013, 62(20): 204303. doi: 10.7498/aps.62.204303
    [14] 梁国龙, 马巍, 范展, 王逸林. 矢量声纳高速运动目标稳健高分辨方位估计. 物理学报, 2013, 62(14): 144302. doi: 10.7498/aps.62.144302
    [15] 曾志文, 刘海涛, 张斯文. 基于Fabry-Perot模型设计亚波长金属狭缝阵列光学异常透射折射率传感器. 物理学报, 2012, 61(20): 200701. doi: 10.7498/aps.61.200701
    [16] 王梦蛟, 曾以成, 谢常清, 朱高峰, 唐淑红. Chen系统在微弱信号检测中的应用. 物理学报, 2012, 61(18): 180502. doi: 10.7498/aps.61.180502
    [17] 贺静波, 刘忠, 胡生亮. 基于海杂波散射特性的微弱信号检测方法. 物理学报, 2011, 60(11): 110208. doi: 10.7498/aps.60.110208
    [18] 王永生, 姜文志, 赵建军, 范洪达. 一种Duffing弱信号检测新方法及仿真研究. 物理学报, 2008, 57(4): 2053-2059. doi: 10.7498/aps.57.2053
    [19] 行鸿彦, 徐 伟. 混沌背景中微弱信号检测的神经网络方法. 物理学报, 2007, 56(7): 3771-3776. doi: 10.7498/aps.56.3771
    [20] 张叔英. 用于信号检测的时间压缩相关器理论分析. 物理学报, 1976, 25(3): 235-245. doi: 10.7498/aps.25.235
计量
  • 文章访问数:  5050
  • PDF下载量:  352
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-30
  • 修回日期:  2014-11-04
  • 刊出日期:  2015-05-05

/

返回文章
返回