搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混沌信号在无线传感器网络中的盲分离

黄锦旺 冯久超 吕善翔

引用本文:
Citation:

混沌信号在无线传感器网络中的盲分离

黄锦旺, 冯久超, 吕善翔

Blind source separation of chaotic signals in wireless sensor networks

Huang Jin-Wang, Feng Jiu-Chao, Lü Shan-Xiang
PDF
导出引用
  • 混沌信号在本质上属于非线性非高斯信号,它在无线传感器网络下的应用还涉及到信号量化问题,这使得混沌信号在此应用环境下的信号盲分离更为棘手. 针对此问题,本文在容积卡尔曼粒子滤波的框架下提出一种解决方法. 文中首先推导出观测信号的概率密度函数,在量化比特有限的情况下,采用最优量化器,获得最优的量化结果. 在此基础上,使用容积卡尔曼滤波器产生粒子滤波中的重要性概率密度函数,融入最新的观测值,提高粒子对系统状态后验概率的逼近,提高信号盲分离的精度. 仿真结果表明算法能够有效地分离混合混沌信号,参数估计的精度及其运算量均优于已有的无先导卡尔曼粒子滤波算法,其运行时间为无先导卡尔曼粒子滤波算法的88.77%.
    Chaotic signal is essentially a nonlinear and non-Gaussian signal, which involves signal quantization when used in wireless sensor networks (WSNs). It makes the blind source separation of chaotic signal in WSNs more difficult to address. To solve the problem, we propose a new source separation algorithm based on cubature Kalman particle filter (CPF) in this paper. First the probability density function of the observed signal is derived and the optimal quantization is used; this can achieve the optimal quantization of signal under the limited budget of quantization bits. After that, the algorithm uses cubature Kalman filter (CKF) to generate the important proposal distribution of the particle filter (PF), integrating the latest observation and improving the approximation to the system posterior distribution, which will improve the performance of the signal separation. Simulation results show that the algorithm can separate mixed chaotic signal effectively, it is superior over the unscented Kalman particle filter (UPF) counterpart in accuracy and computation overhead. The running time is 88.77% compared to the UPF counterpart.
    • 基金项目: 国家自然科学基金(批准号:60872123,61101014)、 国家-广东省自然科学基金联合基金(批准号:U0835001)、 广东省高层次人才项目基金(批准号:N9101070)和中央高校基本业务费(批准号:2012ZM0025)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60872123, 61101014), the Joint Fund of the National Natural Science Foundation and the Natural Science Foundation of Guangdong Provincial, China (Grant No. U0835001), the Fund for Higher-level Talent in Guangdong Provice (Grant No. N9101070), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2012ZM0025).
    [1]

    Pantazis N A, Nikolidakis S A, Vergados D D 2013 IEEE Communications Surveys and Tutorials 15 551

    [2]

    Qi H, Wang F B, Deng H 2013 Acta Phys. Sin. 62 104301 (in Chinese) [祁浩, 王福豹, 邓宏 2013 物理学报 62 104301]

    [3]

    Li X X, Feng J C 2007 Acta Phys. Sin. 56 701 (in Chinese) [李雪霞, 冯久超 2007 物理学报 56 701]

    [4]

    Malouche Z, Macchi O 1998 IEEE Transactions on Neural Networks 9 123

    [5]

    Wang S Y, Feng J C 2012 Acta Phys. Sin. 61 170508 (in Chinese) [王世元, 冯久超 2012 物理学报 61 170508]

    [6]

    Hu Z H, Feng J C 2010 Journal of Southwest University (Natural Science) 32 146 (in Chinese) [胡志辉, 冯久超 2010 西南大学学报(自然科学版) 32 146]

    [7]

    Lee S H, West M 2013 IEEE Transactions on Signal Processing 61 801

    [8]

    Arasaratnam I, Haykin S 2009 IEEE Transactions on Automatic Control 54 1254

    [9]

    Jia B, Xin M, Cheng Y 2012 Proceedings of the IEEE Conference on Decision and Control Maui, HI, December 10-13, 2012 p4095

    [10]

    Mohammadi A, Asif A 2011 IEEE Workshop on Statistical Signal Processing Proceedings Nice, France, June 28-30, 2011 p237

    [11]

    Cong L, Qin H L 2011 Chinese Journal of Electronics 20 755

    [12]

    Yu X, Wang H Q, Yang E H 2010 IEEE Transactions on Information Theory 56 5796

    [13]

    Bianchi P, Jakubowicz J 2013 IEEE Transactions on Signal Processing 61 3119

    [14]

    Falsone G, Settineri D 2013 Probabilistic Engineering Mechanics 33 79

    [15]

    Maaref A, Aïssa S 2009 IEEE Transactions on Communications 57 214

    [16]

    Wang J H 2012 Chaos, Solitons and Fractals 45 1140

    [17]

    Persohn K J, Povinelli R J 2012 Chaos, Solitons and Fractals 45 238

    [18]

    Farina D, Févotte C, Doncarli C, Merletti R 2004 IEEE Transactions on Biomedical Engineering 51 1555

  • [1]

    Pantazis N A, Nikolidakis S A, Vergados D D 2013 IEEE Communications Surveys and Tutorials 15 551

    [2]

    Qi H, Wang F B, Deng H 2013 Acta Phys. Sin. 62 104301 (in Chinese) [祁浩, 王福豹, 邓宏 2013 物理学报 62 104301]

    [3]

    Li X X, Feng J C 2007 Acta Phys. Sin. 56 701 (in Chinese) [李雪霞, 冯久超 2007 物理学报 56 701]

    [4]

    Malouche Z, Macchi O 1998 IEEE Transactions on Neural Networks 9 123

    [5]

    Wang S Y, Feng J C 2012 Acta Phys. Sin. 61 170508 (in Chinese) [王世元, 冯久超 2012 物理学报 61 170508]

    [6]

    Hu Z H, Feng J C 2010 Journal of Southwest University (Natural Science) 32 146 (in Chinese) [胡志辉, 冯久超 2010 西南大学学报(自然科学版) 32 146]

    [7]

    Lee S H, West M 2013 IEEE Transactions on Signal Processing 61 801

    [8]

    Arasaratnam I, Haykin S 2009 IEEE Transactions on Automatic Control 54 1254

    [9]

    Jia B, Xin M, Cheng Y 2012 Proceedings of the IEEE Conference on Decision and Control Maui, HI, December 10-13, 2012 p4095

    [10]

    Mohammadi A, Asif A 2011 IEEE Workshop on Statistical Signal Processing Proceedings Nice, France, June 28-30, 2011 p237

    [11]

    Cong L, Qin H L 2011 Chinese Journal of Electronics 20 755

    [12]

    Yu X, Wang H Q, Yang E H 2010 IEEE Transactions on Information Theory 56 5796

    [13]

    Bianchi P, Jakubowicz J 2013 IEEE Transactions on Signal Processing 61 3119

    [14]

    Falsone G, Settineri D 2013 Probabilistic Engineering Mechanics 33 79

    [15]

    Maaref A, Aïssa S 2009 IEEE Transactions on Communications 57 214

    [16]

    Wang J H 2012 Chaos, Solitons and Fractals 45 1140

    [17]

    Persohn K J, Povinelli R J 2012 Chaos, Solitons and Fractals 45 238

    [18]

    Farina D, Févotte C, Doncarli C, Merletti R 2004 IEEE Transactions on Biomedical Engineering 51 1555

  • [1] 蒋锐, 杨震. 基于质心迭代估计的无线传感器网络节点定位算法. 物理学报, 2016, 65(3): 030101. doi: 10.7498/aps.65.030101
    [2] 郝晓辰, 姚宁, 汝小月, 刘伟静, 辛敏洁. 基于生命期模型的无线传感器网络信道分配博弈算法. 物理学报, 2015, 64(14): 140101. doi: 10.7498/aps.64.140101
    [3] 陈越, 吕善翔, 王梦蛟, 冯久超. 一种基于人工蜂群算法的混沌信号盲分离方法. 物理学报, 2015, 64(9): 090501. doi: 10.7498/aps.64.090501
    [4] 刘浩然, 尹文晓, 董明如, 刘彬. 一种强容侵能力的无线传感器网络无标度拓扑模型研究. 物理学报, 2014, 63(9): 090503. doi: 10.7498/aps.63.090503
    [5] 方伟, 宋鑫宏. 基于Voronoi图盲区的无线传感器网络覆盖控制部署策略. 物理学报, 2014, 63(22): 220701. doi: 10.7498/aps.63.220701
    [6] 刘洲洲, 王福豹. 一种能耗均衡的无线传感器网络加权无标度拓扑研究. 物理学报, 2014, 63(19): 190504. doi: 10.7498/aps.63.190504
    [7] 刘彬, 董明如, 刘浩然, 尹荣荣, 韩丽. 基于综合故障的无线传感器网络无标度容错拓扑模型研究. 物理学报, 2014, 63(17): 170506. doi: 10.7498/aps.63.170506
    [8] 宋佳, 罗清华, 彭喜元. 基于节点健康度的无线传感器网络冗余通路控制方法. 物理学报, 2014, 63(12): 128401. doi: 10.7498/aps.63.128401
    [9] 韩丽, 刘彬, 李雅倩, 赵磊静. 能量异构的无线传感器网络加权无标度拓扑研究. 物理学报, 2014, 63(15): 150504. doi: 10.7498/aps.63.150504
    [10] 尹荣荣, 刘彬, 刘浩然, 李雅倩. 无线传感器网络中无标度拓扑的动态容错性分析. 物理学报, 2014, 63(11): 110205. doi: 10.7498/aps.63.110205
    [11] 刘浩然, 尹文晓, 韩涛, 董明如. 一种优化无线传感器网络生命周期的容错拓扑研究. 物理学报, 2014, 63(4): 040509. doi: 10.7498/aps.63.040509
    [12] 黄锦旺, 李广明, 冯久超, 晋建秀. 一种无线传感器网络中的混沌信号重构算法. 物理学报, 2014, 63(14): 140502. doi: 10.7498/aps.63.140502
    [13] 祁浩, 王福豹, 邓宏. 基于无线传感器网络的地震信号特征提取方法研究. 物理学报, 2013, 62(10): 104301. doi: 10.7498/aps.62.104301
    [14] 王翥, 王祁, 魏德宝, 王玲. 无线传感器网络中继节点布居算法的研究. 物理学报, 2012, 61(12): 120505. doi: 10.7498/aps.61.120505
    [15] 王亚奇, 杨晓元. 一种无线传感器网络簇间拓扑演化模型及其免疫研究. 物理学报, 2012, 61(9): 090202. doi: 10.7498/aps.61.090202
    [16] 佟晓筠, 左科, 王翥. 基于无线传感器网络的混合混沌新分组加密算法. 物理学报, 2012, 61(3): 030502. doi: 10.7498/aps.61.030502
    [17] 王世元, 冯久超. 一种新的参数估计方法及其在混沌信号盲分离中的应用. 物理学报, 2012, 61(17): 170508. doi: 10.7498/aps.61.170508
    [18] 周杰, 刘元安, 吴帆, 张洪光, 俎云霄. 基于混沌并行遗传算法的多目标无线传感器网络跨层资源分配. 物理学报, 2011, 60(9): 090504. doi: 10.7498/aps.60.090504
    [19] 李雪霞, 冯久超. 一种混沌信号的盲分离方法. 物理学报, 2007, 56(2): 701-706. doi: 10.7498/aps.56.701
    [20] 汪芙平, 王赞基, 郭静波. 混沌背景下信号的盲分离. 物理学报, 2002, 51(3): 474-481. doi: 10.7498/aps.51.474
计量
  • 文章访问数:  3754
  • PDF下载量:  510
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-16
  • 修回日期:  2013-10-21
  • 刊出日期:  2014-03-05

混沌信号在无线传感器网络中的盲分离

  • 1. 华南理工大学电子与信息学院, 广州 510641
    基金项目: 国家自然科学基金(批准号:60872123,61101014)、 国家-广东省自然科学基金联合基金(批准号:U0835001)、 广东省高层次人才项目基金(批准号:N9101070)和中央高校基本业务费(批准号:2012ZM0025)资助的课题.

摘要: 混沌信号在本质上属于非线性非高斯信号,它在无线传感器网络下的应用还涉及到信号量化问题,这使得混沌信号在此应用环境下的信号盲分离更为棘手. 针对此问题,本文在容积卡尔曼粒子滤波的框架下提出一种解决方法. 文中首先推导出观测信号的概率密度函数,在量化比特有限的情况下,采用最优量化器,获得最优的量化结果. 在此基础上,使用容积卡尔曼滤波器产生粒子滤波中的重要性概率密度函数,融入最新的观测值,提高粒子对系统状态后验概率的逼近,提高信号盲分离的精度. 仿真结果表明算法能够有效地分离混合混沌信号,参数估计的精度及其运算量均优于已有的无先导卡尔曼粒子滤波算法,其运行时间为无先导卡尔曼粒子滤波算法的88.77%.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回