搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合方式与初始条件结构对分数阶双稳态振子环形网络同步的影响

王立明 吴峰

引用本文:
Citation:

耦合方式与初始条件结构对分数阶双稳态振子环形网络同步的影响

王立明, 吴峰

Effect of coupling modes and initial structures on the synchronization of a ring network with fractional order bistable oscillators

Wang Li-Ming, Wu Feng
PDF
导出引用
  • 在由分数阶双稳态振子通过最近邻耦合构成的环形网络中研究了振子的同步与耦合方式以及初始条件结构的关系. 通过选择初始条件结构、耦合方式和强度,可以控制网络呈现振幅死亡同步态、振幅死亡非同步态、混沌同步态和混沌非同步态等多种动力学行为. 参数平面区域3-2内的最大条件Lyapunov 指数和最大Lyapunov指数的等高线进一步表明,y与z方向的耦合竞争对网络的动力学行为的影响结果敏感地依赖于网络的初始条件结构.
    A ring network with fractional-order bistable oscillators is proposed, and the relationship between synchronization and parameters, such as coupling modes and the initial structural conditions, etc., is investigated. Based on the bistable characteristics of P-R oscillator, the effects of the coupling strength and the structures in initial conditions on the dynamic behaviors of the ring network are investigated by analyzing the largest conditional Lyapunov exponents, the largest Lyapunov exponents and the bifurcation diagrams, etc. Further investigation reveals that the ring network can be controlled to form chaotic synchronization, chaotic non-synchronization, synchronous amplitude death, synchronous non-amplitude death, etc. by changing the initial conditions and the coupling strength. Furthermore, the contours of the largest conditional Lyapunov exponents and the largest Lyapunov exponents also show how the dynamic behaviors of the network are influenced by the competition between couplings along directions of y and z, strongly relies on the initial structural conditions of network.
    • 基金项目: 廊坊师范学院基金(批准号:K2012-08和LSZY201204)和国家自然科学青年基金(批准号:11204214)资助的课题.
    • Funds: Project supported by the Langfang Teachers College Foundation, China (Grant Nos. K2012-08 and LSZY201204), and the National Science Fund for Distinguished Young Scholars of China (Grant No. 11204214).
    [1]

    Lai Y C, Bollt E M, Liu Z H 2003 Chaos Solitons and Fractals 15 219

    [2]
    [3]

    Zhang R X, Yang S P 2009 Acta Phys. Sin. 58 2957 (in Chinese) 张若洵, 杨世平 2009 物理学报 58 2957]

    [4]
    [5]

    Hasler M 1998 Int. J. Bifurcat. Chaos 8 647

    [6]
    [7]

    Heagy J F, Pecora L M, Carroll T L 1995 Phys. Rev. Lett. 74 4185

    [8]
    [9]

    Liu W Q, Qian X L, Yang J Z, Xiao J H 2006 Phys. Lett. A 354 119

    [10]
    [11]

    Yamaguchi Y, Shimizu H 1984 Phycica D 11 212

    [12]

    Yang J 2007 Phys. Rev. E 76 016204

    [13]
    [14]

    Liu W Q, Xiao J H, Yang J Z 2005 Phys. Rev. E 72 057201

    [15]
    [16]

    Prasad A 2005 Phy. Rev. E 72 056204

    [17]
    [18]
    [19]

    Zhu Y, Qian X L, Yang J Z 2008 Europhys. Lett. 82 40001

    [20]

    Mandelbrot B B 1983 The Fractal Geometiy of Nature (San Diego: W H Freeman Co)

    [21]
    [22]

    Shao S Y, Min F H, Ma M L, Wang E R 2013 Acta Phys. Sin. 62 130504 (in Chinese) [邵书义, 闵富红, 马美玲, 王恩荣 2013 物理学报 62 130504]

    [23]
    [24]

    Jia H Y, Chen Z Q, Xue W 2013 Acta Phys. Sin. 62 140503 (in Chinese) [贾红艳, 陈增强, 薛薇 2013 物理学报 62 140503]

    [25]
    [26]

    Shao S Q, Gao X, Liu X W 2007 Acta Phys. Sin. 56 6815 (in chinese) [邵仕泉, 高心, 刘兴文 2007 物理学报 56 6815]

    [27]
    [28]
    [29]

    Deng W H, Li C P 2005 Physica A 353 61

    [30]
    [31]

    Chen X R, Liu C X, Wang F Q, Li Y X 2008 Acta Phys. Sin. 57 1416 (in Chinese) [陈向荣, 刘崇新, 王发强, 李永勋 2008 物理学报 57 1416]

    [32]
    [33]

    Yang S P, Zhang R X 2011 Chin. Phys. B 20 110506

    [34]

    Gao X, Yu J B 2005 Chaos, Solitons and Fractals 26 141

    [35]
    [36]

    Wang L M, Wu F 2013 Acta Phys. Sin. 62 210504 (in Chinese) [王立明, 吴峰 2013 物理学报 62 210504]

    [37]
    [38]

    Podlubny I 1999 Fractional Differential Equations (Vol. 198) (San Diego: Academic Press) p78

    [39]
    [40]

    Pikovsky A S, Rabinovich M I 1978 Sov. Phys. Dokl. 23 183

    [41]
    [42]

    Li C P, Peng G J 2004 Chaos, Solitons and Fractals 22 443

    [43]
  • [1]

    Lai Y C, Bollt E M, Liu Z H 2003 Chaos Solitons and Fractals 15 219

    [2]
    [3]

    Zhang R X, Yang S P 2009 Acta Phys. Sin. 58 2957 (in Chinese) 张若洵, 杨世平 2009 物理学报 58 2957]

    [4]
    [5]

    Hasler M 1998 Int. J. Bifurcat. Chaos 8 647

    [6]
    [7]

    Heagy J F, Pecora L M, Carroll T L 1995 Phys. Rev. Lett. 74 4185

    [8]
    [9]

    Liu W Q, Qian X L, Yang J Z, Xiao J H 2006 Phys. Lett. A 354 119

    [10]
    [11]

    Yamaguchi Y, Shimizu H 1984 Phycica D 11 212

    [12]

    Yang J 2007 Phys. Rev. E 76 016204

    [13]
    [14]

    Liu W Q, Xiao J H, Yang J Z 2005 Phys. Rev. E 72 057201

    [15]
    [16]

    Prasad A 2005 Phy. Rev. E 72 056204

    [17]
    [18]
    [19]

    Zhu Y, Qian X L, Yang J Z 2008 Europhys. Lett. 82 40001

    [20]

    Mandelbrot B B 1983 The Fractal Geometiy of Nature (San Diego: W H Freeman Co)

    [21]
    [22]

    Shao S Y, Min F H, Ma M L, Wang E R 2013 Acta Phys. Sin. 62 130504 (in Chinese) [邵书义, 闵富红, 马美玲, 王恩荣 2013 物理学报 62 130504]

    [23]
    [24]

    Jia H Y, Chen Z Q, Xue W 2013 Acta Phys. Sin. 62 140503 (in Chinese) [贾红艳, 陈增强, 薛薇 2013 物理学报 62 140503]

    [25]
    [26]

    Shao S Q, Gao X, Liu X W 2007 Acta Phys. Sin. 56 6815 (in chinese) [邵仕泉, 高心, 刘兴文 2007 物理学报 56 6815]

    [27]
    [28]
    [29]

    Deng W H, Li C P 2005 Physica A 353 61

    [30]
    [31]

    Chen X R, Liu C X, Wang F Q, Li Y X 2008 Acta Phys. Sin. 57 1416 (in Chinese) [陈向荣, 刘崇新, 王发强, 李永勋 2008 物理学报 57 1416]

    [32]
    [33]

    Yang S P, Zhang R X 2011 Chin. Phys. B 20 110506

    [34]

    Gao X, Yu J B 2005 Chaos, Solitons and Fractals 26 141

    [35]
    [36]

    Wang L M, Wu F 2013 Acta Phys. Sin. 62 210504 (in Chinese) [王立明, 吴峰 2013 物理学报 62 210504]

    [37]
    [38]

    Podlubny I 1999 Fractional Differential Equations (Vol. 198) (San Diego: Academic Press) p78

    [39]
    [40]

    Pikovsky A S, Rabinovich M I 1978 Sov. Phys. Dokl. 23 183

    [41]
    [42]

    Li C P, Peng G J 2004 Chaos, Solitons and Fractals 22 443

    [43]
  • [1] 贺苏娟, 邹为. 平均场反馈下全局耦合Stuart-Landau极限环系统的可解集体动力学. 物理学报, 2023, 72(20): 200502. doi: 10.7498/aps.72.20230842
    [2] 张树东, 王传航, 唐伟, 孙阳, 孙宁泽, 孙召玉, 徐慧. 2, 3-二呋喃基马来酸酐光致分子开关机理研究. 物理学报, 2021, 70(16): 163101. doi: 10.7498/aps.70.20202039
    [3] 黄标, 于晋龙, 王文睿, 王菊, 薛纪强, 于洋, 贾石, 杨恩泽. 基于注入锁定法布里-珀罗激光器的光学双稳态及光存储研究. 物理学报, 2015, 64(4): 044204. doi: 10.7498/aps.64.044204
    [4] 王立明, 吴峰. 耦合分数阶双稳态振子的同步、反同步与振幅死亡. 物理学报, 2013, 62(21): 210504. doi: 10.7498/aps.62.210504
    [5] 韩轲, 江滨浩, 纪延超. 霍尔效应推力器放电双稳态机理研究. 物理学报, 2012, 61(7): 075209. doi: 10.7498/aps.61.075209
    [6] 关荣华. 表面序电极化、挠曲电极化与向列液晶盒饱和点的双稳态. 物理学报, 2011, 60(1): 016105. doi: 10.7498/aps.60.016105
    [7] 包伯成, 刘中, 许建平. 忆阻混沌振荡器的动力学分析. 物理学报, 2010, 59(6): 3785-3793. doi: 10.7498/aps.59.3785
    [8] 牛永迪, 马文强, 王荣. 电光双稳态系统的混沌控制与同步. 物理学报, 2009, 58(5): 2934-2938. doi: 10.7498/aps.58.2934
    [9] 白宇浩, 云国宏, 那日苏. 外应力对铁磁/反铁磁体系交换偏置的影响及阶跃现象. 物理学报, 2009, 58(7): 4962-4969. doi: 10.7498/aps.58.4962
    [10] 毛庆和, 冯素娟, 蒋 建, 朱宗玖, 刘文清. 基于FLM的L波段双波长EDFL的双稳态变换. 物理学报, 2007, 56(1): 296-300. doi: 10.7498/aps.56.296
    [11] 田剑锋, 吴正茂, 夏光琼. 非线性布拉格光栅双稳特性的理论研究. 物理学报, 2007, 56(4): 2256-2260. doi: 10.7498/aps.56.2256
    [12] 何文平, 封国林, 高新全, 李建平. 无反馈作用下混沌系统的振幅死亡. 物理学报, 2006, 55(11): 6192-6196. doi: 10.7498/aps.55.6192
    [13] 陈园园, 王奇, 施解龙. 非相干多分量空间双稳态孤子. 物理学报, 2004, 53(4): 1070-1075. doi: 10.7498/aps.53.1070
    [14] 闫珂柱, 谭维翰. 简谐势阱中具有吸引相互作用原子体系的玻色-爱因斯坦凝聚. 物理学报, 2000, 49(10): 1909-1911. doi: 10.7498/aps.49.1909
    [15] 陈 睿. 平面横电磁波模的初值问题. 物理学报, 2000, 49(12): 2514-2518. doi: 10.7498/aps.49.2514
    [16] 汪映海, 胡成生, 汪志诚. 吸收型双光子光学双稳态的时间行为. 物理学报, 1992, 41(10): 1598-1604. doi: 10.7498/aps.41.1598
    [17] 王鹏业, 张洪钧, 戴建华. 光学双稳态和混沌运动中的临界现象. 物理学报, 1985, 34(10): 1233-1240. doi: 10.7498/aps.34.1233
    [18] 戴建华, 张洪钧, 王鹏业, 金朝鼎. 液晶混合光学双稳态的分叉图. 物理学报, 1985, 34(8): 992-999. doi: 10.7498/aps.34.992
    [19] 程瑞华, 栾绍金, 沈红卫, 谭维翰. InSb的光学双稳态. 物理学报, 1985, 34(9): 1212-1214. doi: 10.7498/aps.34.1212
    [20] 朱诗尧. 双光子光学双稳态的研究. 物理学报, 1984, 33(1): 16-24. doi: 10.7498/aps.33.16
计量
  • 文章访问数:  5488
  • PDF下载量:  457
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-08
  • 修回日期:  2013-11-15
  • 刊出日期:  2014-03-05

/

返回文章
返回