搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2, 3-二呋喃基马来酸酐光致分子开关机理研究

张树东 王传航 唐伟 孙阳 孙宁泽 孙召玉 徐慧

引用本文:
Citation:

2, 3-二呋喃基马来酸酐光致分子开关机理研究

张树东, 王传航, 唐伟, 孙阳, 孙宁泽, 孙召玉, 徐慧

Mechanism of 2, 3-difurylmaleic anhydride photochromic molecular switch

Zhang Shu-Dong, Wang Chuan-Hang, Tang Wei, Sun Yang, Sun Ning-Ze, Sun Zhao-Yu, Xu Hui
PDF
HTML
导出引用
  • 基于第一性原理计算了2, 3-二呋喃基马来酸酐(2, 3-difurylmaleic anhydride, DFMA)的光致变色开关机理. 在获得DFMA分子开环(O-DFMA)和闭环(C-DFMA)稳定构型的基础上, 应用微动弹性带(NEB)法找到了开环与闭环之间的最小能量路径(MEP)及过渡态构型(TS-DFMA), 得出O-DFMA和C-DFMA的势垒分别是24959 cm–1(3.0945 eV)和23328 cm–1(2.8923 eV), 预示着DFMA分子可能为热稳定双稳态分子. 基于MEP曲线(基态S0)对应的分子构型, 计算了DFMA最低8个单重激发态的势能曲线, 发现仅第1激发态(S1态)在TS-DFMA构型时出现极小值. 结合分子轨道跃迁及其图像, DFMA分子光致变色的机理为: 1)闭环→开环: 在S1–S0共振跃迁的波长激光作用下, C-DFMA分子从S0跃迁至S1态, 然后分子沿S1态势能曲线退激发, 在TS-DFMA构型处发生从S1态到S0态的交叉跳变回到O-DFMA构型, 完成由闭环→开环的开关动作. 这一开关过程中S1态势能曲线单调下降, 预示着开环动作不会有荧光辐射发生; 2)开环→闭环: 在S1–S0共振跃迁的波长激光作用下, O-DFMA分子从S0跃迁至S1态. 从O-DFMA构型到TS-DFMA构型, S1态势能曲线存在一段相对“平坦”的区域, 仅在接近TS-DFMA构型时才明显单调下降. 这意味着O-DFMA分子可能需要借助振动激发才能跨越S1这段“平坦”区从而接近到TS-DFMA构型, 然后顺着单调下降的S1态势能曲线退激发, 在TS-DFMA构型处发生从S1态到S0态的交叉跳变, 完成由开环→闭环的开关动作. 也正因为有起初S1态势能曲线的平坦区, 这一激发开关过程中同时伴有荧光辐射发生. DFMA分子的光致变色机理预示着其适合制作荧光分子开关.
    The photochromic switching mechanism of 2,3-difurylmaleic anhydride (DFMA) is investigated by first-principles calculations. Based on the stable structures of the open-ring (O-DFMA) and closed-ring (C-DFMA) of the DFMA, the minimum energy path (MEP) and the configuration of transition states (TS-DFMA) between the O-DFMA and C-DFMA are found by using the nudged elastic band (NEB) method, the potential barriers of O-DFMA and C-DFMA are 24959 cm–1(3.0945 eV) and 23328 cm–1(2.8923 eV), respectively, indicating that the DFMA molecule may be a thermally bistable molecule. Along the molecular configuration corresponding to the MEP curve (i.e. ground state S0), the potential energy curves of the lowest 8 singlet excited states of DFMA are calculated. Among these energy curves, only the first electronic excited state (i.e. S1 state) has a minimum value in the transition state (TS-DFMA) configuration. Combined with the molecular orbital transitions and orbital images, the photochromic mechanism of DFMA can be described as follows (1) From C-DFMA to O-DFMA process: under the action of the laser with S1–S0 resonance transition wavelength, the C-DFMA transits from S0 to S1 state, and then deactivates along the S1 potential energy curve, until a cross jumping transition occurs at the TS-DFMA structure from S1 to S0 and finally the molecule along the S0 potentioal energy curve returns to the O-DFMA configuration, then the switching action from closed-ring to open-ring is completed. The S1 state potential energy curve drops monotonically in this switching process, implying that there will be no fluorescent radiation in this process. (2) From O-DFMA to C-DFMA process: under the action of the laser with S1–S0 resonance transition wavelength, O-DFMA transits from S0 to S1 state. From the O-DFMA to TS-DFMA structure, there is a relatively “flat” area in the potential energy curve of the S1 state, and it decreases significantly only when it is close to the TS-DFMA. This means that O-DFMA needs to be excited with some vibrational modes to pass through the “flat” region of S1 and approaching to the TS-DFMA configuration, and then DFMA de-excites from the S1 state potential energy curve along a monotonic decline and a cross jumping transition from S1 to S0 occurs in the TS-DFMA configuration, completing the switching action from open-ring to closed-ring. It is also precisely because of the flat region of the potential energy curve of the initial S1 state that this excitation and switching process is accompanied by fluorescent radiations. The photochromic mechanism of DFMA indicates that it is suitable for making fluorescent molecular switches.
      通信作者: 张树东, zhangsd2@126.com
    • 基金项目: 国家自然科学基金(批准号: 11705101)资助的课题
      Corresponding author: Zhang Shu-Dong, zhangsd2@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11705101)
    [1]

    Irie M, Mohri M 1988 J. Org. Chem. 53 803Google Scholar

    [2]

    Nakamura S, Irie M 1988 J. Org. Chem. 53 6136Google Scholar

    [3]

    徐海兵, 何亭, 唐明静, 彭雪峰, 邓建国 2014 科学通报 59 2900Google Scholar

    Hu H B, He T, Tang M J, Peng X F, Deng J G 2014 Chin. Sci. Bull. 59 2900Google Scholar

    [4]

    Irie M, Uchida K 1998 Bull. Chem. Soc. Jpn. 71 985Google Scholar

    [5]

    Tian H, Yang S 2004 Chem. Soc. Rev. 33 85Google Scholar

    [6]

    齐国生, 肖家曦, 刘嵘, 蒋培军, 佘鹏, 徐端颐 2005 物理学报 53 1076

    Qi G S, Xiao J X, Liu R, Jiang P J, She P, Xu D Y 2005 Acta Phys. Sin. 53 1076

    [7]

    孙峰, 刘然, 索雨晴, 牛乐乐, 傅焕俨, 季文芳, 李宗良 2019 物理学报 68 178502Google Scholar

    Sun F, Liu R, Suo Y Q, Niu L L, Fu H Y, Ji W F, Li Z L 2019 Acta Phys. Sin. 68 178502Google Scholar

    [8]

    Irie M 2000 Chem. Rev. 100 1685Google Scholar

    [9]

    Feringa B L 2001 Molecular Switches (Germany: Wiley-VCH Verlag GmbH, Weinheim)

    [10]

    Tian H, Wang S 2007 Chem. Commun. 8 781

    [11]

    Zhang J, Zou Q, Tian H 2013 Adv. Mater. 25 378Google Scholar

    [12]

    Patel P D, Mikhailov I A, Belfield K D 2009 Int. J. Quantum Chem. 109 3711Google Scholar

    [13]

    Shoji H, Kobatake S 2013 Chem.Commun. 49 2362Google Scholar

    [14]

    Mei X, Wang J, Zhou Z, Wu S, Huang L, Lin Z, Ling Q 2017 J. Mater. Chem. C 5 2135Google Scholar

    [15]

    Uchida K, Nakayama Y, Irie M 1990 Bull. Chem. Soc. Jpn. 63 1311Google Scholar

    [16]

    Nakayama Y, Hayashi K, Irie M 1990 J. Org. Chem. 55 2592Google Scholar

    [17]

    Nakayama Y, Hayashi K, Irie M 1991 Bull. Chem. Soc. Jpn. 64 789Google Scholar

    [18]

    郭妮, 李苑莹, 李亚珍, 刘峰毅 2019 中国科学化学 49 1289Google Scholar

    Guo N, Li Y Y, Li Y Z, Liu F Y 2019 Sci. Sin. Chim. 49 1289Google Scholar

    [19]

    Zakharov A V, Gaeva E B, Lvov A G, Metelitsa A V, Shirinian V Z 2017 J. Org. Chem. 82 8651Google Scholar

    [20]

    Liu Y, Wang Q, Liu Y, Yang X Z 2003 Chem. Phys. Lett. 373 338Google Scholar

    [21]

    Jacquemin D, Perpète E A 2006 Chem. Phys. Lett. 429 147Google Scholar

    [22]

    Isegawa M, Morokuma K 2015 J. Phys. Chem. A 119 4191Google Scholar

    [23]

    陈利菊, 姚保利, 韩俊鹤, 郜鹏, 陈懿, 王英利, 雷铭 2008 物理学报 57 5571Google Scholar

    Chen L J, Yao B L, Han J H, Gao P, Chen Y, Wang Y L, Lei M 2008 Acta Phys. Sin. 57 5571Google Scholar

    [24]

    Liu R, Bi J J, Xie Z, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar

    [25]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [26]

    Weigend F, Ahlrichs R 2005 Phys. Chem. Chem. Phys. 7 3297Google Scholar

    [27]

    Mills G, J′onsson H, Schenter G 1995 Surf. Sci. 324 305Google Scholar

    [28]

    Henkelman G, J′onsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [29]

    de Souza B, Neese F, Izsák R 2018 J. Chem. Phys. 148 034104Google Scholar

    [30]

    Neese F 2017 Comput. Mol. Sci. 8 e1327

    [31]

    Neese F, Wennmohs F, Becker U 2020 J. Chem. Phys. 152 224108Google Scholar

  • 图 1  光致变色机理示意图

    Fig. 1.  Schematic diagram of photochromic mechanism.

    图 2  DFMA分子的开环和闭环的稳态构型

    Fig. 2.  Steady-state structures of the open-ring and closed-ring of DFMA molecule.

    图 3  NEB法计算的开环/闭环之间的最小能量路径(MEP)

    Fig. 3.  Minimum energy path (MEP) between O-DFMA and C-DFMA calculated by NEB method.

    图 4  TD-DFT/B3LYP/def2-TZVP水平上计算的DFMA分子势能曲线

    Fig. 4.  DFMA molecular potential energy curves calculated with TD-DFT/B3LYP/def2-TZVP.

    图 5  S0态到S1态激发跃迁偶极矩平方随MEP的变化

    Fig. 5.  Square of the transition dipole moment from S0 to S1 state along the MEP.

    图 6  S0态和S1态势能曲线, 其中插图为HOMO和LUMO空间分布图

    Fig. 6.  Potential energy curves of S0 state and S1 state, where the inset is the spatial distribution diagram of HOMO and LUMO.

    图 7  ESD模拟的O-DFMA和C-DFMA吸收光谱

    Fig. 7.  O-DFMA and C-DFMA absorption spectra simulated by ESD.

    表 1  O-DFMA和C-DFMA分子稳态构型参数

    Table 1.  Stable state configuration parameters of O-DFMA and C-DFMA.

    MethodsStructureRC2-C3/nmRO10-O17/nmDO10-C2-C3-O17/(°)Total thermal energy (hartree)Energy difference/cm–1
    BP/SVPO-DFMA0.13820.555220.24–836.230501232
    C-DFMA0.14500.31560.92–836.22488
    B3LYP/TZVPO-DFMA0.13590.548221.33–836.636801815
    C-DFMA0.14470.31530.98–836.62853
    B3LYP/def2-TZVPO-DFMA0.13590.548019.82–836.683422055
    C-DFMA0.14450.31500.75–836.67406
    NEB/def2-SVPTS-DFMA0.13800.33658.45
    下载: 导出CSV
  • [1]

    Irie M, Mohri M 1988 J. Org. Chem. 53 803Google Scholar

    [2]

    Nakamura S, Irie M 1988 J. Org. Chem. 53 6136Google Scholar

    [3]

    徐海兵, 何亭, 唐明静, 彭雪峰, 邓建国 2014 科学通报 59 2900Google Scholar

    Hu H B, He T, Tang M J, Peng X F, Deng J G 2014 Chin. Sci. Bull. 59 2900Google Scholar

    [4]

    Irie M, Uchida K 1998 Bull. Chem. Soc. Jpn. 71 985Google Scholar

    [5]

    Tian H, Yang S 2004 Chem. Soc. Rev. 33 85Google Scholar

    [6]

    齐国生, 肖家曦, 刘嵘, 蒋培军, 佘鹏, 徐端颐 2005 物理学报 53 1076

    Qi G S, Xiao J X, Liu R, Jiang P J, She P, Xu D Y 2005 Acta Phys. Sin. 53 1076

    [7]

    孙峰, 刘然, 索雨晴, 牛乐乐, 傅焕俨, 季文芳, 李宗良 2019 物理学报 68 178502Google Scholar

    Sun F, Liu R, Suo Y Q, Niu L L, Fu H Y, Ji W F, Li Z L 2019 Acta Phys. Sin. 68 178502Google Scholar

    [8]

    Irie M 2000 Chem. Rev. 100 1685Google Scholar

    [9]

    Feringa B L 2001 Molecular Switches (Germany: Wiley-VCH Verlag GmbH, Weinheim)

    [10]

    Tian H, Wang S 2007 Chem. Commun. 8 781

    [11]

    Zhang J, Zou Q, Tian H 2013 Adv. Mater. 25 378Google Scholar

    [12]

    Patel P D, Mikhailov I A, Belfield K D 2009 Int. J. Quantum Chem. 109 3711Google Scholar

    [13]

    Shoji H, Kobatake S 2013 Chem.Commun. 49 2362Google Scholar

    [14]

    Mei X, Wang J, Zhou Z, Wu S, Huang L, Lin Z, Ling Q 2017 J. Mater. Chem. C 5 2135Google Scholar

    [15]

    Uchida K, Nakayama Y, Irie M 1990 Bull. Chem. Soc. Jpn. 63 1311Google Scholar

    [16]

    Nakayama Y, Hayashi K, Irie M 1990 J. Org. Chem. 55 2592Google Scholar

    [17]

    Nakayama Y, Hayashi K, Irie M 1991 Bull. Chem. Soc. Jpn. 64 789Google Scholar

    [18]

    郭妮, 李苑莹, 李亚珍, 刘峰毅 2019 中国科学化学 49 1289Google Scholar

    Guo N, Li Y Y, Li Y Z, Liu F Y 2019 Sci. Sin. Chim. 49 1289Google Scholar

    [19]

    Zakharov A V, Gaeva E B, Lvov A G, Metelitsa A V, Shirinian V Z 2017 J. Org. Chem. 82 8651Google Scholar

    [20]

    Liu Y, Wang Q, Liu Y, Yang X Z 2003 Chem. Phys. Lett. 373 338Google Scholar

    [21]

    Jacquemin D, Perpète E A 2006 Chem. Phys. Lett. 429 147Google Scholar

    [22]

    Isegawa M, Morokuma K 2015 J. Phys. Chem. A 119 4191Google Scholar

    [23]

    陈利菊, 姚保利, 韩俊鹤, 郜鹏, 陈懿, 王英利, 雷铭 2008 物理学报 57 5571Google Scholar

    Chen L J, Yao B L, Han J H, Gao P, Chen Y, Wang Y L, Lei M 2008 Acta Phys. Sin. 57 5571Google Scholar

    [24]

    Liu R, Bi J J, Xie Z, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar

    [25]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [26]

    Weigend F, Ahlrichs R 2005 Phys. Chem. Chem. Phys. 7 3297Google Scholar

    [27]

    Mills G, J′onsson H, Schenter G 1995 Surf. Sci. 324 305Google Scholar

    [28]

    Henkelman G, J′onsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [29]

    de Souza B, Neese F, Izsák R 2018 J. Chem. Phys. 148 034104Google Scholar

    [30]

    Neese F 2017 Comput. Mol. Sci. 8 e1327

    [31]

    Neese F, Wennmohs F, Becker U 2020 J. Chem. Phys. 152 224108Google Scholar

  • [1] 胡生润, 季学强, 王进进, 阎结昀, 张天悦, 李培刚. 基于Ga2O3-SiC-Ag多层结构的介电常数近零超低开关阈值光学双稳态器件. 物理学报, 2024, 73(5): 054201. doi: 10.7498/aps.73.20231534
    [2] 庞晓娟, 赵凯玥, 何航宇, 张宁波, 蒋臣威. 靛红双氮二苯腙分子开关的光致异构化机理. 物理学报, 2024, 73(17): 173101. doi: 10.7498/aps.73.20240461
    [3] 陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬. Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算. 物理学报, 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [4] 关梦雪, 廉超, 孟胜. 基于原子轨道基的实时密度泛函理论:方法及应用. 物理学报, 2018, 67(12): 120201. doi: 10.7498/aps.67.20180487
    [5] 黄标, 于晋龙, 王文睿, 王菊, 薛纪强, 于洋, 贾石, 杨恩泽. 基于注入锁定法布里-珀罗激光器的光学双稳态及光存储研究. 物理学报, 2015, 64(4): 044204. doi: 10.7498/aps.64.044204
    [6] 徐国亮, 张琳, 路战胜, 刘培, 刘玉芳. 特殊构型Si2N2分子团簇电致激发特性的密度泛函理论研究. 物理学报, 2014, 63(10): 103101. doi: 10.7498/aps.63.103101
    [7] 王立明, 吴峰. 耦合方式与初始条件结构对分数阶双稳态振子环形网络同步的影响. 物理学报, 2014, 63(5): 050503. doi: 10.7498/aps.63.050503
    [8] 秦玉香, 刘梅, 化得燕. Ti掺杂W18O49纳米线的电子结构与NO2敏感性能的第一性原理研究. 物理学报, 2014, 63(20): 207101. doi: 10.7498/aps.63.207101
    [9] 王立明, 吴峰. 耦合分数阶双稳态振子的同步、反同步与振幅死亡. 物理学报, 2013, 62(21): 210504. doi: 10.7498/aps.62.210504
    [10] 韩轲, 江滨浩, 纪延超. 霍尔效应推力器放电双稳态机理研究. 物理学报, 2012, 61(7): 075209. doi: 10.7498/aps.61.075209
    [11] 关荣华. 表面序电极化、挠曲电极化与向列液晶盒饱和点的双稳态. 物理学报, 2011, 60(1): 016105. doi: 10.7498/aps.60.016105
    [12] 白宇浩, 云国宏, 那日苏. 外应力对铁磁/反铁磁体系交换偏置的影响及阶跃现象. 物理学报, 2009, 58(7): 4962-4969. doi: 10.7498/aps.58.4962
    [13] 陈小春, 杨君, 周艳红, 许英. 碳硅链和氮铝链的电子输运特性的第一性原理研究. 物理学报, 2009, 58(5): 3064-3070. doi: 10.7498/aps.58.3064
    [14] 徐国亮, 吕文静, 肖小红, 张现周, 刘玉芳, 朱遵略, 孙金锋. 密度泛函方法对SiO分子基态(X 1Σ+)势能函数的研究. 物理学报, 2008, 57(12): 7577-7580. doi: 10.7498/aps.57.7577
    [15] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构. 物理学报, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [16] 赵 朋, 房常峰, 夏蔡娟, 王一鸣, 高 琨, 刘德胜, 解士杰. F取代对二芳烯分子光开关性能的影响. 物理学报, 2008, 57(6): 3747-3752. doi: 10.7498/aps.57.3747
    [17] 田剑锋, 吴正茂, 夏光琼. 非线性布拉格光栅双稳特性的理论研究. 物理学报, 2007, 56(4): 2256-2260. doi: 10.7498/aps.56.2256
    [18] 齐国生, 肖家曦, 刘嵘, 蒋培军, 佘鹏, 徐端颐. 光致变色二芳基乙烯多波长光存储研究. 物理学报, 2004, 53(4): 1076-1080. doi: 10.7498/aps.53.1076
    [19] 陈园园, 王奇, 施解龙. 非相干多分量空间双稳态孤子. 物理学报, 2004, 53(4): 1070-1075. doi: 10.7498/aps.53.1070
    [20] 闫珂柱, 谭维翰. 简谐势阱中具有吸引相互作用原子体系的玻色-爱因斯坦凝聚. 物理学报, 2000, 49(10): 1909-1911. doi: 10.7498/aps.49.1909
计量
  • 文章访问数:  4848
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 修回日期:  2021-04-08
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回