搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于原子轨道基的实时密度泛函理论:方法及应用

关梦雪 廉超 孟胜

引用本文:
Citation:

基于原子轨道基的实时密度泛函理论:方法及应用

关梦雪, 廉超, 孟胜

Real-time time dependent density functional theory with numerical atomic orbital basis set: methodology and applications

Guan Meng-Xue, Lian Chao, Meng Sheng
PDF
导出引用
  • 实时密度泛函理论是基于含时Kohn-Sham方程,从实空间实时模拟材料激发态性质的第一性原理计算方法.本文介绍如何利用基于数值原子轨道基的含时密度泛函理论和软件TDAP(Time Dependent Ab initio Package),研究凝聚态物质与光场之间的相互作用.通过引入电磁场的长度规范和速度规范,该方法的适用范围从低维结构拓展到固体材料,且不受微扰论的限制,实现了对大规模、真实凝聚态体系的动力学性质的精确模拟.文中以几个有代表性的工作为例,说明该方法对于研究量子系统中新奇的超快量子动力学现象有着广泛的应用前景.
    Real-time time dependent density functional theory (rt-TDDFT) approach directly provides the time domain evolution of electronic wave functions together with ionic movements, presenting a versatile way of real time tracking ultrafast dynamics and phenomena either in perturbative regime or in non-perturbative regime. Thus, rt-TDDFT is a unique ab initio quantum method applicable for the exploration of strong field physics that is beyond the linear response theory. Numerical implementations of the rt-TDDFT based on planewaves and real-space grids have been demonstrated in recent years. However, the above two methods are suitable for the efficient treatment of low energy excitation on the scale of a few electron volts in a small size system. In this paper, we present a state-of-the-art real-time TDDFT approach as implemented in the time dependent ab initio package (TDAP). By employing atomic orbital basis sets, which are small in size and fast in performance, we are able to simulate a large-size system for long electronic propagation time with less computational cost while maintaining relatively high accuracy. The length and velocity-gauge of electromagnetic field are both implemented, showing the flexibility and credibility in applying our methods to various laser induced phenomena in diverse systems including solids, interfaces and two-dimensional materials. Furthermore, recently developed k-resolved algorithm ensures the possibility of handling the problems with a unit cell approach, which significantly reduces the formidable computational costs of traditional rt-TDDFT simulations. Detailed flow and implementation of this method are discussed in this paper, and several quintessential examples for applications are introduced. First, we use the present method to calculate the photoabsorption properties of armchair graphene nanoribbons and monitor the excitation details with momentum resolution. Then, we simulate laser melting of silicon, which captures the most important features of nonthermal melting observed in experiment, and further reveals that it can be attributed to drastic laser-induced change in bonding electron density and subsequent decrease in the melting barrier. After that, a model MoS2/WS2 bilayer system is used as an example to show how our method can be used to monitor the electronic dynamics in such a van der Waals heterostructure. Finally, we show the possibility of controlling the electron dynamic process to enhance high harmonic generation intensity and generate isolated attosecond pulse in monolayer MoS2 via two-color field. Most of the above examples present new ideas in their respective areas and demonstrate that our method has a great potential application in studying interesting ultrafast dynamics phenomena in a wide range of quantum systems.
      通信作者: 孟胜, smeng@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0300902)、国家重点基础研究发展计划(批准号:2015CB921001)和国家自然科学基金(批准号:11774396,11474328)资助的课题.
      Corresponding author: Meng Sheng, smeng@iphy.ac.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2016YFA0300902), the National Basic Research Program of China (Grant No. 2015CB921001), and the National Natural Science Foundation of China (Grant Nos. 11774396, 11474328).
    [1]

    Runge E, Gross E K 1984 Phys. Rev. Lett. 52 997

    [2]

    Ullrich C A 2011 Time-Dependent Density-Functional Theory:Concepts And Applications (Oxford:Oxford University Press)

    [3]

    Sato S, Yabana K, Shinohara Y, Otobe T, Lee K M, Bertsch G 2015 Phys. Rev. B 92 205413

    [4]

    Takimoto Y, Vila F, Rehr J 2007 J. Chem. Phys. 127 154114

    [5]

    Snchez-Portal D, Hernandez E 2002 Phys. Rev. B 66 235415

    [6]

    Lopata K, Govind N 2011 J. Chem. Theory Comput. 7 1344

    [7]

    Yabana K, Sugiyama T, Shinohara Y, Otobe T, Bertsch G 2012 Phys. Rev. B 85 045134

    [8]

    Castro A, Werschnik J, Gross E K 2012 Phys. Rev. Lett. 109 153603

    [9]

    Yost D C, Yao Y, Kanai Y 2017 Phys. Rev. B 96 115134

    [10]

    Andrade X, Strubbe D, de Giovannini U, Larsen A H, Oliveira M J, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete M J 2015 Phys. Chem. Chem. Phys. 17 31371

    [11]

    Sato S A, Yabana K 2014 J. Adv. Simulat. Sci. Eng. 1 98

    [12]

    Meng S, Kaxiras E 2008 J. Chem. Phys. 129 054110

    [13]

    Ma W, Zhang J, Yan L, Jiao Y, Gao Y, Meng S 2016 Comp. Mater. Sci. 112 478

    [14]

    Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejn P, Snchez-Portal D 2002 J. Phys. Condens. Matter 14 2745

    [15]

    Ordejn P, Artacho E, Soler J M 1996 Phys. Rev. B 53 R10441

    [16]

    Yabana K, Nakatsukasa T, Iwata J I, Bertsch G 2006 Phys. Status Solidi (b) 243 1121

    [17]

    Wang Z, Li S S, Wang L W 2015 Phys. Rev. Lett. 114 063004

    [18]

    Ren J, Vukmirović N, Wang L W 2013 Phys. Rev. B 87 205117

    [19]

    Ren J, Kaxiras E, Meng S 2010 Mol. Phys. 108 1829

    [20]

    Rohringer N, Peter S, Burgdrfer J 2006 Phys. Rev. A 74 042512

    [21]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [22]

    Yang L, Park C H, Son Y W, Cohen M L, Louie S G 2007 Phys. Rev. Lett. 99 186801

    [23]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotech. 7 330

    [24]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R 2011 Nat. Nanotech. 6 630

    [25]

    Yang L, Deslippe J, Park C H, Cohen M L, Louie S G 2009 Phys. Rev. Lett. 103 186802

    [26]

    Trevisanutto P E, Holzmann M, Ct M, Olevano V 2010 Phys. Rev. B 81 121405

    [27]

    Gomez C V, Pisarra M, Gravina M, Pitarke J M, Sindona A 2016 Phys. Rev. Lett. 117 116801

    [28]

    Ostrikov K K, Beg F, Ng A 2016 Rev. Mod. Phys. 88 011001

    [29]

    Shank C, Yen R, Hirlimann C 1983 Phys. Rev. Lett. 50 454

    [30]

    Harb M, Ernstorfer R, Hebeisen C T, Sciaini G, Peng W, Dartigalongue T, Eriksson M A, Lagally M G, Kruglik S G, Miller R D 2008 Phys. Rev. Lett. 100 155504

    [31]

    Sokolowski-Tinten K, Blome C, Dietrich C, Tarasevitch A, von Hoegen M H, von der Linde D, Cavalleri A, Squier J, Kammler M 2001 Phys. Rev. Lett. 87 225701

    [32]

    Porer M, Leierseder U, Mnard J M, Dachraoui H, Mouchliadis L, Perakis I, Heinzmann U, Demsar J, Rossnagel K, Huber R 2014 Nat. Mater. 13 857

    [33]

    Hellmann S, Beye M, Sohrt C, Rohwer T, Sorgenfrei F, Redlin H, Kallne M, Marczynski-Bhlow M, Hennies F, Bauer M 2010 Phys. Rev. Lett. 105 187401

    [34]

    Lian C, Zhang S, Meng S 2016 Phys. Rev. B 94 184310

    [35]

    Zijlstra E S, Kalitsov A, Zier T, Garcia M E 2013 Phys. Rev. X 3 011005

    [36]

    Falke S M, Rozzi C A, Brida D, Maiuri M, Amato M, Sommer E, de Sio A, Rubio A, Cerullo G, Molinari E 2014 Science 344 1001

    [37]

    Rozzi C A, Falke S M, Spallanzani N, Rubio A, Molinari E, Brida D, Maiuri M, Cerullo G, Schramm H, Christoffers J 2013 Nat. Commun. 4 1602

    [38]

    Zhang J, Hong H, Lian C, Ma W, Xu X, Zhou X, Fu H, Liu K, Meng S 2017 Adv. Sci. 4 1700086

    [39]

    van der Zande A M, Kunstmann J, Chernikov A, Chenet D A, You Y, Zhang X, Huang P Y, Berkelbach T C, Wang L, Zhang F 2014 Nano Lett. 14 3869

    [40]

    Long R, Prezhdo O V 2016 Nano Lett. 16 1996

    [41]

    Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, Reis D A 2016 Nature 534 520

    [42]

    Luu T T, Garg M, Kruchinin S Y, Moulet A, Hassan M T, Goulielmakis E 2015 Nature 521 498

    [43]

    Vampa G, Hammond T J, Thire N, Schmidt B E, Legare F, McDonald C R, Brabec T, Corkum P B 2015 Nature 522 462

    [44]

    Liu H, Li Y, You Y S, Ghimire S, Heinz T F, Reis D A 2016 Nat. Phys. 13 262

    [45]

    Li J B, Zhang X, Yue S J, Wu H M, Hu B T, Du H C 2017 Opt. Express 25 18603

    [46]

    Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Legare F, Giguere M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902

  • [1]

    Runge E, Gross E K 1984 Phys. Rev. Lett. 52 997

    [2]

    Ullrich C A 2011 Time-Dependent Density-Functional Theory:Concepts And Applications (Oxford:Oxford University Press)

    [3]

    Sato S, Yabana K, Shinohara Y, Otobe T, Lee K M, Bertsch G 2015 Phys. Rev. B 92 205413

    [4]

    Takimoto Y, Vila F, Rehr J 2007 J. Chem. Phys. 127 154114

    [5]

    Snchez-Portal D, Hernandez E 2002 Phys. Rev. B 66 235415

    [6]

    Lopata K, Govind N 2011 J. Chem. Theory Comput. 7 1344

    [7]

    Yabana K, Sugiyama T, Shinohara Y, Otobe T, Bertsch G 2012 Phys. Rev. B 85 045134

    [8]

    Castro A, Werschnik J, Gross E K 2012 Phys. Rev. Lett. 109 153603

    [9]

    Yost D C, Yao Y, Kanai Y 2017 Phys. Rev. B 96 115134

    [10]

    Andrade X, Strubbe D, de Giovannini U, Larsen A H, Oliveira M J, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete M J 2015 Phys. Chem. Chem. Phys. 17 31371

    [11]

    Sato S A, Yabana K 2014 J. Adv. Simulat. Sci. Eng. 1 98

    [12]

    Meng S, Kaxiras E 2008 J. Chem. Phys. 129 054110

    [13]

    Ma W, Zhang J, Yan L, Jiao Y, Gao Y, Meng S 2016 Comp. Mater. Sci. 112 478

    [14]

    Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejn P, Snchez-Portal D 2002 J. Phys. Condens. Matter 14 2745

    [15]

    Ordejn P, Artacho E, Soler J M 1996 Phys. Rev. B 53 R10441

    [16]

    Yabana K, Nakatsukasa T, Iwata J I, Bertsch G 2006 Phys. Status Solidi (b) 243 1121

    [17]

    Wang Z, Li S S, Wang L W 2015 Phys. Rev. Lett. 114 063004

    [18]

    Ren J, Vukmirović N, Wang L W 2013 Phys. Rev. B 87 205117

    [19]

    Ren J, Kaxiras E, Meng S 2010 Mol. Phys. 108 1829

    [20]

    Rohringer N, Peter S, Burgdrfer J 2006 Phys. Rev. A 74 042512

    [21]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [22]

    Yang L, Park C H, Son Y W, Cohen M L, Louie S G 2007 Phys. Rev. Lett. 99 186801

    [23]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotech. 7 330

    [24]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R 2011 Nat. Nanotech. 6 630

    [25]

    Yang L, Deslippe J, Park C H, Cohen M L, Louie S G 2009 Phys. Rev. Lett. 103 186802

    [26]

    Trevisanutto P E, Holzmann M, Ct M, Olevano V 2010 Phys. Rev. B 81 121405

    [27]

    Gomez C V, Pisarra M, Gravina M, Pitarke J M, Sindona A 2016 Phys. Rev. Lett. 117 116801

    [28]

    Ostrikov K K, Beg F, Ng A 2016 Rev. Mod. Phys. 88 011001

    [29]

    Shank C, Yen R, Hirlimann C 1983 Phys. Rev. Lett. 50 454

    [30]

    Harb M, Ernstorfer R, Hebeisen C T, Sciaini G, Peng W, Dartigalongue T, Eriksson M A, Lagally M G, Kruglik S G, Miller R D 2008 Phys. Rev. Lett. 100 155504

    [31]

    Sokolowski-Tinten K, Blome C, Dietrich C, Tarasevitch A, von Hoegen M H, von der Linde D, Cavalleri A, Squier J, Kammler M 2001 Phys. Rev. Lett. 87 225701

    [32]

    Porer M, Leierseder U, Mnard J M, Dachraoui H, Mouchliadis L, Perakis I, Heinzmann U, Demsar J, Rossnagel K, Huber R 2014 Nat. Mater. 13 857

    [33]

    Hellmann S, Beye M, Sohrt C, Rohwer T, Sorgenfrei F, Redlin H, Kallne M, Marczynski-Bhlow M, Hennies F, Bauer M 2010 Phys. Rev. Lett. 105 187401

    [34]

    Lian C, Zhang S, Meng S 2016 Phys. Rev. B 94 184310

    [35]

    Zijlstra E S, Kalitsov A, Zier T, Garcia M E 2013 Phys. Rev. X 3 011005

    [36]

    Falke S M, Rozzi C A, Brida D, Maiuri M, Amato M, Sommer E, de Sio A, Rubio A, Cerullo G, Molinari E 2014 Science 344 1001

    [37]

    Rozzi C A, Falke S M, Spallanzani N, Rubio A, Molinari E, Brida D, Maiuri M, Cerullo G, Schramm H, Christoffers J 2013 Nat. Commun. 4 1602

    [38]

    Zhang J, Hong H, Lian C, Ma W, Xu X, Zhou X, Fu H, Liu K, Meng S 2017 Adv. Sci. 4 1700086

    [39]

    van der Zande A M, Kunstmann J, Chernikov A, Chenet D A, You Y, Zhang X, Huang P Y, Berkelbach T C, Wang L, Zhang F 2014 Nano Lett. 14 3869

    [40]

    Long R, Prezhdo O V 2016 Nano Lett. 16 1996

    [41]

    Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, Reis D A 2016 Nature 534 520

    [42]

    Luu T T, Garg M, Kruchinin S Y, Moulet A, Hassan M T, Goulielmakis E 2015 Nature 521 498

    [43]

    Vampa G, Hammond T J, Thire N, Schmidt B E, Legare F, McDonald C R, Brabec T, Corkum P B 2015 Nature 522 462

    [44]

    Liu H, Li Y, You Y S, Ghimire S, Heinz T F, Reis D A 2016 Nat. Phys. 13 262

    [45]

    Li J B, Zhang X, Yue S J, Wu H M, Hu B T, Du H C 2017 Opt. Express 25 18603

    [46]

    Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Legare F, Giguere M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902

  • [1] 谭辉, 曹睿, 李永强. 基于动力学平均场的光晶格超冷原子量子模拟. 物理学报, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [2] 向梅, 凌丰姿, 邓绪兰, 魏洁, 布玛丽亚∙阿布力米提, 张冰. 苯乙炔分子电子激发态超快动力学研究. 物理学报, 2021, 70(5): 053302. doi: 10.7498/aps.70.20201473
    [3] 赵嘉琳, 程开, 于雪克, 赵纪军, 苏艳. 几种典型含能材料光激发解离的含时密度泛函理论研究. 物理学报, 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [4] 郑镇法, 蒋翔, 褚维斌, 张丽丽, 郭宏礼, 赵传寓, 王亚南, 王傲雷, 郑奇靖, 赵瑾. 凝聚态体系中激发态载流子动力学研究. 物理学报, 2021, 70(17): 177101. doi: 10.7498/aps.70.20210626
    [5] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究. 物理学报, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [6] 申钰田, 孟胜. 光解水的原子尺度机理和量子动力学. 物理学报, 2019, 68(1): 018202. doi: 10.7498/aps.68.20181312
    [7] 范桁. 量子计算与量子模拟. 物理学报, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [8] 沈环, 胡春龙, 邓绪兰. 超短脉冲激光场中间二氯苯的激发态动力学. 物理学报, 2017, 66(15): 157801. doi: 10.7498/aps.66.157801
    [9] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算. 物理学报, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [10] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [11] 张建东, 杨春, 陈元涛, 张变霞, 邵文英. 金原子掺杂的碳纳米管吸附CO气体的密度泛函理论研究. 物理学报, 2011, 60(10): 106102. doi: 10.7498/aps.60.106102
    [12] 黄仙山, 刘海莲, 羊亚平, 石云龙. 运用动态Lorentz库实现对激发态原子动力学特性的调控. 物理学报, 2011, 60(2): 024205. doi: 10.7498/aps.60.024205
    [13] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [14] 张变霞, 杨春, 冯玉芳, 余毅. 碳纳米管吸附铜原子的密度泛函理论研究. 物理学报, 2009, 58(6): 4066-4071. doi: 10.7498/aps.58.4066
    [15] 顾 斌, 金年庆, 王志萍, 曾祥华. 用含时密度泛函理论计算钠原子跃迁光谱. 物理学报, 2005, 54(10): 4648-4653. doi: 10.7498/aps.54.4648
    [16] 文根旺. 量子激发态最陡下降微扰理论. 物理学报, 1991, 40(9): 1388-1395. doi: 10.7498/aps.40.1388
    [17] 帅志刚, 孙鑫, 傅柔励. 激发态的相关基函数理论. 物理学报, 1989, 38(10): 1648-1657. doi: 10.7498/aps.38.1648
    [18] 刘磊, 李家明. Fr原子的激发态结构. 物理学报, 1988, 37(12): 2053-2056. doi: 10.7498/aps.37.2053
    [19] 梁晓玲, 李家明. 激发态原子振子强度密度极小点. 物理学报, 1985, 34(11): 1479-1487. doi: 10.7498/aps.34.1479
    [20] 朱熙文. 高激发态钠原子的量子拍实验的某些分析. 物理学报, 1981, 30(12): 1688-1692. doi: 10.7498/aps.30.1688
计量
  • 文章访问数:  9210
  • PDF下载量:  646
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-19
  • 修回日期:  2018-04-17
  • 刊出日期:  2019-06-20

/

返回文章
返回