-
激发态动力学是凝聚态物理中至关重要且富有挑战的科学问题, 不仅需要从时间、空间、能量和动量等多个维度来描述, 同时还需要考虑各种准粒子的相互作用以及多体效应. 本文聚焦凝聚态体系激发态动力学的理论和应用研究, 结合含时密度泛函、GW-BSE与面跳跃方法, 发展了激发态动力学第一性原理计算软件Hefei-NAMD, 构建了可以同时从时间、空间、动量、能量、自旋等多个维度研究凝聚态体系激发态动力学的理论和程序框架, 并实现了自旋分辨的GW+ real-time BSE(GW+rtBSE)激子动力学. 利用这套方法, 研究了凝聚态体系激发态动力学的许多问题, 包括界面电荷转移动力学、电子空穴复合动力学以及二维TMD材料的谷激子动力学等. 这些研究从第一性原理计算的角度, 模拟激发态载流子在实空间、能量空间和动量空间的含时演化, 为凝聚态体系的激发态动力学及准粒子耦合过程提供了深刻细致的理解.
-
关键词:
- 激发态动力学 /
- Hefei-NAMD /
- 非绝热分子动力学 /
- GW + real-time BSE
The excited state dynamics is always an important and challenging problem in condensed matter physics. The dynamics of excited carriers can have different relaxation channels, in which the complicated interactions between different quasi-particles come into play collectively. To understand such ultrafast processes, the ab initio investigations are essential. Combining the real-time time-dependent density functional theory with fewest switches surface hopping scheme, we develop time-dependent ab initio nonadiabatic molecular dynamics (NAMD) code Hefei-NAMD to simulate the excited carrier dynamics in condensed matter systems. Using this method, we investigate the interfacial charge transfer dynamics, the electron–hole recombination dynamics, and the excited spin-polarized hole dynamics in different condensed matter systems. Moreover, we combine ab initio nonadiabatic molecular dynamics with GW plus real-time Bethe-Salpeter equation for the spin-resolved exciton dynamics. We use it to study the spin-valley exciton dynamics in MoS2. It provides a powerful tool for exciton dynamics in solid systems. The state-of-the-art NAMD studies provide a unique insight into a understanding of the ultrafast dynamics of the excited carriers in different condensed matter systems on an atomic scale.-
Keywords:
- excited state dynamics /
- Hefei-NAMD /
- nonadiabatic molecular dynamics /
- GW + real-time BSE
[1] Ross R T, Nozik A J 1982 J. Appl. Phys. 53 3813Google Scholar
[2] O'Regan B, Grätzel M 1991 Nature 353 737Google Scholar
[3] Nozik A J 2002 Physica E 14 115Google Scholar
[4] Tisdale W A, Williams K J, Timp B A, Norris D J, Aydil E S, Zhu X Y 2010 Science 328 1543Google Scholar
[5] Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664Google Scholar
[6] Rahul, Singh P K, Singh R, Singh V, Bhattacharya B, Khan Z H 2018 Mater. Res. Bull. 97 572Google Scholar
[7] Fujishima A, Honda K 1972 Nature 238 37Google Scholar
[8] Williams F, Nozik A 1984 Nature 312 21Google Scholar
[9] Abuabara S G, Rego L G C, Batista V S 2005 J. Am. Chem. Soc. 127 18234Google Scholar
[10] Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M 2006 J. Am. Chem. Soc. 128 416Google Scholar
[11] Zhu W, Qiu X, Iancu V, Chen X Q, Pan H, Wang W, Dimitrijevic N M, Rajh T, Meyer Ⅲ H M, Paranthaman M P, Stocks G M, Weitering H H, Gu B, Eres G, Zhang Z 2009 Phys. Rev. Lett. 103 226401Google Scholar
[12] Akimov A V, Neukirch A J, Prezhdo O V 2013 Chem. Rev. 113 4496Google Scholar
[13] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar
[14] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[15] Hong X, Kim J, Shi S-F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar
[16] Wang H, Zhang C, Chan W, Tiwari S, Rana F 2015 Nat. Commun. 6 8831Google Scholar
[17] Ju M G, Sun G, Wang J, Meng Q, Liang W 2014 ACS Appl. Mater. Interfaces 6 12885Google Scholar
[18] Born M, Oppenheimer J R 1927 Ann. Phys. 84 457
[19] Crespo-Otero R, Barbatti M 2018 Chem. Rev. 118 7026Google Scholar
[20] Zheng Q, Chu W, Zhao C, Zhang L, Guo H, Wang Y, Jiang X, Zhao J 2019 WIREs Comput. Mol. Sci. 9 e1411Google Scholar
[21] Kuppermann A, Abrol R 2002 Adv. Chem. Phys. 124 283
[22] Worth G A, Cederbaum L S 2004 Annu. Rev. Phys. Chem. 55 127Google Scholar
[23] Li X, Tully J C, Schlegel H B, Frisch M J 2005 J. Chem. Phys. 123 084106Google Scholar
[24] Sawada S-I, Nitzan A, Metiu H 1985 Phys. Rev. B 32 851Google Scholar
[25] Ehrenfest P 1927 Z. Phys. 45 455Google Scholar
[26] Schmidt J R, Parandekar P V, Tully J C 2008 J. Chem. Phys. 129 044104Google Scholar
[27] Space B, Coker D F 1991 J. Chem. Phys. 94 1976Google Scholar
[28] Tully J C 1990 J. Chem. Phys. 93 1061Google Scholar
[29] Tully J C, Preston R K 1971 J. Chem. Phys. 55 562Google Scholar
[30] Meng S, Kaxiras E 2008 J. Chem. Phys. 129 054110Google Scholar
[31] Kolesov G, Granas O, Hoyt R, Vinichenko D, Kaxiras E 2016 J. Chem. Theory Comput. 12 466Google Scholar
[32] Akimov A V, Prezhdo O V 2014 J. Chem. Theory Comput. 10 789Google Scholar
[33] Akimov A V, Prezhdo O V 2013 J. Chem. Theory Comput. 9 4959Google Scholar
[34] Craig C F, Duncan W R, Prezhdo O V 2005 Phys. Rev. Lett. 95 163001Google Scholar
[35] Cui G L, Thiel W 2014 J. Chem. Phys. 141 124101Google Scholar
[36] Zhang X, Li Z, Lu G 2010 Phys. Rev. B 82 205210Google Scholar
[37] Wang Z, Li S S, Wang L W 2015 Phys. Rev. Lett. 114 063004Google Scholar
[38] Wang L, Akimov A, Prezhdo O V 2016 J. Phys. Chem. Lett. 7 2100Google Scholar
[39] Jaeger H M, Fischer S, Prezhdo O V 2012 J. Chem. Phys. 137 22A545Google Scholar
[40] Onishi H, Aruga T, Egawa C, Iwasawa Y 1988 Surf. Sci. 193 33Google Scholar
[41] Zhao J, Li B, Onda K, Feng M, Petek H 2006 Chem. Rev. 106 4402Google Scholar
[42] Zhou C, Ren Z, Tan S, Ma Z, Mao X, Dai D, Fan H, Yang X, LaRue J, Cooper R, Wodtke A M, Wang Z, Li Z, Wang B, Yang J, Hou J 2010 Chem. Sci. 1 575Google Scholar
[43] Wang L Q, Ferris K F, Winokur J P, Shultz A N, Baer D R, Engelhard M H 1998 J. Vac. Sci. Technol., A 16 3034Google Scholar
[44] Petek H, Zhao J 2010 Chem. Rev. 110 7082Google Scholar
[45] Shen M, Henderson M A 2011 J. Phys. Chem. Lett. 2 2707Google Scholar
[46] Henderson M A 2011 Surf. Sci. Rep. 66 185Google Scholar
[47] Chu W, Saidi W A, Zheng Q, Xie Y, Lan Z, Prezhdo O V, Petek H, Zhao J 2016 J. Am. Chem. Soc. 138 13740Google Scholar
[48] Chen Z, Zhang Q, Luo Y 2018 Angew. Chem. Int. Ed. 57 5320Google Scholar
[49] Furukawa H, Yaghi O M 2009 J. Am. Chem. Soc. 131 8875Google Scholar
[50] Sanz-Pérez E S, Murdock C R, Didas S A, Jones C W 2016 Chem. Rev. 116 11840Google Scholar
[51] White J L, Baruch M F, Pander J E, Hu Y, Fortmeyer I C, Park J E, Zhang T, Liao K, Gu J, Yan Y, Shaw T W, Abelev E, Bocarsly A B 2015 Chem. Rev. 115 12888Google Scholar
[52] Gao S, Sun Z, Liu W, Jiao X, Zu X, Hu Q, Sun Y, Yao T, Zhang W, Wei S, Xie Y 2017 Nat. Commun. 8 14503Google Scholar
[53] Montoya J H, Seitz L C, Chakthranont P, Vojvodic A, Jaramillo T F, Nørskov J K 2017 Nat. Mater. 16 70Google Scholar
[54] Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J, Xie Y 2016 Nature 529 68Google Scholar
[55] Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K 2013 Angew. Chem. Int. Ed. 52 7372Google Scholar
[56] Chu W B, Zheng Q J, Prezhdo O V, Zhao J 2020 J. Am. Chem. Soc. 142 3214Google Scholar
[57] Migani A, Mowbray D J, Zhao J, Petek H, Rubio A 2014 J. Chem. Theory Comput. 10 2103Google Scholar
[58] Migani A, Mowbray D J, Iacomino A, Zhao J, Petek H, Rubio A 2013 J. Am. Chem. Soc. 135 11429Google Scholar
[59] Zhao J, Yang J, Petek H 2009 Phys. Rev. B 80 235416Google Scholar
[60] Koitaya T, Nakamura H, Yamashita K 2009 J. Phys. Chem. C 113 7236Google Scholar
[61] Fischer S A, Duncan W R, Prezhdo O V 2009 J. Am. Chem. Soc. 131 15483Google Scholar
[62] Zhao J, Li B, Jordan K D, Yang J, Petek H 2006 Phys. Rev. B 73 195309Google Scholar
[63] Onda K, Li B, Zhao J, Jordan K D, Yang J L, Petek H 2005 Science 308 1154Google Scholar
[64] Li B, Zhao J, Onda K, Jordan K D, Yang J L, Petek H 2006 Science 311 1436Google Scholar
[65] Wang Y, Guo H, Zheng Q, Saidi W A, Zhao J 2018 J. Phys. Chem. Lett. 9 3049Google Scholar
[66] Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar
[67] Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942Google Scholar
[68] Cancellieri C, Fontaine D, Gariglio S, Reyren N, Caviglia A D, Fête A, Leake S J, Pauli S A, Willmott P R, Stengel M, Ghosez P, Triscone J M 2011 Phys. Rev. Lett. 107 056102Google Scholar
[69] Guo H, Zhao C, Zheng Q, Lan Z, Prezhdo O V, Saidi W A, Zhao J 2018 J. Phys. Chem. Lett. 9 3485Google Scholar
[70] Feng M, Zhao J, Petek H 2008 Science 320 359Google Scholar
[71] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar
[72] Ramasubramaniam A 2012 Phys. Rev. B 86 115409Google Scholar
[73] Qiu D Y, da Jornada F H, Louie S G 2013 Phys. Rev. Lett. 111 216805Google Scholar
[74] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111Google Scholar
[75] Cheiwchanchamnangij T, Lambrecht W R L 2012 Phys. Rev. B 85 205302Google Scholar
[76] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887Google Scholar
[77] Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nanotechnol. 7 490Google Scholar
[78] Hao K, Moody G, Wu F, Dass C K, Xu L, Chen C H, Sun L, Li M Y, Li L J, MacDonald A H, Li X 2016 Nat. Phys. 12 677Google Scholar
[79] Kang J, Tongay S, Zhou J, Li J, Wu J 2013 Appl. Phys. Lett. 102 012111Google Scholar
[80] Gong C, Zhang H, Wang W, Colombo L, Wallace R M, Cho K 2013 Appl. Phys. Lett. 103 053513Google Scholar
[81] Zheng Q, Saidi W A, Xie Y, Lan Z, Prezhdo O V, Petek H, Zhao J 2017 Nano Lett. 17 6435Google Scholar
[82] Zheng Q, Xie Y, Lan Z, Prezhdo O V, Saidi W A, Zhao J 2018 Phys. Rev. B 97 205417Google Scholar
[83] Tian Y, Zheng Q, Zhao J 2020 J. Phys. Chem. Lett. 11 586Google Scholar
[84] Zheng Z, Zheng Q, Zhao J 2019 Electron. Struct. 1 034001Google Scholar
[85] Long R, Prezhdo O V 2016 Nano Lett. 16 1996Google Scholar
[86] Wang H, Bang J, Sun Y, Liang L, West D, Meunier V, Zhang S B 2016 Nat. Commun. 7 11504Google Scholar
[87] Ji Z, Hong H, Zhang J, Zhang Q, Huang W, Cao T, Qiao R, Liu C, Liang J, Jin C, Jiao L, Shi K, Meng S, Liu K H 2017 ACS Nano 11 12020Google Scholar
[88] Liu J, Zhang X, Lu G 2020 Nano Lett. 20 4631Google Scholar
[89] Hurum D C, Agrios A G, Gray K A, Rajh T, Thurnauer M C 2003 J. Phys. Chem. B 107 4545Google Scholar
[90] Scanlon D O, Dunnill C W, Buckeridge J, Shevlin S A, Logsdail A J, Woodley S M, Catlow C R A, Powell M J, Palgrave R G, Parkin I P, Watson G W, Keal T W, Sherwood P, Walsh A, Sokol A A 2013 Nat. Mater. 12 798Google Scholar
[91] Mi Y, Weng Y 2015 Sci. Rep. 5 11482Google Scholar
[92] Wu S Q, Ji M, Wang C Z, Nguyen M C, Zhao X, Umemoto K, Wentzcovitch R M, Ho K M 2013 J. Phys. Condens. Matter 26 035402Google Scholar
[93] Wang Y, Shi Y, Zhao C, Zheng Q, Zhao J 2019 Phys. Rev. B 99 165309Google Scholar
[94] Shockley W, Read W T 1952 Phys. Rev. 87 835Google Scholar
[95] Zhang L, Zheng Q, Xie Y, Lan Z, Prezhdo O V, Saidi W A, Zhao J 2018 Nano Lett. 18 1592Google Scholar
[96] Gai Y, Li J, Li S S, Xia J B, Wei S H 2009 Phys. Rev. Lett. 102 036402Google Scholar
[97] Zhang L, Chu W, Zheng Q, Benderskii A V, Prezhdo O V, Zhao J 2019 J. Phys. Chem. Lett. 10 6151Google Scholar
[98] Zhang L, Vasenko A S, Zhao J, Prezhdo O V 2019 J. Phys. Chem. Lett. 10 1083Google Scholar
[99] Long R, Fang W, Akimov A V 2016 J. Phys. Chem. Lett. 7 653Google Scholar
[100] Guo H, Chu W, Zheng Q, Zhao J 2020 J. Phys. Chem. Lett. 11 4662Google Scholar
[101] Wang H, Wang X, Xia F, Wang L, Jiang H, Xia Q, Chin M L, Dubey M, Han S J 2014 Nano Lett. 14 6424Google Scholar
[102] Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar
[103] Buscema M, Groenendijk D J, Steele G A, van der Zant H S J, Castellanos-Gomez A 2014 Nat. Commun. 5 4651Google Scholar
[104] Zhu X, Zhang T, Sun Z, Chen H, Guan J, Chen X, Ji H, Du P, Yang S 2017 Adv. Mater. 29 1605776Google Scholar
[105] Cai X, Mao L, Yang S, Han K, Zhang J 2018 ACS Energy Lett. 3 932Google Scholar
[106] Samuel R E 2014 Nature 506 19Google Scholar
[107] Zhang Z, Li L, Horng J, Wang N Z, Yang F, Yu Y, Zhang Y, Chen G, Watanabe K, Taniguchi T, Chen X H, Wang F, Zhang Y 2017 Nano Lett. 17 6097Google Scholar
[108] Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B, Li C, Han S J, Wang H, Xia Q, Ma T P, Mueller T, Xia F 2016 Nano Lett. 16 4648Google Scholar
[109] Liu Z, Aydin K 2016 Nano Lett. 16 3457Google Scholar
[110] Seok S I, Grätzel M, Park N G 2018 Small 14 1704177Google Scholar
[111] Chu W, Zheng Q, Prezhdo O V, Zhao J, Saidi W A 2020 Sci. Adv. 6 eaaw7453Google Scholar
[112] Tvingstedt K, Malinkiewicz O, Baumann A, Deibel C, Snaith H J, Dyakonov V, Bolink H J 2014 Sci. Rep. 4 6071Google Scholar
[113] Ball J M, Petrozza A 2016 Nat. Energy 1 16149Google Scholar
[114] Tress W, Marinova N, Inganäs O, Nazeeruddin M K, Zakeeruddin S M, Graetzel M 2015 Adv. Energy Mater. 5 1400812Google Scholar
[115] Nie Z, Shi Y, Qin S, Wang Y, Jiang H, Zheng Q, Cui Y, Meng Y, Song F, Wang X, Turcu I C E, Wang X, Xu Y, Shi Y, Zhao J, Zhang R, Wang F Q 2019 Commun. Phys. 2 103Google Scholar
[116] Zhao C, Zheng Q, Wu J, Zhao J 2017 Phys. Rev. B 96 134308Google Scholar
[117] Shishkin M, Kresse G 2006 Phys. Rev. B 74 035101Google Scholar
[118] Shishkin M, Marsman M, Kresse G 2007 Phys. Rev. Lett. 99 246403Google Scholar
[119] Shishkin M, Kresse G 2007 Phys. Rev. B 75 235102Google Scholar
[120] Fuchs F, Furthmüller J, Bechstedt F, Shishkin M, Kresse G 2007 Phys. Rev. B 76 115109Google Scholar
[121] Hybertsen M S, Louie S G 1986 Phys. Rev. B 34 5390Google Scholar
[122] Rohlfing M, Louie S G 2000 Phys. Rev. B 62 4927Google Scholar
[123] Deslippe J, Samsonidze G, Strubbe D A, Jain M, Cohen M L, Louie S G 2012 Comput. Phys. Commun. 183 1269Google Scholar
[124] Marini A, Hogan C, Grüning M, Varsano D 2009 Comput. Phys. Commun. 180 1392Google Scholar
[125] Sangalli D, Ferretti A, Miranda H, Attaccalite C, Marri I, Cannuccia E, Melo P, Marsili M, Paleari F, Marrazzo A, Prandini G, Bonfà P, Atambo M O, Affinito F, Palummo M, Molina-Sánchez A, Hogan C, Grüning M, Varsano D, Marini A 2019 J. Phys. Condens. Matter 31 325902Google Scholar
[126] Jiang X, Zheng Q, Lan Z, Saidi W A, Ren X, Zhao J 2021 Sci. Adv. 7 eabf3759Google Scholar
[127] Yu T, Wu M W 2014 Phys. Rev. B 89 205303Google Scholar
[128] Molina-Sánchez A, Sangalli D, Wirtz L, Marini A 2017 Nano Lett. 17 4549Google Scholar
[129] Carvalho B R, Wang Y, Mignuzzi S, Roy D, Terrones M, Fantini C, Crespi V H, Malard L M, Pimenta M A 2017 Nat. Commun. 8 14670Google Scholar
[130] Miller B, Lindlau J, Bommert M, Neumann A, Yamaguchi H, Holleitner A, Högele A, Wurstbauer U 2019 Nat. Commun. 10 807Google Scholar
[131] Mai C, Barrette A, Yu Y, Semenov Y G, Kim K W, Cao L, Gundogdu K 2014 Nano Lett. 14 202Google Scholar
[132] Lagarde D, Bouet L, Marie X, Zhu C R, Liu B L, Amand T, Tan P H, Urbaszek B 2014 Phys. Rev. Lett. 112 047401Google Scholar
[133] Bertoni R, Nicholson C W, Waldecker L, Hübener H, Monney C, De Giovannini U, Puppin M, Hoesch M, Springate E, Chapman R T, Cacho C, Wolf M, Rubio A, Ernstorfer R 2016 Phys. Rev. Lett. 117 277201Google Scholar
[134] Liu F, Li Q, Zhu X Y 2020 Phys. Rev. B 101 201405Google Scholar
[135] Li W, Zhou L, Prezhdo O V, Akimov A V 2018 ACS Energy Lett. 3 2159Google Scholar
[136] Pradhan E, Sato K, Akimov A V 2018 J. Phys. Condens. Matter 30 484002Google Scholar
-
图 2 (a) 单层CH3OH在TiO2表面的三种不同吸附结构; (b) 空穴捕获过程; (c) 空穴释放过程; (d) 空穴能量弛豫过程(图片经文献[47]允许转载, 版权归2016 American Chemical Society所有)
Fig. 2. (a) Three types of adsorption stuctures; (b) averaged forward hole transfer; (c) averaged reverse hole transfer; (d) time dependence of energy relaxation of photogenerated holes (Reprinted with permission from Ref. [47]. Copyright 2016 American Chemical Society)
图 3 TiO2表面CO2光还原示意图[56] (a) 吸附在氧空位的CO2被光激发形成“瞬态”
$ {{\rm{C}}{\rm{O}}}_{2}^{\cdot -} $ ; (b) “瞬态”$ {{\rm{C}}{\rm{O}}}_{2}^{\cdot -} $ 激发弯曲模式和非对称拉伸模式声子, LUMO能量下降至CBM以下, 并捕获热电子, 形成稳定的$ {{\rm{C}}{\rm{O}}}_{2}^{\cdot -} $ ; (c) 捕获热电子之后的$ {{\rm{C}}{\rm{O}}}_{2}^{\cdot -} $ 解离形成CO; (d) CO2分子吸附在TiO2(110)表面氧缺陷和Ti5C位置的结构示意图(图片经文献[56]允许转载, 版权归2016 American Chemical Society所有)Fig. 3. Photo-reduction diagram of CO2 on TiO2 surface: (a) Photo excitation generates a transient
$ {{\rm{C}}{\rm{O}}}_{2}^{\cdot -} $ ; (b) transient$ {{\rm{C}}{\rm{O}}}_{2}^{\cdot -} $ excites the bending and antisymmetric stretching vibrations, which induce LUMO reduce to CBM, hot electron trapped by CO2 and form a new$ {{\rm{C}}{\rm{O}}}_{2}^{\cdot -} $ ; (c)$ {{\rm{C}}{\rm{O}}}_{2}^{\cdot -} $ dissociates in Ov; (d) geometry structure of CO2 trapped on TiO2 (110) surface (Reprinted with permission from Ref. [56]. Copyright 2016 American Chemical Society)图 4 (a) H2O分子吸附在p型LAO/STO异质结表面的结构图; (b) 湿电子态的轨道空间分布图; (c) LAO, STO和H2O的分层电子态密度, 分别用绿色, 蓝色, 和红色表示; (d) H2O/LAO/STO的能带结构, 其中湿电子态的能带用红色三角形标记; (e) 最低湿电子态能量和CBM能量随LAO层厚的变化情况. 在图 (c)—(e) 中, 能量零点为费米能(图片经文献[65]允许转载, 版权归2018 American Chemical Society所有)
Fig. 4. (a) Geometric structure of H2O adsorbed on p-type LAO/STO heterostructure. (b) Spatial orbital distribution of the solvated state in H2O layer. (c) Layer-resolved DOS for every LAO, STO, and H2O layer, represented by green, blue, and red. (d) Band structure of one ML H2O adsorbed on p-type LAO/STO. The solvated electron band is marked by red triangles. (e) Dependence of solvated electron band minimum and CBM energies on LAO thickness. The energy of VBM is set as the reference in panels (c)–(e) (Reprinted with permission from Reference 65. Copyright 2018 American Chemical Society)
图 6 (a) MoS2/WS2形成第二类能带匹配示意图; (b) MoS2/WS2异质结界面能带图(图片经文献[81]允许转载, 版权归2017 American Chemical Society所有)
Fig. 6. (a) Schematic of the photoexcitation and hole transfer in a MoS2/WS2 heterostructure; (b) band structures of the MoS2/WS2 heterostructure (Reprinted with permission from Ref. [81]. Copyright 2017 American Chemical Society)
图 7 C7堆积或T堆积结构布里渊区Γ点((a), (b), (e), (f))和K点((c), (d), (g), (h))空穴的空间分布随时间变化曲线, 温度分别为300和100 K. 插图给出了空穴在动量空间的演化过程(图片经文献[81]允许转载, 版权归2017 American Chemical Society所有)
Fig. 7. Time-dependent spatial hole localization at the K and Γ points for the C7 and T stackings at 300 K (K point ((a), (b)), Γ point ((c), (d))] and 100 K (K point ((e), (f)), Γ point ((g), (h))]. The major hole relaxation routes in momentum space are schematically shown in the insets (Reprinted with permission from Ref. [81]. Copyright 2017 American Chemical Society)
图 8 MoSe2/WSe2和MoS2/WS2异质结光激发电子非绝热分子动力学模拟结果[82] (a)—(c) MoSe2/WSe2异质结光激发电子的转移过程, 能量变化和动量弛豫路径; (d)—(f) MoS2/WS2异质结光激发电子的转移过程, 能量变化和动量弛豫路径(图片经文献[82]允许转载, 版权归2018 American Physical Society所有)
Fig. 8. Nonadiabatic molecular dynamics results: (a)–(c) Time-dependent electron spatial localization, energy evolution and relaxation in the momentum space of the MoSe2/WSe2 heterostructure; (d)–(f) time-dependent electron spatial localization, energy evolution and relaxation in the momentum space of the MoS2/WS2 heterostructure (Reprinted with permission from Ref. [82]. Copyright 2018 American Physical Society)
图 9 外加不同应力的情况下MoS2/WS2异质结中的电荷转移 (a)—(c) 电子空穴转移动力学; (d)—(f) 和动量空间转移路径(图片经文献[83]允许转载, 版权归2020 American Chemical Society所有)
Fig. 9. Charge transfer dynamics in the MoS2/WS2 heterostructure under different tensile strain: (a)–(c) Time-dependent electron and hole spatial localization; (d)–(f) charge transfer in the momentum space (Reprinted with permission from Ref. [83]. Copyright 2020 American Chemical Society)
图 10 Zigzag和Armchair横向异质结在100和300 K下(a)—(d)激发态电子空间分布随时间的演化以及(e)—(h)对应的平均能量随时间的演化, 能量零点取平均的VBM值(图片经文献[84]允许转载, 版权归2019 IOP Publishing Ltd所有)
Fig. 10. Nonadiabatic dynamics of excited elctron in the Zigzag and Armchair MoS2/WS2 at 100 K and 300 K, respectively: (a)–(d) Time-dependent spatial localization; (e)–(h) average energy evolution. The energy of the averaged VBM is set as the reference (Reprinted with permission from Ref. [84]. Copyright 2019 IOP Publishing Ltd)
图 11 无缺陷A/R异质结中的时间分辨电荷转移动力学过程 (a)电子态的能量随时间演化图, 红色和蓝色线分别代表Anatase和Rutile贡献的电子态; (b), (c) 激发态电子和空穴的能量随着时间的演化图, 颜色条表明电子和空穴在不同态上的分布情况; (d)—(i) 电子和空穴分别投影到Anatase、界面和Rutile区域上的空间分布随时间的演化曲线. 能量零点为VBM的平均能量(图片经文献[93]允许转载, 版权归2018 American Chemical Society所有)
Fig. 11. Time-dependent charge-transfer dynamics in stoichiometric A/R mixed-phase structure: (a) Time-dependent energy states evolution. The red and blue lines represent the states’ contribution by anatase and rutile, respectively. (b), (c) Time-dependent energy change of excited electron and hole. The color strips indicate the electron/hole distribution on different energy states and the dashed line represents the averaged electron/hole energy. (d)–(i) Time-dependent electron and hole localization projected onto the anatase, interface, and rutile regions, represented by red, olive, and blue, respectively. The energy of the averaged VBM is set as the reference in panels (a)–(c) (Reprinted with permission from Ref. [93]. Copyright 2018 American Chemical Society)
图 12 有氧空位A/R异质结的电荷转移动力学过程 (a) 电子态的能量随时间演化图, 红色和蓝色线分别代表Anatase和Rutile贡献的电子态; (b), (c) 激发态电子和空穴的能量随时间的演化图, 颜色条表明电子和空穴在不同态上的分布情况; (d)—(i) 电子和空穴分别投影到Anatase、界面和Rutile区域上的空间分布随时间的演化曲线. 体系VBM的平均能量作为能量零点(图片经文献[93]允许转载, 版权归2018 American Chemical Society所有)
Fig. 12. Time-dependent charge-transfer dynamics in defective A/R mixed-phase structure: (a) Time-dependent energy states evolution. The red and blue lines represent the states’ contribution by anatase and rutile, respectively. (b), (c) Time-dependent energy change of excited electron and hole. The color strips indicate the electron/hole distribution on different energy states and the dashed line represents the averaged electron/hole energy. (d)–(i) Time-dependent electron and hole localization projected onto the anatase, interface, and rutile regions, represented by red, olive, and blue, respectively. The energy of the averaged VBM is set as the reference in panels (a)–(c) (Reprinted with permission from Ref. [93]. Copyright 2018 American Chemical Society)
图 13 不同掺杂方案的TiO2体系的电子结构和含时演化的电子/空穴复合动力学过程以及非绝热耦合值, 包括: 干净的TiO2、Cr-N掺杂和V-N掺杂的TiO2体系 (a)—(c) 体系的总态密度及杂质原子的分态密度分布. (d)—(f) 体系在300 和100 K温度下e-h复合的含时演化. 颜色条表示电子/空穴弛豫到不同能态上的分布, 虚线表示电子/空穴的平均能量值. 图中的能级都是以平均的VBM能量为零点. (g)—(i) 相关能级之间的NAC (图片经文献[95]允许转载, 版权归2018 American Chemical Society所有)
Fig. 13. Electronic structures and the time-dependent electron/hole (e/h) dynamics in undoped, Cr–N- and V–N-doped TiO2: (a)–(c) The total and partial DOS. (d)–(f) The averaged time-dependent e/h energy relaxation at 300 K. The color strip indicates the e/h distribution on different energy states, and the dashed line represents the averaged e/h energy. The energy reference is the average VBM energy. (g)–(i) The averaged NAC elements in undoped and Cr–N- and V–N-doped TiO2 at 300 K. The inset in panel b shows the spatial distribution of the excess charge induced by Cr–N codoping, in which the Ti, O, Cr, and N atoms are marked by large light blue, small red, large deep blue, and small purple balls, respectively (Reprinted with permission from Ref. [95]. Copyright 2018 American Chemical Society)
图 14 通过激发单一声子模式来研究e-h复合动力学 (a), (b) 激发Cr-N掺杂TiO2中的杂质声子模式; (c), (d) 激发Cr-N掺杂TiO2中的体相声子模式; (e), (f) 激发V-N掺杂TiO2体系中的杂质声子模式. 图中的能量零点为平均的VBM. (a), (c), (e) 中的颜色条表示的是能级轨道分布的投影(黑色代表投影到TiO2上的权重, 黄色代表投影到杂质原子上的权重). (b), (d), (f) 中的颜色条代表含时演化过程中电子/空穴弛豫到不同能级上的分布(图片经文献[95]允许转载, 版权归2018 American Chemical Society所有)
Fig. 14. Frozen phonon NAMD results for time evolutions of the energy states near VBM and CBM and the averaged time-dependent e/h energy relaxation for Cr–N- and V–N-co-doped TiO2: (a), (b) IPM for Cr–N-doped TiO2; (c), (d) A single bulk mode for Cr–N-doped TiO2; (e), (f) IPM for V–N-doped TiO2. The energy reference is the average VBM energy. The color map in (a) indicates the orbital localization (black on TiO2 and yellow on dopant). The color map in (b) indicates the e/h distribution on different energy states (Reprinted with permission from Ref. [95]. Copyright 2018 American Chemical Society)
图 15 不同掺杂元素的TiO2体系的e-h复合时间与杂质声子局域度的关系[95]. 虚线表示拟合得到的指数曲线(图片经文献[95]允许转载, 版权归2018 American Chemical Society所有)
Fig. 15. e-h recombination time in different doped TiO2. The fitting exponential correlation is shown with dashed lines (Reprinted with permission from Ref. [95]. Copyright 2018 American Chemical Society)
图 16 (a) 纯净的BP单层, (b) Pv, (c) Pint和(d) Pad缺陷体系中e-h复合动力学过程. 初始态对应的是VBM上占据一个空穴. VBM, CBM以及缺陷态的空穴占据数分别用黑色、蓝色和红色线条表示. (c) 图中的小插图表示的是在Pini体系中空穴在VBM和缺陷态之间迅速达到一个平衡, 这是由于两个能态之间几乎简并的原因(图片经文献[97]允许转载, 版权归2019 American Chemical Society所有)
Fig. 16. e–h recombination dynamics in (a) pristine BP monolayer, (b) Pv, (c) Pint, and (d) Pad systems. The initial state corresponds to the electron excitation from the VBM to the CBM. Populations of the excited, ground, and defect states are shown by the black, blue, and red lines, respectively. The inset in panel (c) demonstrates fast hole equilibration between the VBM and the defect state attributed to the near-degeneracy between them (Reprinted with permission from Ref. [97]. Copyright 2019 American Chemical Society)
图 17 (a) 纯净的BP单层, (b) Pv, (c) Pint和(d) Pad缺陷体系中VBM, CBM及缺陷态之间能级差含时振荡的FT变换(图片经文献[97]允许转载, 版权归2019 American Chemical Society所有)
Fig. 17. FT phonon-induced fluctuations of the energy gaps between the VBM, the CBM, and the defect states for (a) pristine BP monolayer, (b) Pv, (c) Pint, and (d) Pad systems (Reprinted with permission from Ref. [97]. Copyright 2019 American Chemical Society)
图 18 五种缺陷构型和无缺陷构型的能态态密度以及对应的晶胞结构. 能量零点为费米能, 圆圈表示缺陷的位置(图片经文献[102]允许转载, 版权归2020 American Association for the Advancement of Science所有)
Fig. 18. Atom-projected DOS for different defective and pristine MAPbI3. ((a)–(f)) Defective and Pristine systems of MAPbI3. The energy reference is located at the Fermi level. Inset shows corresponding atomic structure, with blue circle indicating the defect location (Reprinted with permission from Ref. [102]. Copyright 2020 American Association for the Advancement of Science)
图 19 不同构型的MAPbI3中e-h复合过程 (a) e-h直接复合和通过缺陷能级的间接复合过程示意图; (b) 2 ns后不同构型的e-h复合率, 蓝色和绿色彩条分别表示直接和间接复合; (c) 直接复合过程中复合率随时间的变化; (d) 间接复合过程中复合率随时间的变化(图片经文献[102]允许转载, 版权归2020 American Association for the Advancement of Science所有)
Fig. 19. The e-h recombination process in MAPbI3 systems: (a) Schematic map of the direct and by-defect e-h recombination processes. (b) e-h recombined percentage for different systems after 2 ns. The direct and by-defect e-h recombined percentages are shown by blue and green color bars. (c), (D) Time-dependent e-h recombined percentage for different systems (Reprinted with permission from Ref. [102]. Copyright 2020 American Association for the Advancement of Science)
图 20 不同构型的MAPbI3中VBM, CBM和缺陷态的含时能量振荡的FT谱(图片经文献[102]允许转载, 版权归2020 American Association for the Advancement of Science所有)
Fig. 20. The Fourier transform spectra of the autocorrelation function of the VBM, the CBM, and the defect state energies (Reprinted with permission from Ref. [102]. Copyright 2020 American Association for the Advancement of Science)
图 21 单层MoSe2在不同氧化物衬底上的超快光子动力学 (a) 界面电声耦合示意图; (b) 在不同衬底上单层MoSe2的光生载流子动力学(图片经文献[106]允许转载)
Fig. 21. Ultrafast photocarrier dynamics of monolayer MoSe2 on different oxide substrates: (a) Illustration of interfacial electron–phonon (e–ph) coupling; (b) photocarrier dynamics of monolayer MoSe2 on different substrates (Reprinted with permission from Ref. [106])
图 22 在HfO2, Al2O3和SiO2衬底上单层MoSe2中e-h复合动力学 (a)—(c) 光激发电子在MoSe2上的空间分布随时间的变化; (d)—(i) CBM, VBM附近能级能量随时间的演化及其对应的FT谱, 其中红色箭头标记了主要的声子模式和对应的波数, 黑色区域和粉红色区域分别代表体系声子的总态密度以及在MoSe2上的投影(图片经文献[106]允许转载)
Fig. 22. The nonadiabatic molecular dynamics of e–h recombination in monolayers MoSe2 on HfO2, Al2O3 and SiO2 substrates: (a)–(c) Time-dependent electron localization on CBM of MoSe2; (d)–(i) Time evolutions of the energy states and their corresponding FT spectra, where red arrows have marked main phonon modes and its corresponding wavenumbers. The whole phonon DOS of the MoSe2-oxide substrate systems (black area) and the projection from MoSe2 (pink area) are also plotted in panels (g)–(i) (Reprinted with permission from Ref. [106])
图 23 (a) Cu掺杂单层MoS2体系自旋极化的能带结构和投影态密度; (b) Cu掺杂单层MoS2的杂质态轨道空间分布. 图(a)中的箭头显示了自旋极化的空穴在杂质态之间进行弛豫的过程(图片经文献[107]允许转载, 版权归2017 American Physical Society所有)
Fig. 23. (a) Spin-polarized band structure and the projected density of states; (b) orbital spatial distribution of the Cu doped MoS2. The process of spin hole relaxation within the impurity states is indicated by the arrow in panel (a) (Reprinted with permission from Ref. [107]. Copyright 2017 American Physical Society)
图 24 在100和50 K的不同温度下, 杂质态本征能量的含时演化 ((a), (c))及其自关联函数的FT谱((b), (d)), 以及每一个声子本征振动模式的空间局域度分别在Cu杂质原子和MoS2上的投影 ((e), (f))(图片经文献[107]允许转载, 版权归2017 American Physical Society所有)
Fig. 24. (a), (c) Time-dependent evolution of the energy of the impurity states; (b), (d) FT spectra to the autocorrelation function of the energy evolutionat 100 and 50 K, respectively; (e), (f) spatial localization of each normal phonon mode projected on the Cu impurity and MoS2 host, respectively (Reprinted with permission from Ref. [107]. Copyright 2017 American Physical Society)
图 25 50和100 K环境温度下的光激发自旋极化空穴的动力学. 图 (a), (c) 和 (b), (d) 分别是空穴的初始激发在杂质态1和杂质态2上的情况. 每个图的上半部分所示为空穴的平均能量以及空穴在每一个杂质态上的布居数; 下半部分所示为能量弛豫过程中的AD和NA过程分别做的贡献(图片经文献[107]允许转载, 版权归2017 American Physical Society所有)
Fig. 25. Dynamics of a photogenerated hole at 50 and 100 K, respectively. The averaged energy of the hole and the population on each impurity state are shown in the upper panel, and the AD and NA contributions to the energy relaxation are shown in the lower panel with the initial state specified at the impurity state 1 ((a), (c)) and 2 ((b), (d)) (Reprinted with permission from Ref. [107]. Copyright 2017 American Physical Society)
图 27 MoS2自旋谷激子动力学示意图 (a) MoS2的六个自旋谷; (b)不同的激子弛豫通道; (c)8种能量最低的亮、暗激子(图片经文献[117]允许转载, 版权归2021 American Association for the Advancement of Science所有)
Fig. 27. Schematic showing spin-valley dynamics in TMD systems: (a) Band structure at the band edges near K and K'; (b) intervalley bright exciton transition and bright-to-dark exciton transition processes are shown; (c) e-h pairs involved during the exciton dynamics (Reprinted with permission from Ref. [117]. Copyright 2021 American Association for the Advancement of Science)
图 28 MoS2材料中的含时激子动力学 (a) K谷亮激子X1激发之后, 不同激子态占据数随时间的变化; (b) 没有交换相互作用的情况下, K谷亮激子X1激发之后, 不同激子态占据数随时间的变化; 非绝热耦合矩阵中电子空穴(c)库仑相互作用(W), (d)交换相互作用(v), (e)自旋轨道耦合(SOI)以及(f)电声耦合(e-ph)的贡献(图片经文献[117]允许转载, 版权归2021 American Association for the Advancement of Science所有)
Fig. 28. Dynamics results and nonadiabatic couplings: (a), (b) Time evolution of the population on X1 to X8 (a) with and (b) without the e-h interaction W and v in the NAMD simulation. The time-dependent valley polarization is inserted in panel (a). (c)–(f) Averaged NACs contributed by W, v, SOI, and e-ph, respectively (Reprinted with permission from Ref. [117]. Copyright 2021 American Association for the Advancement of Science)
图 29 材料中激子弛豫的不同通道与物理机制示意图(图片经文献[117]允许转载, 版权归2021 American Association for the Advancement of Science所有)
Fig. 29. Schematic map of the exciton dynamics channels and the correlated mechanisms (Reprinted with permission from Ref. [117]. Copyright 2021 American Association for the Advancement of Science)
-
[1] Ross R T, Nozik A J 1982 J. Appl. Phys. 53 3813Google Scholar
[2] O'Regan B, Grätzel M 1991 Nature 353 737Google Scholar
[3] Nozik A J 2002 Physica E 14 115Google Scholar
[4] Tisdale W A, Williams K J, Timp B A, Norris D J, Aydil E S, Zhu X Y 2010 Science 328 1543Google Scholar
[5] Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664Google Scholar
[6] Rahul, Singh P K, Singh R, Singh V, Bhattacharya B, Khan Z H 2018 Mater. Res. Bull. 97 572Google Scholar
[7] Fujishima A, Honda K 1972 Nature 238 37Google Scholar
[8] Williams F, Nozik A 1984 Nature 312 21Google Scholar
[9] Abuabara S G, Rego L G C, Batista V S 2005 J. Am. Chem. Soc. 127 18234Google Scholar
[10] Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M 2006 J. Am. Chem. Soc. 128 416Google Scholar
[11] Zhu W, Qiu X, Iancu V, Chen X Q, Pan H, Wang W, Dimitrijevic N M, Rajh T, Meyer Ⅲ H M, Paranthaman M P, Stocks G M, Weitering H H, Gu B, Eres G, Zhang Z 2009 Phys. Rev. Lett. 103 226401Google Scholar
[12] Akimov A V, Neukirch A J, Prezhdo O V 2013 Chem. Rev. 113 4496Google Scholar
[13] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar
[14] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[15] Hong X, Kim J, Shi S-F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar
[16] Wang H, Zhang C, Chan W, Tiwari S, Rana F 2015 Nat. Commun. 6 8831Google Scholar
[17] Ju M G, Sun G, Wang J, Meng Q, Liang W 2014 ACS Appl. Mater. Interfaces 6 12885Google Scholar
[18] Born M, Oppenheimer J R 1927 Ann. Phys. 84 457
[19] Crespo-Otero R, Barbatti M 2018 Chem. Rev. 118 7026Google Scholar
[20] Zheng Q, Chu W, Zhao C, Zhang L, Guo H, Wang Y, Jiang X, Zhao J 2019 WIREs Comput. Mol. Sci. 9 e1411Google Scholar
[21] Kuppermann A, Abrol R 2002 Adv. Chem. Phys. 124 283
[22] Worth G A, Cederbaum L S 2004 Annu. Rev. Phys. Chem. 55 127Google Scholar
[23] Li X, Tully J C, Schlegel H B, Frisch M J 2005 J. Chem. Phys. 123 084106Google Scholar
[24] Sawada S-I, Nitzan A, Metiu H 1985 Phys. Rev. B 32 851Google Scholar
[25] Ehrenfest P 1927 Z. Phys. 45 455Google Scholar
[26] Schmidt J R, Parandekar P V, Tully J C 2008 J. Chem. Phys. 129 044104Google Scholar
[27] Space B, Coker D F 1991 J. Chem. Phys. 94 1976Google Scholar
[28] Tully J C 1990 J. Chem. Phys. 93 1061Google Scholar
[29] Tully J C, Preston R K 1971 J. Chem. Phys. 55 562Google Scholar
[30] Meng S, Kaxiras E 2008 J. Chem. Phys. 129 054110Google Scholar
[31] Kolesov G, Granas O, Hoyt R, Vinichenko D, Kaxiras E 2016 J. Chem. Theory Comput. 12 466Google Scholar
[32] Akimov A V, Prezhdo O V 2014 J. Chem. Theory Comput. 10 789Google Scholar
[33] Akimov A V, Prezhdo O V 2013 J. Chem. Theory Comput. 9 4959Google Scholar
[34] Craig C F, Duncan W R, Prezhdo O V 2005 Phys. Rev. Lett. 95 163001Google Scholar
[35] Cui G L, Thiel W 2014 J. Chem. Phys. 141 124101Google Scholar
[36] Zhang X, Li Z, Lu G 2010 Phys. Rev. B 82 205210Google Scholar
[37] Wang Z, Li S S, Wang L W 2015 Phys. Rev. Lett. 114 063004Google Scholar
[38] Wang L, Akimov A, Prezhdo O V 2016 J. Phys. Chem. Lett. 7 2100Google Scholar
[39] Jaeger H M, Fischer S, Prezhdo O V 2012 J. Chem. Phys. 137 22A545Google Scholar
[40] Onishi H, Aruga T, Egawa C, Iwasawa Y 1988 Surf. Sci. 193 33Google Scholar
[41] Zhao J, Li B, Onda K, Feng M, Petek H 2006 Chem. Rev. 106 4402Google Scholar
[42] Zhou C, Ren Z, Tan S, Ma Z, Mao X, Dai D, Fan H, Yang X, LaRue J, Cooper R, Wodtke A M, Wang Z, Li Z, Wang B, Yang J, Hou J 2010 Chem. Sci. 1 575Google Scholar
[43] Wang L Q, Ferris K F, Winokur J P, Shultz A N, Baer D R, Engelhard M H 1998 J. Vac. Sci. Technol., A 16 3034Google Scholar
[44] Petek H, Zhao J 2010 Chem. Rev. 110 7082Google Scholar
[45] Shen M, Henderson M A 2011 J. Phys. Chem. Lett. 2 2707Google Scholar
[46] Henderson M A 2011 Surf. Sci. Rep. 66 185Google Scholar
[47] Chu W, Saidi W A, Zheng Q, Xie Y, Lan Z, Prezhdo O V, Petek H, Zhao J 2016 J. Am. Chem. Soc. 138 13740Google Scholar
[48] Chen Z, Zhang Q, Luo Y 2018 Angew. Chem. Int. Ed. 57 5320Google Scholar
[49] Furukawa H, Yaghi O M 2009 J. Am. Chem. Soc. 131 8875Google Scholar
[50] Sanz-Pérez E S, Murdock C R, Didas S A, Jones C W 2016 Chem. Rev. 116 11840Google Scholar
[51] White J L, Baruch M F, Pander J E, Hu Y, Fortmeyer I C, Park J E, Zhang T, Liao K, Gu J, Yan Y, Shaw T W, Abelev E, Bocarsly A B 2015 Chem. Rev. 115 12888Google Scholar
[52] Gao S, Sun Z, Liu W, Jiao X, Zu X, Hu Q, Sun Y, Yao T, Zhang W, Wei S, Xie Y 2017 Nat. Commun. 8 14503Google Scholar
[53] Montoya J H, Seitz L C, Chakthranont P, Vojvodic A, Jaramillo T F, Nørskov J K 2017 Nat. Mater. 16 70Google Scholar
[54] Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J, Xie Y 2016 Nature 529 68Google Scholar
[55] Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K 2013 Angew. Chem. Int. Ed. 52 7372Google Scholar
[56] Chu W B, Zheng Q J, Prezhdo O V, Zhao J 2020 J. Am. Chem. Soc. 142 3214Google Scholar
[57] Migani A, Mowbray D J, Zhao J, Petek H, Rubio A 2014 J. Chem. Theory Comput. 10 2103Google Scholar
[58] Migani A, Mowbray D J, Iacomino A, Zhao J, Petek H, Rubio A 2013 J. Am. Chem. Soc. 135 11429Google Scholar
[59] Zhao J, Yang J, Petek H 2009 Phys. Rev. B 80 235416Google Scholar
[60] Koitaya T, Nakamura H, Yamashita K 2009 J. Phys. Chem. C 113 7236Google Scholar
[61] Fischer S A, Duncan W R, Prezhdo O V 2009 J. Am. Chem. Soc. 131 15483Google Scholar
[62] Zhao J, Li B, Jordan K D, Yang J, Petek H 2006 Phys. Rev. B 73 195309Google Scholar
[63] Onda K, Li B, Zhao J, Jordan K D, Yang J L, Petek H 2005 Science 308 1154Google Scholar
[64] Li B, Zhao J, Onda K, Jordan K D, Yang J L, Petek H 2006 Science 311 1436Google Scholar
[65] Wang Y, Guo H, Zheng Q, Saidi W A, Zhao J 2018 J. Phys. Chem. Lett. 9 3049Google Scholar
[66] Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar
[67] Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942Google Scholar
[68] Cancellieri C, Fontaine D, Gariglio S, Reyren N, Caviglia A D, Fête A, Leake S J, Pauli S A, Willmott P R, Stengel M, Ghosez P, Triscone J M 2011 Phys. Rev. Lett. 107 056102Google Scholar
[69] Guo H, Zhao C, Zheng Q, Lan Z, Prezhdo O V, Saidi W A, Zhao J 2018 J. Phys. Chem. Lett. 9 3485Google Scholar
[70] Feng M, Zhao J, Petek H 2008 Science 320 359Google Scholar
[71] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar
[72] Ramasubramaniam A 2012 Phys. Rev. B 86 115409Google Scholar
[73] Qiu D Y, da Jornada F H, Louie S G 2013 Phys. Rev. Lett. 111 216805Google Scholar
[74] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111Google Scholar
[75] Cheiwchanchamnangij T, Lambrecht W R L 2012 Phys. Rev. B 85 205302Google Scholar
[76] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887Google Scholar
[77] Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nanotechnol. 7 490Google Scholar
[78] Hao K, Moody G, Wu F, Dass C K, Xu L, Chen C H, Sun L, Li M Y, Li L J, MacDonald A H, Li X 2016 Nat. Phys. 12 677Google Scholar
[79] Kang J, Tongay S, Zhou J, Li J, Wu J 2013 Appl. Phys. Lett. 102 012111Google Scholar
[80] Gong C, Zhang H, Wang W, Colombo L, Wallace R M, Cho K 2013 Appl. Phys. Lett. 103 053513Google Scholar
[81] Zheng Q, Saidi W A, Xie Y, Lan Z, Prezhdo O V, Petek H, Zhao J 2017 Nano Lett. 17 6435Google Scholar
[82] Zheng Q, Xie Y, Lan Z, Prezhdo O V, Saidi W A, Zhao J 2018 Phys. Rev. B 97 205417Google Scholar
[83] Tian Y, Zheng Q, Zhao J 2020 J. Phys. Chem. Lett. 11 586Google Scholar
[84] Zheng Z, Zheng Q, Zhao J 2019 Electron. Struct. 1 034001Google Scholar
[85] Long R, Prezhdo O V 2016 Nano Lett. 16 1996Google Scholar
[86] Wang H, Bang J, Sun Y, Liang L, West D, Meunier V, Zhang S B 2016 Nat. Commun. 7 11504Google Scholar
[87] Ji Z, Hong H, Zhang J, Zhang Q, Huang W, Cao T, Qiao R, Liu C, Liang J, Jin C, Jiao L, Shi K, Meng S, Liu K H 2017 ACS Nano 11 12020Google Scholar
[88] Liu J, Zhang X, Lu G 2020 Nano Lett. 20 4631Google Scholar
[89] Hurum D C, Agrios A G, Gray K A, Rajh T, Thurnauer M C 2003 J. Phys. Chem. B 107 4545Google Scholar
[90] Scanlon D O, Dunnill C W, Buckeridge J, Shevlin S A, Logsdail A J, Woodley S M, Catlow C R A, Powell M J, Palgrave R G, Parkin I P, Watson G W, Keal T W, Sherwood P, Walsh A, Sokol A A 2013 Nat. Mater. 12 798Google Scholar
[91] Mi Y, Weng Y 2015 Sci. Rep. 5 11482Google Scholar
[92] Wu S Q, Ji M, Wang C Z, Nguyen M C, Zhao X, Umemoto K, Wentzcovitch R M, Ho K M 2013 J. Phys. Condens. Matter 26 035402Google Scholar
[93] Wang Y, Shi Y, Zhao C, Zheng Q, Zhao J 2019 Phys. Rev. B 99 165309Google Scholar
[94] Shockley W, Read W T 1952 Phys. Rev. 87 835Google Scholar
[95] Zhang L, Zheng Q, Xie Y, Lan Z, Prezhdo O V, Saidi W A, Zhao J 2018 Nano Lett. 18 1592Google Scholar
[96] Gai Y, Li J, Li S S, Xia J B, Wei S H 2009 Phys. Rev. Lett. 102 036402Google Scholar
[97] Zhang L, Chu W, Zheng Q, Benderskii A V, Prezhdo O V, Zhao J 2019 J. Phys. Chem. Lett. 10 6151Google Scholar
[98] Zhang L, Vasenko A S, Zhao J, Prezhdo O V 2019 J. Phys. Chem. Lett. 10 1083Google Scholar
[99] Long R, Fang W, Akimov A V 2016 J. Phys. Chem. Lett. 7 653Google Scholar
[100] Guo H, Chu W, Zheng Q, Zhao J 2020 J. Phys. Chem. Lett. 11 4662Google Scholar
[101] Wang H, Wang X, Xia F, Wang L, Jiang H, Xia Q, Chin M L, Dubey M, Han S J 2014 Nano Lett. 14 6424Google Scholar
[102] Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar
[103] Buscema M, Groenendijk D J, Steele G A, van der Zant H S J, Castellanos-Gomez A 2014 Nat. Commun. 5 4651Google Scholar
[104] Zhu X, Zhang T, Sun Z, Chen H, Guan J, Chen X, Ji H, Du P, Yang S 2017 Adv. Mater. 29 1605776Google Scholar
[105] Cai X, Mao L, Yang S, Han K, Zhang J 2018 ACS Energy Lett. 3 932Google Scholar
[106] Samuel R E 2014 Nature 506 19Google Scholar
[107] Zhang Z, Li L, Horng J, Wang N Z, Yang F, Yu Y, Zhang Y, Chen G, Watanabe K, Taniguchi T, Chen X H, Wang F, Zhang Y 2017 Nano Lett. 17 6097Google Scholar
[108] Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B, Li C, Han S J, Wang H, Xia Q, Ma T P, Mueller T, Xia F 2016 Nano Lett. 16 4648Google Scholar
[109] Liu Z, Aydin K 2016 Nano Lett. 16 3457Google Scholar
[110] Seok S I, Grätzel M, Park N G 2018 Small 14 1704177Google Scholar
[111] Chu W, Zheng Q, Prezhdo O V, Zhao J, Saidi W A 2020 Sci. Adv. 6 eaaw7453Google Scholar
[112] Tvingstedt K, Malinkiewicz O, Baumann A, Deibel C, Snaith H J, Dyakonov V, Bolink H J 2014 Sci. Rep. 4 6071Google Scholar
[113] Ball J M, Petrozza A 2016 Nat. Energy 1 16149Google Scholar
[114] Tress W, Marinova N, Inganäs O, Nazeeruddin M K, Zakeeruddin S M, Graetzel M 2015 Adv. Energy Mater. 5 1400812Google Scholar
[115] Nie Z, Shi Y, Qin S, Wang Y, Jiang H, Zheng Q, Cui Y, Meng Y, Song F, Wang X, Turcu I C E, Wang X, Xu Y, Shi Y, Zhao J, Zhang R, Wang F Q 2019 Commun. Phys. 2 103Google Scholar
[116] Zhao C, Zheng Q, Wu J, Zhao J 2017 Phys. Rev. B 96 134308Google Scholar
[117] Shishkin M, Kresse G 2006 Phys. Rev. B 74 035101Google Scholar
[118] Shishkin M, Marsman M, Kresse G 2007 Phys. Rev. Lett. 99 246403Google Scholar
[119] Shishkin M, Kresse G 2007 Phys. Rev. B 75 235102Google Scholar
[120] Fuchs F, Furthmüller J, Bechstedt F, Shishkin M, Kresse G 2007 Phys. Rev. B 76 115109Google Scholar
[121] Hybertsen M S, Louie S G 1986 Phys. Rev. B 34 5390Google Scholar
[122] Rohlfing M, Louie S G 2000 Phys. Rev. B 62 4927Google Scholar
[123] Deslippe J, Samsonidze G, Strubbe D A, Jain M, Cohen M L, Louie S G 2012 Comput. Phys. Commun. 183 1269Google Scholar
[124] Marini A, Hogan C, Grüning M, Varsano D 2009 Comput. Phys. Commun. 180 1392Google Scholar
[125] Sangalli D, Ferretti A, Miranda H, Attaccalite C, Marri I, Cannuccia E, Melo P, Marsili M, Paleari F, Marrazzo A, Prandini G, Bonfà P, Atambo M O, Affinito F, Palummo M, Molina-Sánchez A, Hogan C, Grüning M, Varsano D, Marini A 2019 J. Phys. Condens. Matter 31 325902Google Scholar
[126] Jiang X, Zheng Q, Lan Z, Saidi W A, Ren X, Zhao J 2021 Sci. Adv. 7 eabf3759Google Scholar
[127] Yu T, Wu M W 2014 Phys. Rev. B 89 205303Google Scholar
[128] Molina-Sánchez A, Sangalli D, Wirtz L, Marini A 2017 Nano Lett. 17 4549Google Scholar
[129] Carvalho B R, Wang Y, Mignuzzi S, Roy D, Terrones M, Fantini C, Crespi V H, Malard L M, Pimenta M A 2017 Nat. Commun. 8 14670Google Scholar
[130] Miller B, Lindlau J, Bommert M, Neumann A, Yamaguchi H, Holleitner A, Högele A, Wurstbauer U 2019 Nat. Commun. 10 807Google Scholar
[131] Mai C, Barrette A, Yu Y, Semenov Y G, Kim K W, Cao L, Gundogdu K 2014 Nano Lett. 14 202Google Scholar
[132] Lagarde D, Bouet L, Marie X, Zhu C R, Liu B L, Amand T, Tan P H, Urbaszek B 2014 Phys. Rev. Lett. 112 047401Google Scholar
[133] Bertoni R, Nicholson C W, Waldecker L, Hübener H, Monney C, De Giovannini U, Puppin M, Hoesch M, Springate E, Chapman R T, Cacho C, Wolf M, Rubio A, Ernstorfer R 2016 Phys. Rev. Lett. 117 277201Google Scholar
[134] Liu F, Li Q, Zhu X Y 2020 Phys. Rev. B 101 201405Google Scholar
[135] Li W, Zhou L, Prezhdo O V, Akimov A V 2018 ACS Energy Lett. 3 2159Google Scholar
[136] Pradhan E, Sato K, Akimov A V 2018 J. Phys. Condens. Matter 30 484002Google Scholar
计量
- 文章访问数: 20134
- PDF下载量: 1323
- 被引次数: 0