-
通过研究HOCl分子高激发振动态的动力学势, 明确了该体系的动力学特点. 研究表明, 在OCl伸缩模式和HOCl弯曲模式间存在2:1 Fermi共振的动力学模型下, HO伸缩振动模式对于上述两种振动模式的动力学势有显著影响, 且这种影响随Polyad数呈现有规律的变化. 作为定量研究, 还研究了Polyad数为24时该分子体系的动力学势与各能级的相空间轨迹. 分析表明, 相空间轨迹与动力学势中的动力学不动点有很好的对应关系. 此外, 将该Polyad数下的动力学势中的能级按照相空间轨迹的作用量积分进行分类, 明确了这些能级所处的量子环境.The dynamical potentials of highly excited vibrational states of HOCl in the bending and OCl stretching coordinates with anharmonicity and Fermi coupling are studied. The result shows that HO stretching vibration mode has significantly different effects on OCl stretching mode and HOCl bending mode under different polyad numbers. The dynamical potentials and the corresponding phase space trajectories are studied in the case that the polyad number is 24 and it is found that the quantal vibrational energy levels could be classified by the fixed points of dynamical potentials and the quantum environments could be identified by the numerical values of action integrals.
[1] Leu M T 1988 Geophys. Res. Lett. 15 17
[2] Jost R, Joyeux M, Skokov S, Bowman J 1999 J. Chem. Phys. 1116807
[3] Peterson K A, Skokov S, Bowman J M 1999 J. Chem. Phys. 1117446
[4] Joyeux M, Sugny D, Lombardi M, Jost R, Schinke R, Skokov S,Bowman J 2000 J. Chem. Phys. 113 9610
[5] Weiss J, Hauschildt J, Grebenshchikov S Y, Duren R, Schinke R,Koput J, Stamatiadis S, Farantos S C 2000 J. Chem. Phys. 112 77
[6] Joyeux M, Grebenshchikov S Y, Bredenbeck J, Schinke R , FarantosS C 2005 Geometric Structures of Phase Space in MultidimensionalChaos: a special volume of advances in Chemical Physics,part A, 130 chapter 5
[7] Zheng D S, Wu G Z 2002 Acta Phys. Sin. 51 2229 (in Chinese)[郑敦胜, 吴国祯 2002 物理学报 51 2229
[8] Zheng D S, Guo X K 2004 Acta Phys. Sin. 53 3347 (in Chinese)[郑敦胜, 郭锡坤 2004 物理学报 53 3347
[9] Fang C, Wu G Z 2009 J. Mol. Struct.: Theo. Chem. 910 147
[10] Fang C, Wu G Z 2009 Chin. Phys. B 18 0130
[11] Fang C, Wu G Z 2010 Chin. Phys. B 19 010509
[12] Fang C, Wu G Z 2010 Chin. Phys. B 19 110513
[13] Zhang W M , Feng D H , Gilmore, R 1990 Rev. Modern Phys. 62867
[14] Gilmore R 1974 Lie Algebras and Some of Their Applications(New York: Wiley)
[15] Biczysko M, Tarroni R 2002 Phys. Chem. Chem. Phys. 4 708
-
[1] Leu M T 1988 Geophys. Res. Lett. 15 17
[2] Jost R, Joyeux M, Skokov S, Bowman J 1999 J. Chem. Phys. 1116807
[3] Peterson K A, Skokov S, Bowman J M 1999 J. Chem. Phys. 1117446
[4] Joyeux M, Sugny D, Lombardi M, Jost R, Schinke R, Skokov S,Bowman J 2000 J. Chem. Phys. 113 9610
[5] Weiss J, Hauschildt J, Grebenshchikov S Y, Duren R, Schinke R,Koput J, Stamatiadis S, Farantos S C 2000 J. Chem. Phys. 112 77
[6] Joyeux M, Grebenshchikov S Y, Bredenbeck J, Schinke R , FarantosS C 2005 Geometric Structures of Phase Space in MultidimensionalChaos: a special volume of advances in Chemical Physics,part A, 130 chapter 5
[7] Zheng D S, Wu G Z 2002 Acta Phys. Sin. 51 2229 (in Chinese)[郑敦胜, 吴国祯 2002 物理学报 51 2229
[8] Zheng D S, Guo X K 2004 Acta Phys. Sin. 53 3347 (in Chinese)[郑敦胜, 郭锡坤 2004 物理学报 53 3347
[9] Fang C, Wu G Z 2009 J. Mol. Struct.: Theo. Chem. 910 147
[10] Fang C, Wu G Z 2009 Chin. Phys. B 18 0130
[11] Fang C, Wu G Z 2010 Chin. Phys. B 19 010509
[12] Fang C, Wu G Z 2010 Chin. Phys. B 19 110513
[13] Zhang W M , Feng D H , Gilmore, R 1990 Rev. Modern Phys. 62867
[14] Gilmore R 1974 Lie Algebras and Some of Their Applications(New York: Wiley)
[15] Biczysko M, Tarroni R 2002 Phys. Chem. Chem. Phys. 4 708
计量
- 文章访问数: 6593
- PDF下载量: 434
- 被引次数: 0