搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蘑菇型结构的双入射超宽带复合媒质材料设计与分析

张洪欣 李姗 张金玲 刘雯 吕英华

引用本文:
Citation:

基于蘑菇型结构的双入射超宽带复合媒质材料设计与分析

张洪欣, 李姗, 张金玲, 刘雯, 吕英华

Design and analysis of double incidence metamaterials composed of mushroom-shaped structure

Zhang Hong-Xin, Li Shan, Zhang Jin-Ling, Liu Wen, Lü Ying-Hua
PDF
导出引用
  • 通过设计一定的单元结构, 可以实现超宽带人工电磁材料. 基于蘑菇型金属结构, 提出了一种同时具有左右手通带无缝结合的超宽带双入射型复合媒质材料结构单元. 该结构由嵌入到介质板的两个反向对称的蘑菇型金属结构组成, 能够同时引发电谐振和磁谐振而得到左手通带. 通过利用CST软件仿真、等效电磁参数提取、折射率计算以及建立等效磁谐振电路模型等方法, 分析验证了该结构的双入射特性和左手特性. 仿真结果表明, 在电磁波垂直于介质板和平行于介质板入射两种情况下, 在X波段均表现出左手通带特性, 并具有1 GHz以上的左手带宽. 当电磁波垂直于介质板入射时, 在7.2 GHz9.3 GHz频段为右手通带, 在9.3 GHz11 GHz频段为左手通带; 当电磁波平行于介质板入射时, 在7.0 GHz9.0 GHz频段为右手通带, 在9.0 GHz10 GHz频段为左手通带. 在两种情况下分别于9.3 GHz与9.0 GHz处得到了零折射率, 从而构造了一种正-零-负复合媒质材料, 实现了具有3 GHz带宽的双入射超宽带平衡结构.
    An ultra-wide band metamaterial may be achieved via the design of some structures. A metamaterial unit supporting two-dimensional (2D) incident electromagnetic (EM) wave is proposed based on the mushroom type-structures, which has an ultra-wide band with seamlessly combined band of right-handed and left-handed pass-bands. This unit is designed by setting two reverse symmetrical mushroom-shaped strips on each side of the dielectric substrate respectively, and the electric resonance and the magnetic resonance could be excited simultaneously. With CST software, the right-handed and left-handed properties are analyzed and verified by means of spectrum analysis, effective parameters of permittivity, permeability and index of refraction extracted from S parameters, and equivalent magnetic resonance circuits. The results show that the structure can present left-handed properties with 1 GHz left-handed pass-band in X waveband, either EM wave is incident in the direction perpendicular or parallel to the plane of the substrate. When the EM wave is incident in the direction perpendicular to the substrate, the right-handed and the left-handed pass-bands appear at 7.2 GHz9.3 GHz and 9.3 GHz11 GHz respectively; while when the EM wave is incident in the direction parallel to the substrate, the right-handed and the left-handed pass-bands appear at 7.0 GH9.0 GHz and 9.0 GHz10 GHz respectively. It also shows that the zero indexes of refraction occur at 9.3 GHz and 9.0 GHz in the tow instances above. So that a plus-zero-negative metamaterial is constructed and a 2D incident balanced-structure with an ultra-wide band of 3 GHz is achieved.
    • 基金项目: 国家自然科学基金 (批准号: 60871081, 61072136)、北京市自然科学基金(批准号: 4112039)和 北京邮电大学大学生创新计划基金(2010)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60871081, 61072136), the Natural Science Foundation of Beijing, China (Grant No. 4112039) and Research Innovation Fund for College Students of Beijing University of Posts and Telecommunications (2010).
    [1]

    Veselago V G 1968 Sov. Phys . Usp. 10 509

    [2]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev.Lett. 76 4773

    [3]

    Smith D R, Vier D C, Padilla W J 1999 Appl. Phys. Lett. 75 1425

    [4]

    Shi H Y, Jiang Y Y, Sun X D, Guo R H, Zhao Y P 2005 Chin.Phys. 14 1571

    [5]

    Jiang T, Chen Y, Feng Y J 2006 Chin. Phys. 15 1154

    [6]

    Zhang H X, Bao Y F, Lu Y H, Chen T M, Wang H X 2008 Chin.Phys. B 17 164

    [7]

    Zhuo S C, Yan C C 2010 Acta Phys. Sin. 59 360 (in Chinese) [卓士创, 闫长春 2010 物理学报 59 360]

    [8]

    Zang H X, Zhao L, Lu Y H 2009 J. Nonlinear Opt. Phys. Mater.18 441

    [9]

    Zang H X, Zhao L, Lu Y H 2010 Chin. J. Phys. 48 103

    [10]

    Sulaiman A A, Nasaruddin A S, Jusoh M 2010 Eur. J. Sci. Res.44 493

    [11]

    Grzegorczyk T M, Moss C D, Lu Jie, Chen X D, Pacheco Jr J,Kong J A 2005 IEEE Trans. Microwave Theory Tech. 53 2956

    [12]

    Chen H S, Ran L X, Huangfu J T, Zhang X M, Chen K S 2004Phys. Rev. E 70 057605

    [13]

    Ran L, Huangfu J, Chen H, Li Y, Zhang X, Chen K, Kong J A2004 Phys. Rev. B 70 073102

    [14]

    Liu Y H, Luo C R, Zhao X P 2007 Acta Phys. Sin. 56 5883 (inChinese) [刘亚红, 罗春荣, 赵晓鹏 2007 物理学报 56 5883]

    [15]

    Zhou J F, Zhang L, Tuttle G, Koschny T, Soukoulis C M 2006Phys. Rev. B 73 041101

    [16]

    Zhang S, Qu S B, Ma H, Xie F, Xu Z 2009 Acta Phys. Sin. 583961 (in Chinese) [张松, 屈绍波, 马华, 谢峰, 徐卓 2009 物理学报 58 3961]

    [17]

    Mary A, Rodrigo S G, Garcia-Vidal F J, Martin-Moreno L 2008Phys. Rev. Lett. 101 103902

    [18]

    Menzel C, Paul T, Rockstuhl C, Pertsch T, Tretyakov S, Lederer F2010 Phys. Rev. B 81 035320

    [19]

    Wang H X, Lü Y H, Zhang H X 2011 Acta Phys. Sin. 60 034101(in Chinese) [王海侠, 吕英华, 张洪欣 2011 物理学报 60 034101]

    [20]

    Ziolkowski R W 2003 IEEE Trans. Ante. Prop. 51 1516

  • [1]

    Veselago V G 1968 Sov. Phys . Usp. 10 509

    [2]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev.Lett. 76 4773

    [3]

    Smith D R, Vier D C, Padilla W J 1999 Appl. Phys. Lett. 75 1425

    [4]

    Shi H Y, Jiang Y Y, Sun X D, Guo R H, Zhao Y P 2005 Chin.Phys. 14 1571

    [5]

    Jiang T, Chen Y, Feng Y J 2006 Chin. Phys. 15 1154

    [6]

    Zhang H X, Bao Y F, Lu Y H, Chen T M, Wang H X 2008 Chin.Phys. B 17 164

    [7]

    Zhuo S C, Yan C C 2010 Acta Phys. Sin. 59 360 (in Chinese) [卓士创, 闫长春 2010 物理学报 59 360]

    [8]

    Zang H X, Zhao L, Lu Y H 2009 J. Nonlinear Opt. Phys. Mater.18 441

    [9]

    Zang H X, Zhao L, Lu Y H 2010 Chin. J. Phys. 48 103

    [10]

    Sulaiman A A, Nasaruddin A S, Jusoh M 2010 Eur. J. Sci. Res.44 493

    [11]

    Grzegorczyk T M, Moss C D, Lu Jie, Chen X D, Pacheco Jr J,Kong J A 2005 IEEE Trans. Microwave Theory Tech. 53 2956

    [12]

    Chen H S, Ran L X, Huangfu J T, Zhang X M, Chen K S 2004Phys. Rev. E 70 057605

    [13]

    Ran L, Huangfu J, Chen H, Li Y, Zhang X, Chen K, Kong J A2004 Phys. Rev. B 70 073102

    [14]

    Liu Y H, Luo C R, Zhao X P 2007 Acta Phys. Sin. 56 5883 (inChinese) [刘亚红, 罗春荣, 赵晓鹏 2007 物理学报 56 5883]

    [15]

    Zhou J F, Zhang L, Tuttle G, Koschny T, Soukoulis C M 2006Phys. Rev. B 73 041101

    [16]

    Zhang S, Qu S B, Ma H, Xie F, Xu Z 2009 Acta Phys. Sin. 583961 (in Chinese) [张松, 屈绍波, 马华, 谢峰, 徐卓 2009 物理学报 58 3961]

    [17]

    Mary A, Rodrigo S G, Garcia-Vidal F J, Martin-Moreno L 2008Phys. Rev. Lett. 101 103902

    [18]

    Menzel C, Paul T, Rockstuhl C, Pertsch T, Tretyakov S, Lederer F2010 Phys. Rev. B 81 035320

    [19]

    Wang H X, Lü Y H, Zhang H X 2011 Acta Phys. Sin. 60 034101(in Chinese) [王海侠, 吕英华, 张洪欣 2011 物理学报 60 034101]

    [20]

    Ziolkowski R W 2003 IEEE Trans. Ante. Prop. 51 1516

  • [1] 石燕, 张天辉. 自组织结构的控制: 从平衡过程到非平衡过程. 物理学报, 2020, 69(14): 140503. doi: 10.7498/aps.69.20200161
    [2] 田子建, 李玮祥, 樊京. 基于双三角形金属条的二维可衍生超材料性能分析. 物理学报, 2015, 64(3): 034102. doi: 10.7498/aps.64.034102
    [3] 董怀景, 耿友林. 基于双十字架型宽带低耗小单元左手材料的设计与实验验证. 物理学报, 2015, 64(2): 024102. doi: 10.7498/aps.64.024102
    [4] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [5] 田子建, 陈文超, 樊京. 基于双Σ形金属条的双向左手材料. 物理学报, 2013, 62(7): 074102. doi: 10.7498/aps.62.074102
    [6] 杨晨, 张洪欣, 王海侠, 徐楠, 许媛媛, 黄丽玉, 张可欣. 十字环型左手材料单元结构设计与仿真. 物理学报, 2012, 61(16): 164101. doi: 10.7498/aps.61.164101
    [7] 郭林燕, 杨河林, 李敏华, 高超嵩, 田原. 单方环结构左手材料微带天线. 物理学报, 2012, 61(1): 014102. doi: 10.7498/aps.61.014102
    [8] 刘亚红, 刘辉, 赵晓鹏. 基于小型化结构的各向同性负磁导率材料与左手材料. 物理学报, 2012, 61(8): 084103. doi: 10.7498/aps.61.084103
    [9] 陈春晖, 屈绍波, 徐卓, 王甲富, 马华, 周航. 基于单面金属结构的二维宽带左手材料. 物理学报, 2011, 60(2): 024101. doi: 10.7498/aps.60.024101
    [10] 弓巧侠, 赵双双, 段智勇, 马凤英. 结构参量对左手材料通带位置影响的研究. 物理学报, 2011, 60(10): 107804. doi: 10.7498/aps.60.107804
    [11] 王海侠, 吕英华, 张洪欣, 吴艳玲. 基于双Z形金属条的双入射型左手材料研究. 物理学报, 2011, 60(3): 034101. doi: 10.7498/aps.60.034101
    [12] 高仁璟, 史鹏飞, 刘书田, 段玉平, 唐祯安. 左手材料微结构构型的传输线比拟模型. 物理学报, 2010, 59(12): 8566-8573. doi: 10.7498/aps.59.8566
    [13] 王甲富, 屈绍波, 徐卓, 张介秋, 马华, 杨一鸣, 吴翔, 鲁磊. 基于金属结构单元间耦合的左手材料的设计及实验验证. 物理学报, 2010, 59(6): 4018-4022. doi: 10.7498/aps.59.4018
    [14] 郭云胜, 张雪峰. 一种结构简单的二维左手材料设计及仿真研究. 物理学报, 2010, 59(12): 8584-8590. doi: 10.7498/aps.59.8584
    [15] 张淳民, 孙明昭, 袁志林, 宋晓平. 基于三角谐振环的新型六边形谐振环金属线复合周期结构左手材料性质研究. 物理学报, 2009, 58(3): 1758-1764. doi: 10.7498/aps.58.1758
    [16] 张松, 屈绍波, 马华, 谢峰, 徐卓. 基于平行金属条的左手结构设计与仿真研究. 物理学报, 2009, 58(6): 3961-3965. doi: 10.7498/aps.58.3961
    [17] 杨一鸣, 屈绍波, 王甲富, 徐卓. 由同时具有磁谐振和电谐振结构组成的左手材料. 物理学报, 2009, 58(2): 1031-1035. doi: 10.7498/aps.58.1031
    [18] 孙明昭, 张淳民, 宋晓平, 梁工英, 孙占波. 基于矩形谐振环的新型复合周期结构左手材料研究. 物理学报, 2009, 58(9): 6179-6184. doi: 10.7498/aps.58.6179
    [19] 王甲富, 屈绍波, 徐 卓, 张介秋, 杨一鸣, 马 华. 磁谐振和电谐振结构构成的左手材料设计. 物理学报, 2008, 57(8): 5015-5019. doi: 10.7498/aps.57.5015
    [20] 刘亚红, 罗春荣, 赵晓鹏. 同时实现介电常数和磁导率为负的H型结构单元左手材料. 物理学报, 2007, 56(10): 5883-5889. doi: 10.7498/aps.56.5883
计量
  • 文章访问数:  4114
  • PDF下载量:  857
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-19
  • 修回日期:  2011-05-19
  • 刊出日期:  2012-03-05

基于蘑菇型结构的双入射超宽带复合媒质材料设计与分析

  • 1. 北京邮电大学 电子工程学院, 北京 100876
    基金项目: 国家自然科学基金 (批准号: 60871081, 61072136)、北京市自然科学基金(批准号: 4112039)和 北京邮电大学大学生创新计划基金(2010)资助的课题.

摘要: 通过设计一定的单元结构, 可以实现超宽带人工电磁材料. 基于蘑菇型金属结构, 提出了一种同时具有左右手通带无缝结合的超宽带双入射型复合媒质材料结构单元. 该结构由嵌入到介质板的两个反向对称的蘑菇型金属结构组成, 能够同时引发电谐振和磁谐振而得到左手通带. 通过利用CST软件仿真、等效电磁参数提取、折射率计算以及建立等效磁谐振电路模型等方法, 分析验证了该结构的双入射特性和左手特性. 仿真结果表明, 在电磁波垂直于介质板和平行于介质板入射两种情况下, 在X波段均表现出左手通带特性, 并具有1 GHz以上的左手带宽. 当电磁波垂直于介质板入射时, 在7.2 GHz9.3 GHz频段为右手通带, 在9.3 GHz11 GHz频段为左手通带; 当电磁波平行于介质板入射时, 在7.0 GHz9.0 GHz频段为右手通带, 在9.0 GHz10 GHz频段为左手通带. 在两种情况下分别于9.3 GHz与9.0 GHz处得到了零折射率, 从而构造了一种正-零-负复合媒质材料, 实现了具有3 GHz带宽的双入射超宽带平衡结构.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回