搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子动力学中的几何相位

杨欢 郑雨军

引用本文:
Citation:

分子动力学中的几何相位

杨欢, 郑雨军

Geometric Phase in Molecular Dynamics

YANG Huan, ZHENG Yujun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 分子的几何相位效应,也称为分子 AB 效应,源于对势能面锥形交叉结构的研究. 在核构型空间环绕锥形交叉点时,绝热的电子波函数会获得 $\pi$ 的相位,导致其符号反转;而核的波函数也需相应的改变符号,保持总波函数的单值性. 该相位与锥形交叉结构拓扑相关,只有合适地引入分子几何相位才能在绝热表象下准确地描述量子体系的动力学行为. 在透热表象下,可以隐式地处理几何相位效应以及核-电子的非绝热耦合问题. 本文基于几何相位的量子动力学方法,设计了一种可以直接提取分子动力学中几何相位的方法. 该相位不同于由锥形交叉拓扑结构导致的量子化的 $\pi$ 相位,它是连续变化的. 它是量子体系在投影希尔伯特空间演化时,几何相位的一种规范不变的表示. 当前的研究为探索分子几何相位及其效应开辟了一个新视角,并有望为实验研究分子动力学中的几何相位提供一个可能的观测量.
    The geometric phase effect of molecules, also known as the molecular Aharonov-Bohm effect, arises from the study of the conical intersections of potential energy surfaces. When encircling a conical intersection in the nuclear configuration space, the adiabatic electronic wave function acquires a $\pi$ phase, leading to a change in sign. Consequently, the nuclear wave function must also change its sign to preserve the single-valueless of the total wave function. This phase is topologically related to the conical intersection structure. Only by appropriately introducing the molecular geometric phase can the quantum dynamical behavior in the adiabatic representation be accurately described. In the diabatic representation, the geometric phase effects and the non-adiabatic couplings between nuclei and electrons can be implicitly handled.
    In this paper, based on the quantum kinematic approach to the geometric phase, a method for directly extracting the geometric phase in molecular dynamics is proposed. To demonstrate the unique features of this method, the $E \otimes e$ Jahn-Teller model, which is a standard model incorporating a conical intersection, is employed. This model comprises two diabatic electronic states coupled with two vibrational modes. The initial wave function is designed in such a way that it can circumnavigate the conical intersection in an almost adiabatic manner within approximately 2.4 ms. Subsequently, the quantum kinematic approach to the geometric phase is utilized to extract the geometric phase during the evolution. In contrast to the typical topological effect of a quantized geometric phase of $\pi$, this extracted geometric phase in this case varies in a continuous manner. It is a representation-independent and a gauge-invariant formulation of the geometric phase when a quantum system performs a path in its projected Hilbert space. This research offers a new perspective for exploring molecular geometric phases and the geometric phase effects. It may also provide a possible observable for experimental studies on geometric phases in molecular dynamics.
  • [1]

    Pancharatnam S 1956 Proc. Indian Acad. Sci. A 44247

    [2]

    Berry M V 1984 Proc. R. Soc. Lond. A 39245

    [3]

    Simon B 1983 Phys. Rev. Lett. 512167

    [4]

    Aharonov Y, Anandan J 1987 Phys. Rev. Lett. 581593

    [5]

    Samuel J, Bhandari R 1988 Phys. Rev. Lett. 602339

    [6]

    Garrison J C, Wright E M 1988 Phys. Lett. A 128177

    [7]

    Cui X D, Zheng Y 2012 Phys. Rev. A 86247

    [8]

    Cui X D, Zheng Y 2014 Sci. Rep. 45813

    [9]

    Cui X D, Zheng Y 2015 J. Chem. Phys. 142214311

    [10]

    Zhou Y, Wu Z h, Ge M l 1999 Chin. Phys. Lett. 16316

    [11]

    Wang L C, Yan J Y, Yi X X 2010 Chin. Phys. B 19040512

    [12]

    Rao H Y, Liu Y B, Jiang Y Y, Guo L P, Wang Z S 2012 Acta Phys. Sin. 61020302(in Chinese) [ 饶黄云, 刘义保, 江燕燕, 郭立平, 王资生2012物理学报61020302]

    [13]

    Wang Z, Ren J 2021 Acta Phys. Sin. 70230503(in Chinese) [王子, 任捷2021物理学报70230503]

    [14]

    Sun S, Zheng Y 2021 Chin. Sci. Bull. 661946(in Chinese) [孙舒宁, 郑雨军2021科学通报661946]

    [15]

    Liu W, Wang T, Li W 2023 Chin. Phys. B 32050311

    [16]

    Herzberg G, Longuet-Higgins H C 1963 Discuss. Faraday Soc. 3577

    [17]

    Requist R, Tandetzky F, Gross E K U 2016 Phys. Rev. A 93042108

    [18]

    Mead C A 1980 Chem. Phys. 4923

    [19]

    Juanes-Marcos J C, Althorpe S C, Wrede E 2005 Science 3091227

    [20]

    Kendrick B K, Hazra J, Balakrishnan N 2015 Nat. Commun. 67918

    [21]

    Wang J, Xie C, Hu X, Guo H, Xie D 2024 J. Phys. Chem. Lett. 4237

    [22]

    Li S, Huang J, Lu Z, Shu Y, Chen W, Yuan D, Wang T, Fu B, Zhang Z, Wang X, Zhang D H, Yang X 2024 Nat. Commun. 151698

    [23]

    Xie C, Ma J, Zhu X, Yarkony D R, Xie D, Guo H 2016 J. Am. Chem. Soc. 1387828

    [24]

    Kendrick B 1997 Phys. Rev. Lett. 792431

    [25]

    Babikov D, Kendrick B K, Zhang P, Morokuma K 2005 J. Chem. Phys. 122044315

    [26]

    Mead C A, Truhlar D G 1979 J. Chem. Phys. 702284

    [27]

    Kendrick B, Mead C A 1995 J. Chem. Phys. 1024160

    [28]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115485

    [29]

    Xie C, Malbon C L, Yarkony D R, Guo H 2017 J. Chem. Phys. 147044109

    [30]

    Yuan D, Guan Y, Chen W, Zhao H, Yu S, Luo C, Tan Y, Xie T, Wang X, Sun Z, Zhang D H, Yang X 2018 Science 3621289

    [31]

    He H, Xu H, Chen L, Xie P, Yin S 2023 J. Phys. Chem. A 1279966

    [32]

    Min S K, Abedi A, Kim K S, Gross E K U 2014 Phys. Rev. Lett. 113263004

    [33]

    Ibele L M, Sangiogo Gil E, Curchod B F E, Agostini F 2023 J. Phys. Chem. Lett. 1411625

    [34]

    Li Y, Wang Z, Li C 2024 J. Phys. Condens. Matter 36465201

    [35]

    Martinazzo R, Burghardt I 2024 Phys. Rev. Lett. 132243002

    [36]

    Leek P J, Fink J M, Blais A, Bianchetti R, Göppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J, Wallraff A 2007 Science 3181889

    [37]

    Zhou H, Li Z K, Wang H Y, Chen H W, Peng X H, Du J F 2016 Chin. Phys. Lett. 33060301

    [38]

    Arai K, Lee J, Belthangady C, Glenn D R, Zhang H, Walsworth R L 2018 Nat. Commun. 94996

    [39]

    Song R R, Deng Q L, Zhou S L 2022 Acta Phys. Sin. 71029101(in Chinese) [宋睿睿, 邓钦玲, 周绍林 2022物理学报71029101]

    [40]

    Mukunda N, Simon R 1993 Ann. Phys. 228205

    [41]

    Yang H, Zheng Y 2024 J. Phys. Chem. A 1289519

    [42]

    Longuet-Higgins H C, Öpik U, Pryce M H L, Sack R A 1958 Proc. R. Soc. Lond. A 2441

    [43]

    Schön J, Köppel H 1995 J. Chem. Phys. 1039292

    [44]

    Requist R, Proetto C R, Gross E K U 2017 Phys. Rev. A 96062503

    [45]

    Ribeiro R F, Yuen-Zhou J 2018 J. Phys. Chem. Lett. 9242

    [46]

    Valahu C H, Olaya-Agudelo V C, MacDonell R J, Navickas T, Rao A D, Millican M J, Pérez-Sánchez J B, Yuen-Zhou J, Biercuk M J, Hempel C, Tan T R, Kassal I 2023 Nat. Chem. 151503

    [47]

    Martinazzo R, Burghardt I 2024 J. Phys. Chem. Lett. 1510416

    [48]

    Martens C C 2016 J. Phys. Chem. Lett. 72610

  • [1] 蒋铭阳, 李九生. 弧度与旋转共同诱导相位调控太赫兹超表面. 物理学报, doi: 10.7498/aps.74.20241465
    [2] 李多多, 张嵩. 五氟吡啶激发态非绝热弛豫过程中的分子结构. 物理学报, doi: 10.7498/aps.73.20231570
    [3] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.72.20221815
    [4] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20200323
    [5] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟. 物理学报, doi: 10.7498/aps.67.20172174
    [6] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应. 物理学报, doi: 10.7498/aps.66.106102
    [7] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, doi: 10.7498/aps.64.016202
    [8] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.086102
    [9] 王建伟, 宋亦旭, 任天令, 李进春, 褚国亮. F等离子体刻蚀Si中Lag效应的分子动力学模拟. 物理学报, doi: 10.7498/aps.62.245202
    [10] 单传家. 具有三体相互作用的自旋链系统中的几何相位与量子相变. 物理学报, doi: 10.7498/aps.61.220302
    [11] 饶黄云, 刘义保, 江燕燕, 郭立平, 王资生. 三能级混合态的量子几何相位. 物理学报, doi: 10.7498/aps.61.020302
    [12] 马颖, 孙玲玲, 周益春. BaTiO3铁电体中辐射位移效应的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.046105
    [13] 郑力明, 刘颂豪, 王发强. 非马尔可夫环境下原子的几何相位演化. 物理学报, doi: 10.7498/aps.58.2430
    [14] 马瑞琼, 李永放, 时 坚. 相干瞬态的量子干涉效应和Berry相位. 物理学报, doi: 10.7498/aps.57.4083
    [15] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, doi: 10.7498/aps.56.5389
    [16] 郑映鸿, 陈 童, 王 平, 常 哲. 几何相位的伽利略变换性质. 物理学报, doi: 10.7498/aps.56.6199
    [17] 沈建其, 庄 飞. 螺旋光纤系统中非绝热条件几何相移. 物理学报, doi: 10.7498/aps.54.1048
    [18] 庄 飞, 沈建其. 双轴各向异性负折射率材料光纤中光子波函数几何相位研究. 物理学报, doi: 10.7498/aps.54.955
    [19] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.54.4836
    [20] 胡国琦, 李康. 有磁单极子存在下的Aharnov-Bohm效应. 物理学报, doi: 10.7498/aps.51.1208
计量
  • 文章访问数:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-17

/

返回文章
返回