-
Metasurfaces have the characteristics of simple structure, easy fabrication, easy integration, etc., and can flexibly control electromagnetic waves. They are widely used in terahertz filters, lenses, polarization converters, wavefront adjustment and terahertz imaging and so on. By encoding and arranging unit cells with different amplitudes and phases according to a certain rule, the metasurfaces can achieve various functions such as imaging, focusing, beam splitting, and vortex beam. The reported coding metasurfaces are phase-modulated according to geometric phase or transmission phase theory. However, geometric phase has spin-locking property and transmission phase has single-frequency property, which hinder the applications of a unified metasurface in simultaneously regulating geometric phase and transmission phase. To address the above issues, in this work, we propose an radian and rotation co-induced phase modulation metasurface, whose unit cell independently modulates the cross-polarized reflection phases of LCP wave and RCP wave and has a certain bandwidth, which meets therequirement in a frequency region of 1–1.2 THz. Through the principle of phase convolution and shared aperture, the metasurface realizes the vortex beams with a topological charge of ±1, focusing with a focal length of 1500 μm, the deflected vortex beams with a topological charge of ±2, the quasi-perfect vortex beams, and the multichannel vortex beams. The structure has the advantages of simple structure, flexible and convenient regulation, and compact size, which improves the utilization of the electromagnetic space and has a broad application prospect in the future terahertz communication systems. -
图 3 超表面单元的反射系数与相位 (a) LCP入射下超表面单元反射系数; (b) LCP入射下超表面单元反射相位; (c) RCP入射下超表面单元反射系数; (d) RCP入射下超表面单元反射相位
Fig. 3. Reflection coefficient and phase of the unit cells: (a) Reflection coefficients at LCP incidence; (b) reflection phases at LCP incidence; (c) reflection coefficients at RCP incidence; (d) reflection phases at RCP incidence.
图 5 (a), (e) LCP波入射下, l = 1涡旋波束远场图和模式纯度; (b), (f) RCP波入射下, l = 1涡旋波束远场图和模式纯度; (c), (g) RCP波下, l = –1涡旋波束远场图和模式纯度; (d), (h) RCP波入射下, l = –1涡旋波束远场图和模式纯度
Fig. 5. (a), (e) Far-field patterns and mode purity of the vortex beam at l = 1 under LCP wave incidence; (b), (f) far-field patterns and mode purity of the vortex beam at l = 1 under RCP wave incidence; (c), (g) far-field patterns and mode purity of the vortex beam at l = –1 under LCP wave incidence; (d), (h) far-field patterns and mode purity of the vortex beam at l = –1 under RCP wave incidence.
图 7 (a) LCP波入射, zf = 1500 μm处x-y截面的二维电场; (b) LCP波入射, y = 0 μm处x-z截面的二维电场; (c) RCP波入射, zf = 1500 μm处x-y截面的二维电场; (d) RCP波入射, y = 0 μm处x-z截面的二维电场
Fig. 7. (a) 2D electric field in x-y cross section at zf = 1500 μm under LCP wave incidence; (b) 2D electric field in x-z cross section at y = 0 under LCP wave incidence; (c) 2D electric field in x-y cross section at zf = 1500 μm under RCP wave incidence; (d) 2D electric field in the x-z cross section at y = 0 under RCP wave incidence.
图 8 (a) l = 2涡旋波束相位图; (b)“64206420…”偏折相位图; (c) l = 2偏折卷积涡旋波束相位图; (d) l = 2偏折涡旋波束超表面结构; (e) l = –2涡旋波束相位图; (f)“0022446600224466…”偏折相位图; (g) l = –2偏折卷积涡旋波束相位图; (h) l = –2偏折涡旋波束超表面结构
Fig. 8. (a) Vortex beam phase diagram at l = 2; (b) ‘64206420…’ deflection phase diagram; (c) deflection convolution vortex beam phase diagram at l = 2; (d) deflection vortex beam metasurfaces structure at l = 2; (e) vortex beam phase diagram at l = –2, (f) ‘0022446600224466…’ deflected phase diagram; (g) deflected convolved vortex beam phase diagram at l = –2; (h) deflected vortex beam metasurfaces structure at l = –2.
图 9 (a), (b) LCP波入射, l = 2偏折涡旋波束的远场和偏折角度; (c), (d) RCP波入射, l = 2偏折涡旋波束的远场和偏折角度; (e), (f) LCP波入射, l = –2偏折涡旋波束的远场和偏折角度; (g), (h) RCP波入射, l = -2偏折涡旋波束的远场和偏折角度
Fig. 9. (a), (b) Far field and deflection angle of l = 2 deflected vortex beam under LCP wave incidence; (c), (d) far field and deflection angle of l = 2 deflected vortex beam under RCP wave incidence; (e), (f) far field and deflection angle of l = –2 deflected vortex beam under LCP wave incidence; (g), (h) far field and deflection angle of l = -2 deflected vortex beam under RCP wave incidence.
图 11 (a) LCP波入射, zf = 1500 μm处x-y截面的二维电场; (b) LCP波入射, y = 0 μm处x-z截面的二维电场; (c) RCP波入射, zf = 1500 μm处x-y截面的二维电场; (d) RCP波入射, y = 0 μm处x-z截面的二维电场
Fig. 11. (a) 2D electric field in x-y cross section at zf = 1500 μm under LCP wave incidence, (b) 2D electric field in x-z cross section at y = 0 under LCP wave incidence, (c) 2D electric field in x-y cross section at zf = 1500 μm under RCP wave incidence, (d) 2D electric field in the x-z cross section at y = 0 under RCP wave incidence.
图 12 (a), (e)拓扑荷数为l = 1和 l = 2的涡旋相位排布; (b), (f)负轴向产生的反向贝塞尔光束的傅里叶变换相位排布; (c), (g) 焦透镜的相位排布; (d), (h) 拓扑荷数为l = 1和l = 2的完美涡旋相位排布
Fig. 12. (a), (e) Vortex phase arrangement for the topological charges of l = 1 and l = 2; (b), (f) Fourier-transform phase arrangement of the inverted Bessel beam generated in the negative axial direction; (c), (g) phase arrangement of the focal lens; (d), (h) perfect vortex phase arrangement for the topological charges of l = 1 and l = 2.
-
[1] Feng C H, Otani C 2021 Crit. Rev. Food Sci. Nutr. 61 2523Google Scholar
[2] Song Z Y, Chen A P, Zhang J H 2020 Opt. Express 28 2037Google Scholar
[3] Zhang Y B, Wu P H, Zhou Z G, Chen X F, Yi Z, Zhu J Y, Zhang T S, Ji H G 2020 IEEE Access 8 85154Google Scholar
[4] Hu X Z, Zheng D Y, Lin Y S 2020 Appl. Phys. A: Mater. Sci. Process. 126 110Google Scholar
[5] Liu X, Huang J, Chen H 2022 Photonics Res. 10 1090Google Scholar
[6] Zhang Z, Wen D, Zhang C 2018 ACS Photonics 5 1794Google Scholar
[7] Liu Y Q, Che Y X, Qi K N, Li L S, Yin H C 2020 Opt. Commun. 474 126061Google Scholar
[8] Huang J, Fu T, Li H, Shou Z, Gao X 2020 Chin. Opt. Lett. 18 013102Google Scholar
[9] Wang H, Zhang Z, Zhao K, Liu W, Wang P, Lu Y 2021 Chin. Opt. Lett. 19 053601Google Scholar
[10] Ma Z J, Hanham S M, Gong Y D, Hong M H 2018 Opt. Lett. 43 911Google Scholar
[11] Yang L J, Li J S, Yan D X 2022 Opt. Commun. 516 128234Google Scholar
[12] Jiang Q, Jin G, Cao L 2019 Adv. Opt. Photonics 11 518Google Scholar
[13] Bao Y, Yan J, Yang X, Qiu C, Li B 2020 Nano Lett. 21 2332
[14] Gao P, Chen C, Dai Y W, Wang X L, Liu H 2023 Opt. Mater. 145 114448Google Scholar
[15] Ma Z, Li P, Chen S, Wu X 2022 Nanophotonics 11 1847Google Scholar
[16] Zang X, Yao B, Chen L, Xie J, Guo X 2021 Adv. Manuf. 2 148
[17] Li S, Li Z, Han B, Huang G, Liu X, Yang H, Cao X 2022 Front. Magn. Mater. 9 854062Google Scholar
[18] Liu J, Cheng Y, Chen F, Luo H, Li X 2023 Infrared Laser Eng. 52 111
[19] Fu C, Zhao J, Li F, Li H 2023 Micromachines 14 465Google Scholar
[20] Sun S, Ma H F, Gou Y, Zhang T Y, Wu L W, Cui T J 2023 Adv. Opt. Mater. 11 2202275Google Scholar
[21] Fan J, Cheng Y 2020 J. Phys. D: Appl. Phys. 53 025109Google Scholar
[22] Fu X M, Yang J, Wang J F, Ding C, Han Y J, Jia Y X, Liu T H, Zhu R C, Qu S B 2023 Laser Photonics Rev. 17 2200678Google Scholar
[23] Zhang L, Liu S, Cui T 2017 Chin. Opt. Lett. 10 1
[24] Liu W, Yang Q, Xu Q, Jiang X, Wu T, Gu J, Han J, Zhang W 2022 Nanophotonics 11 3631Google Scholar
[25] Li J S, Guo F L, Chen Y 2023 Opt. Commun. 537 129428Google Scholar
计量
- 文章访问数: 174
- PDF下载量: 4
- 被引次数: 0