搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制

姚海云 闫昕 梁兰菊 杨茂生 杨其利 吕凯凯 姚建铨

引用本文:
Citation:

图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制

姚海云, 闫昕, 梁兰菊, 杨茂生, 杨其利, 吕凯凯, 姚建铨

Terahertz dynamic multidimensional modulation at Dirac point based on patterned graphene/gallium nitride hybridized with metasurfaces

Yao Hai-Yun, Yan Xin, Liang Lan-Ju, Yang Mao-Sheng, Yang Qi-Li, Lü Kai-Kai, Yao Jian-Quan
PDF
HTML
导出引用
  • 提出一种基于图案化石墨烯/氮化镓肖特基二极管与类电磁诱导透明超表面集成的新型太赫兹调制器. 通过施加连续激光或偏置电压改变异质结肖特基势垒, 进而致使石墨烯的费米能级在价带、狄拉克点与导带之间移动, 使得异质结的电导率发生变化. 在太赫兹时域光谱上表现出透射振幅的增减变化, 并观察到在狄拉克点上的调制行为. 因费米能级接近狄拉克点, 对外加光电激励非常敏感, 施加4.9—162.4 mW/cm2的光功率或者0.5—7.0 V的偏压, 调制深度先增加后减小, 相位差线性增加, 其中最大调制深度达90%, 最大相位差为189°, 该器件实现了太赫兹波的超灵敏多维动态调制. 总之, 该图案化石墨烯/氮化镓复合超表面调制器在超灵敏光学设备中存在潜在的应用价值.
    The development of terahertz (THz) technology is creating a demand for devices that can modulate THz beams. Here, we propose a novel THz modulator based on patterned graphene/gallium nitride Schottky diodes hybridized with metasurfaces. Ultrasensitive dynamic multidimensional THz modulation is achieved by changing the Schottky barrier of the heterojunction, shifting the Fermi level between the Dirac point, changing the conduction band and the valence of graphene via continuous-wave optical illumination or bias voltages. When the Fermi level is close to the Dirac point, the modulation is ultrasensitive to the external stimuli. Applying an optical power of 4.9–162.4 mW/cm2 or a bias voltage of 0.5–7.0 V, the modulation depth initially increases, then decreases, and the phase difference linearly increases, therein the maximum modulation depth is 90%, and the maximum phase difference is 189°. In short, the proposed THz modulator has potential application in ultra-sensitive optical devices.
      通信作者: 闫昕, yxllj68@126.com ; 梁兰菊, lianglanju123@163.com ; 杨其利, hanbaomami@163.com
    • 基金项目: 国家自然科学基金 (批准号: 61701434, 61735010, 61675147)、山东省自然科学基金 (批准号: ZR2020FK008、ZR202102180769)、泰山学者项目专项资金(批准号: tsqn201909150)和山东省高校青创科技计划(批准号:2019KJN001)资助的课题
      Corresponding author: Yan Xin, yxllj68@126.com ; Liang Lan-Ju, lianglanju123@163.com ; Yang Qi-Li, hanbaomami@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61701434, 61735010, 61675147), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2020FK008, ZR202102180769), the Special Fund for Taishan Scholar Project, China (Grant No. tsqn201909150), and the Innovation and Technology Program for Young Scientists in Colleges and Universities of Shandong Province, China (Grant No. 2019KJN001).
    [1]

    Manjappa M, Srivastava Y K, Solanki A, Kumar A, Sum T C, Singh R 2017 Adv. Mater. 29 1605881Google Scholar

    [2]

    Yao H, Yan X, Yang M, Yang Q, Liu Y, Li A, Wang M, Wei D, Tian Z, Liang L 2021 Carbon 184 400Google Scholar

    [3]

    Yang M, Li T, Gao J, Yan X, Liang L, Yao H, Li J, Wei D, Wang M, Zhang T, Ye Y, Song X, Zhang H, Ren Y, Ren X, Yao J 2021 Appl. Surf. Sci. 562 150182Google Scholar

    [4]

    Tan T C, Srivastava Y K, Ako R T, Wang W, Bhaskaran M, Sriram S, Al Naib I, Plum E, Singh R 2021 Adv. Mater. 33 2100836Google Scholar

    [5]

    Zhang J, Mu N, Liu L, Xie J, Feng H, Yao J, Chen T, Zhu W 2021 Biosens. Bioelectron. 185 113241Google Scholar

    [6]

    闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨 2015 物理学报 64 158101Google Scholar

    Yan X, Liang L J, Zhang Y T, Ding X, Yao J Q 2015 Acta Phys. Sin. 64 158101Google Scholar

    [7]

    闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨 2018 物理学报 67 118102Google Scholar

    Yan X, Liang L J, Zhang Z, Yang M S, Wei D Q, Wang M, Li Y P, Lü Y Y, Zhang X F, Ding X, Yao J Q 2018 Acta Phys. Sin. 67 118102Google Scholar

    [8]

    Cheng Y, Zhang K, Liu Y, Li S, Kong W 2020 AIP Adv. 10 045026Google Scholar

    [9]

    Li C, Li W, Duan S, Wu J, Chen B, Yang S, Su R, Jiang C, Zhang C, Jin B B 2021 Appl. Phys. Lett. 119 052602Google Scholar

    [10]

    Xiao S, Wang T, Liu T, Yan X, Li Z, Xu C 2018 Carbon 126 271Google Scholar

    [11]

    Driscoll T, Kim H T, Chae B G, Leen Y W, Jokersts N M, Palit S, Smith D R, Ventra M D, Basov D N 2009 Science 325 1518Google Scholar

    [12]

    Chen H T, O'Hara J F, Azad A K, Taylor A J, Averitt R D, Shrekenhamer D B, Padilla W J 2008 Nat. Photonics 2 295Google Scholar

    [13]

    Ghosh S K, Das S, Bhattacharyya S 2021 Opt. Commun. 480 126480Google Scholar

    [14]

    Choi W, Lahiri I, Seelaboyina R, Kang Y S 2010 Crit. Rev. Solid State Mater. Sci. 35 52Google Scholar

    [15]

    Feng J, Li W, Qian X, Qi J, Qi L, Li J 2012 Nanoscale 4 4883Google Scholar

    [16]

    Yang G, Li L, Lee W B, Ng M C 2018 Sci. Technol. Adv. Mater. 19 613Google Scholar

    [17]

    Wei T, Bao L, Hauke F, Hirsch A 2020 ChemPlusChem 85 1655Google Scholar

    [18]

    Shukla S, Kang S Y, Saxena S 2019 Appl. Phys. Rev. 6 021311Google Scholar

    [19]

    Lee S H, Choi M, Kim T T, Seungwoo L, Liu M, Yin X, Choi H, Lee S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936Google Scholar

    [20]

    Li Q, Gupta M, Zhang X, Wang S, Chen T, Singh R, Han J, Zhang W 2020 Adv. Mater. 5 1900840Google Scholar

    [21]

    Kim S, Seo T H, Kim M J, Song K M, Suh E K, Kim H 2015 Nano. Res. 8 1327Google Scholar

    [22]

    Bartolomeo A D 2016 Phys. Rep. 606 1Google Scholar

    [23]

    Xu G, Zhang Y, Duan X, Balandin A A, Wang K L 2013 Proc. IEEE 101 1670Google Scholar

    [24]

    Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar

    [25]

    Chen H, Zhang H, Zhao Y, Liu S, Cao M, Zhang Y 2018 Opt. Laser Technol. 104 210Google Scholar

    [26]

    Ryzhii V, Ryzhii M, Otsuji T, Leiman V, Mitin V, Shur M S 2021 J. Appl. Phys. 129 214503Google Scholar

    [27]

    Ryzhii V, Otsuji T, Ryzhii M, Leiman V G, Maltsev P P, Karasik V E, Mitin V, Shur M S 2021 Opt. Mater. Express 11 468Google Scholar

    [28]

    Jessop D S, Kindness S J, Xiao L, Braeuninger P W, Lin H, Ren Y, Ren C X, Hofmann S, Zeitler J A, Beere H E, Ritchie D A, Degl’Innocenti R 2016 Appl. Phys. Lett. 108 171101Google Scholar

  • 图 1  PGrGAN@MS的制备和表征 (a)制备过程: (i) PI膜旋涂在石英玻璃基地上; (ii)类 EIT 超表面的制备; (iii) PI膜旋涂在类EIT超表面上; (iv) 石墨烯被转移到 PI 薄膜上; (v) 图案化单层石墨烯; (vi)溅射圆柱状氮化镓. (b)在光泵和太赫兹激发下的样品示意图. (c)在偏置电压和太赫兹激发下的样品示意图. (d) 1.5 cm × 1.5 cm PGrGAN@MS样品. (e)超表面的光学显微镜照片. (f)晶胞尺寸, a = j = 135 µm, d = 13 µm, c = p = 90 µm, k = 103 µm, f = h = 63 µm, e = 39 mm, w = 31 mm. (g)样品的光学显微照片. (h), (i)圆孔石墨烯图案化结构的光学显微照片. (j)使用514 nm激光测量的石英衬底上单层石墨烯的拉曼光谱

    Fig. 1.  Manufacture and characterization of the PGrGAN@MS. (a) Manufacture process: (i) PI film is spin-coated on the quartz glass substrate; (ii) preparation of an EIT-like metasurface sample; (iii) PI film is spin-coated atop metasurface; (iv) graphene was transferred onto the PI film; (v) graphene was patterned into a fishing net structure with round holes; (vi) sputtering cylindrical GaN. (b), (c) Schematic of graphene samples under the optical pump or bias voltages and THz probe illumination. (d) 1.5 cm × 1.5 cm PGrGAN@MS sample. (e) Optical microscope images of lattice. (f) Unit cell. The corresponding parameters were: a = j = 135 µm, d = 13 µm, c = p = 90 µm, k = 103 µm, f = h = 63 µm, e = 39 mm, w = 31 mm. (g) Optical microscope images of the sample. (h), (i) Optical micrograph of the patterned structure of round-hole graphene. (j) Raman spectrum of monolayer graphene on quartz substrate measured by 514 nm laser.

    图 2  实验光电设备 (a) THz-TDs系统; (b) 室温下的电源和激光控制器

    Fig. 2.  Experimental photoelectric equipment: (a) THz-TDs system; (b) power supply and laser controller at room temperature.

    图 3  (a), (b) 在NSZ和WPX的共振频率处电场强度分布; (c)在0.63 THz谐振频率下EIT模式的电场强度分布; (d)实验、模拟和理论拟合的透射光谱

    Fig. 3.  (a), (b) Electric field intensity distribution at the resonance frequency of NSZ and WPX; (c) electric field intensity distribution of the EIT mode at the resonance frequency of 0.63 THz; (d) experimental, simulated and theory fitted transmission spectra.

    图 4  (a) PGrGAN@MS样品在不同光通量激发下的太赫兹透射谱线; (b) PGrGAN@MS样品在不同光通量激发下的调制深度; (c) PGrGAN@MS样品在光通量激发与没有任何激发条件下的相位差(内插图为激发方式); (d) PGrGAN@MS样品在不同光通量激发下的相位差的斜率

    Fig. 4.  (a) Measured transmission amplitude spectra of the PGrGAN@MS sample under different optical flux (Fop) excitations; (b) modulation depth of the PGrGAN@MS sample under different Fop excitations from panel (a); (c) phase difference between the PGrGAN@MS sample with and without Fop excitations, inset: excitation approach; (d) fitted phase difference slopes on Fop excitations extracted from panel (c).

    图 5  (a) PGrGAN@MS样品在不同偏置电压激发下的太赫兹透射谱线; (b) PGrGAN@MS样品在不同偏置电压激发下的调制深度; (c) PGrGAN@MS样品在偏置电压激发与没有任何激发条件下的相位差(内插图为激发方式); (d) PGrGAN@MS样品在不同偏置电压激发下的相位差的斜率

    Fig. 5.  (a) Measured transmission amplitude spectra of the PGrGAN@MS sample under different Vb excitations; (b) modulation depth of the PGrGAN@MS sample under different Vb excitations from panel (a); (c) phase difference between the PGrGAN@MS sample with and without Vb excitations, inset: excitation approach; (d) fitted phase difference slopes on Vb excitations extracted from panel (c).

    图 6  PGrGAN@MS样品在(a)没有任何激发、(b)光激发以及(c)电激发三种不同情况下的异质结能带结构示意图

    Fig. 6.  Schematic band structures of the PGrGAN@MS sample (a) without any excitation in darkness, (b) light excitation and (c) electrical excitation.

    表 1  太赫兹调制器件类型、有源材料以及振幅调制深度(2D, 二维材料; MMs, 超材料)

    Table 1.  THz modulation device types, active materials and modulation depth (2D, two-dimensional materials; MMS, metamaterials)

    类型有源材料Md/%文献
    2D MMsGraphene+metal26%[20]
    2D MMsGraphene25%[28]
    2D MMsGraphene+GaN+metal90%本文
    下载: 导出CSV
  • [1]

    Manjappa M, Srivastava Y K, Solanki A, Kumar A, Sum T C, Singh R 2017 Adv. Mater. 29 1605881Google Scholar

    [2]

    Yao H, Yan X, Yang M, Yang Q, Liu Y, Li A, Wang M, Wei D, Tian Z, Liang L 2021 Carbon 184 400Google Scholar

    [3]

    Yang M, Li T, Gao J, Yan X, Liang L, Yao H, Li J, Wei D, Wang M, Zhang T, Ye Y, Song X, Zhang H, Ren Y, Ren X, Yao J 2021 Appl. Surf. Sci. 562 150182Google Scholar

    [4]

    Tan T C, Srivastava Y K, Ako R T, Wang W, Bhaskaran M, Sriram S, Al Naib I, Plum E, Singh R 2021 Adv. Mater. 33 2100836Google Scholar

    [5]

    Zhang J, Mu N, Liu L, Xie J, Feng H, Yao J, Chen T, Zhu W 2021 Biosens. Bioelectron. 185 113241Google Scholar

    [6]

    闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨 2015 物理学报 64 158101Google Scholar

    Yan X, Liang L J, Zhang Y T, Ding X, Yao J Q 2015 Acta Phys. Sin. 64 158101Google Scholar

    [7]

    闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨 2018 物理学报 67 118102Google Scholar

    Yan X, Liang L J, Zhang Z, Yang M S, Wei D Q, Wang M, Li Y P, Lü Y Y, Zhang X F, Ding X, Yao J Q 2018 Acta Phys. Sin. 67 118102Google Scholar

    [8]

    Cheng Y, Zhang K, Liu Y, Li S, Kong W 2020 AIP Adv. 10 045026Google Scholar

    [9]

    Li C, Li W, Duan S, Wu J, Chen B, Yang S, Su R, Jiang C, Zhang C, Jin B B 2021 Appl. Phys. Lett. 119 052602Google Scholar

    [10]

    Xiao S, Wang T, Liu T, Yan X, Li Z, Xu C 2018 Carbon 126 271Google Scholar

    [11]

    Driscoll T, Kim H T, Chae B G, Leen Y W, Jokersts N M, Palit S, Smith D R, Ventra M D, Basov D N 2009 Science 325 1518Google Scholar

    [12]

    Chen H T, O'Hara J F, Azad A K, Taylor A J, Averitt R D, Shrekenhamer D B, Padilla W J 2008 Nat. Photonics 2 295Google Scholar

    [13]

    Ghosh S K, Das S, Bhattacharyya S 2021 Opt. Commun. 480 126480Google Scholar

    [14]

    Choi W, Lahiri I, Seelaboyina R, Kang Y S 2010 Crit. Rev. Solid State Mater. Sci. 35 52Google Scholar

    [15]

    Feng J, Li W, Qian X, Qi J, Qi L, Li J 2012 Nanoscale 4 4883Google Scholar

    [16]

    Yang G, Li L, Lee W B, Ng M C 2018 Sci. Technol. Adv. Mater. 19 613Google Scholar

    [17]

    Wei T, Bao L, Hauke F, Hirsch A 2020 ChemPlusChem 85 1655Google Scholar

    [18]

    Shukla S, Kang S Y, Saxena S 2019 Appl. Phys. Rev. 6 021311Google Scholar

    [19]

    Lee S H, Choi M, Kim T T, Seungwoo L, Liu M, Yin X, Choi H, Lee S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936Google Scholar

    [20]

    Li Q, Gupta M, Zhang X, Wang S, Chen T, Singh R, Han J, Zhang W 2020 Adv. Mater. 5 1900840Google Scholar

    [21]

    Kim S, Seo T H, Kim M J, Song K M, Suh E K, Kim H 2015 Nano. Res. 8 1327Google Scholar

    [22]

    Bartolomeo A D 2016 Phys. Rep. 606 1Google Scholar

    [23]

    Xu G, Zhang Y, Duan X, Balandin A A, Wang K L 2013 Proc. IEEE 101 1670Google Scholar

    [24]

    Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar

    [25]

    Chen H, Zhang H, Zhao Y, Liu S, Cao M, Zhang Y 2018 Opt. Laser Technol. 104 210Google Scholar

    [26]

    Ryzhii V, Ryzhii M, Otsuji T, Leiman V, Mitin V, Shur M S 2021 J. Appl. Phys. 129 214503Google Scholar

    [27]

    Ryzhii V, Otsuji T, Ryzhii M, Leiman V G, Maltsev P P, Karasik V E, Mitin V, Shur M S 2021 Opt. Mater. Express 11 468Google Scholar

    [28]

    Jessop D S, Kindness S J, Xiao L, Braeuninger P W, Lin H, Ren Y, Ren C X, Hofmann S, Zeitler J A, Beere H E, Ritchie D A, Degl’Innocenti R 2016 Appl. Phys. Lett. 108 171101Google Scholar

  • [1] 居学尉, 张林烽, 黄峰, 朱国锋, 李淑锦, 陈燕青, 王嘉勋, 钟舜聪, 陈盈, 王向峰. 数字型太赫兹带通滤波器的逆向设计及优化. 物理学报, 2024, 73(6): 060702. doi: 10.7498/aps.73.20231584
    [2] 武鹏, 李若晗, 张涛, 张进成, 郝跃. AlGaN/GaN肖特基二极管阳极后退火界面态修复技术. 物理学报, 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [3] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [4] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9′-二亚呫吨分子吸附行为和石墨烯摩尔超结构. 物理学报, 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [5] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9'-二亚呫吨分子吸附行为和石墨烯摩尔超结构研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [6] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211536
    [7] 莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓. 基于石墨烯的宽带全光空间调制器. 物理学报, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [8] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [9] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [10] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [11] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [12] 杜园园, 张春雷, 曹学蕾. 基于4H-SiC肖特基势垒二极管的射线探测器. 物理学报, 2016, 65(20): 207301. doi: 10.7498/aps.65.207301
    [13] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质. 物理学报, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [14] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [15] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [16] 田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武. 硅基全光宽带太赫兹幅度调制器的研究. 物理学报, 2015, 64(2): 028401. doi: 10.7498/aps.64.028401
    [17] 翟东媛, 赵毅, 蔡银飞, 施毅, 郑有炓. 沟槽形状对硅基沟槽式肖特基二极管电学特性的影响. 物理学报, 2014, 63(12): 127201. doi: 10.7498/aps.63.127201
    [18] 刘志强, 常胜江, 王晓雷, 范飞, 李伟. 基于VO2薄膜相变原理的温控太赫兹超材料调制器. 物理学报, 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [19] 尹伟红, 韩勤, 杨晓红. 基于石墨烯的半导体光电器件研究进展. 物理学报, 2012, 61(24): 248502. doi: 10.7498/aps.61.248502
    [20] 杨丽侠, 杜 磊, 包军林, 庄奕琪, 陈晓东, 李群伟, 张 莹, 赵志刚, 何 亮. 60Co γ-射线辐照对肖特基二极管1/f噪声的影响. 物理学报, 2008, 57(9): 5869-5874. doi: 10.7498/aps.57.5869
计量
  • 文章访问数:  5499
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-04
  • 修回日期:  2021-11-30
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回