搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯的宽带全光空间调制器

莫军 冯国英 杨莫愁 廖宇 周昊 周寿桓

引用本文:
Citation:

基于石墨烯的宽带全光空间调制器

莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓

Graphene-based broadband all-optical spatial modulator

Mo Jun, Feng Guo-Ying, Yang Mo-Chou, Liao Yu, Zhou Hao, Zhou Shou-Huan1\2
PDF
导出引用
  • 提出了单层石墨烯包裹微纳光纤的全光空间调制.石墨烯作为可饱和吸收体包裹在通过二氧化碳激光器加热制备的微纳光纤上,当信号光沿着微纳光纤传输时部分光将以倏逝场的形式沿着微纳光纤表面传递,并与石墨烯产生作用被吸收.同时将波长为808 nm的抽运光从空间垂直入射到石墨烯包裹的微纳光纤处,依据石墨烯的优先吸收特性,通过抽运光控制石墨烯对信号光的吸收,实现了宽带全光空间调制.在1095 nm波长处获得最大调制深度约为6 dB,调制带宽约为50 nm,调制速率约为1.5 kHz.空间全光调制器具有输出信号光“干净”的特点.与传统石墨烯微纳光纤全光调制器相比,输出端不需要对抽运光进行光学滤波而直接获得已调信号.该复合波导全光空间调制器以更为灵活、高效的方式打开了微纳超快信号处理的大门.
    In this paper, the all-optical spatial modulation of monolayer graphene-coated microfiber is proposed. Graphene is used as a saturable absorber wrapped on the microfiber produced by heating the carbon dioxide laser. When the signal light travels along the microfiber, part of the light will pass along the surface of the microfiber in the form of an evanescent field, and it will be absorbed by the graphene. Simultaneously we shoot the 808 nm pump light into the micro-nanofiber wrapped by the graphene vertically from the space. According to graphene characteristic of preferential absorption, the absorption of the signal light is controlled by the pump light, thus the broadband all-optical space modulation is realized. In a conventional graphene microfiber all-optical modulator, signal light and pump light are generally input into a microfiber via a coupler. However, the mode of operation of pump light and graphene in all-optical spatial modulation are different from those of the traditional modulation, the pump light works on the graphene outside the microfiber, which realizes the separation of the pump light and the signal light. The output signal does not need to be optically filtered for the pump light to obtain the modulated signal. The output signal light of the spatial all-optical modulator has the characteristics of “clean”. We also verify this in experiment. In addition, the pump light is vertically incident from space, the effect of the graphene length on the modulation is not considered and the modulation time is only related to the relaxation time of graphene, which is helpful in improving the response time. Modulation experiments include static spectral modulation and dynamic frequency modulation. In the static spectral modulation, the broad spectrum signal has a maximum modulation depth of 6 dB at 1095 nm when the pump power is 569 mW. The relationship among pump power, wavelength and modulation depth is also analyzed. The higher the pump power, the higher the modulation depth will be; with the same pump power, the modulation depth of long wave length is higher than that of short wave. In the dynamic modulation experiment with the modulation bandwidth~50 nm and the modulation rate~1.5 kHz, the influence of pump light and signal light on output dynamic signal are studied, the feasibility of all-optical space modulation based on graphene is verified experimentally. The composite waveguide of all-optical spatial modulator opens the door to micro-nano ultrafast signal, processing in a more flexible and efficient way.
      通信作者: 冯国英, guoing_feng@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574221)和国家高技术研究发展计划(JG2011105)资助的课题.
      Corresponding author: Feng Guo-Ying, guoing_feng@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574221) and the National High Technology Research and Development Program of China (Grant No. JG2011105).
    [1]

    Avouris P 2010 Nano Lett. 10 4285

    [2]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photon. 4 611

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Liu W, Sun C, Liao C, Lin C, Li H, Qu G, Yu W, Song N, Yuan C, Wang Z 2016 J. Agric. Food Chem. 64 5909

    [5]

    Rafiee M A 2011 Graphene-based Composite Materials (New York: Rensselaer Polytechnic Institute)

    [6]

    Bao Q, Han Z, Yu W, Ni Z, Yan Y, Shen Z X, Loh K P, Ding Y T 2009 Adv. Funct. Mater. 19 3077

    [7]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30

    [8]

    Liao Y, Feng G Y, Mo J, Zhou S H 2017 Spectrosc. Spect. Anal. 37 3621 (in Chinese)[廖宇, 冯国英, 莫军, 周寿桓 2017 光谱学与光谱分析 37 3621]

    [9]

    Jiang Y N, Wang Y, Ge D B, Li S M, Cao W P, Gao X, Yu X H 2016 Acta Phys. Sin. 65 054101 (in Chinese)[姜彦南, 王扬, 葛德彪, 李思敏, 曹卫平, 高喜, 于新华 2016 物理学报 65 054101]

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [11]

    Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F 2008 Appl. Phys. Lett. 92 042116

    [12]

    Sun D, Wu Z K, Divin C, Li X, Berger C, de Heer W A, First P N, Norris T B 2008 Phys. Rev. Lett. 101 157402

    [13]

    Chen Y L, Feng X B, Hou D D 2013 Acta Phys. Sin. 62 187301 (in Chinese)[陈英良, 冯小波, 侯德东 2013 物理学报 62 187301]

    [14]

    Yu L, Zheng J, Xu Y, Dai D, He S 2014 ACS Nano 8 11386

    [15]

    Liu Z B, Feng M, Jiang W S, Xin W, Wang P, Sheng Q W, Liu Y G, Wang D N, Zhou W Y, Tian J G 2013 Laser Phys. Lett. 10 065901

    [16]

    Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H 2014 Nano Lett. 14 955

    [17]

    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [18]

    Gao Y, Shiue R J, Gan X, Li L, Cheng P, Meric I, Wang L, Szep A, Walker D, Hone J 2015 Nano Lett. 15 2001

    [19]

    Cassidy D T, Johnson D C, Hill K O 1985 Appl. Opt. 25 328

    [20]

    Lacroix S, Bourbonnais R, Gonthier F, Bures J 1986 Appl. Opt. 25 4421

    [21]

    Gonthier F, Bures J, Black R J, Lacroix S 1988 Opt. Lett. 13 395

  • [1]

    Avouris P 2010 Nano Lett. 10 4285

    [2]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photon. 4 611

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Liu W, Sun C, Liao C, Lin C, Li H, Qu G, Yu W, Song N, Yuan C, Wang Z 2016 J. Agric. Food Chem. 64 5909

    [5]

    Rafiee M A 2011 Graphene-based Composite Materials (New York: Rensselaer Polytechnic Institute)

    [6]

    Bao Q, Han Z, Yu W, Ni Z, Yan Y, Shen Z X, Loh K P, Ding Y T 2009 Adv. Funct. Mater. 19 3077

    [7]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30

    [8]

    Liao Y, Feng G Y, Mo J, Zhou S H 2017 Spectrosc. Spect. Anal. 37 3621 (in Chinese)[廖宇, 冯国英, 莫军, 周寿桓 2017 光谱学与光谱分析 37 3621]

    [9]

    Jiang Y N, Wang Y, Ge D B, Li S M, Cao W P, Gao X, Yu X H 2016 Acta Phys. Sin. 65 054101 (in Chinese)[姜彦南, 王扬, 葛德彪, 李思敏, 曹卫平, 高喜, 于新华 2016 物理学报 65 054101]

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [11]

    Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F 2008 Appl. Phys. Lett. 92 042116

    [12]

    Sun D, Wu Z K, Divin C, Li X, Berger C, de Heer W A, First P N, Norris T B 2008 Phys. Rev. Lett. 101 157402

    [13]

    Chen Y L, Feng X B, Hou D D 2013 Acta Phys. Sin. 62 187301 (in Chinese)[陈英良, 冯小波, 侯德东 2013 物理学报 62 187301]

    [14]

    Yu L, Zheng J, Xu Y, Dai D, He S 2014 ACS Nano 8 11386

    [15]

    Liu Z B, Feng M, Jiang W S, Xin W, Wang P, Sheng Q W, Liu Y G, Wang D N, Zhou W Y, Tian J G 2013 Laser Phys. Lett. 10 065901

    [16]

    Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H 2014 Nano Lett. 14 955

    [17]

    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [18]

    Gao Y, Shiue R J, Gan X, Li L, Cheng P, Meric I, Wang L, Szep A, Walker D, Hone J 2015 Nano Lett. 15 2001

    [19]

    Cassidy D T, Johnson D C, Hill K O 1985 Appl. Opt. 25 328

    [20]

    Lacroix S, Bourbonnais R, Gonthier F, Bures J 1986 Appl. Opt. 25 4421

    [21]

    Gonthier F, Bures J, Black R J, Lacroix S 1988 Opt. Lett. 13 395

  • [1] 刘鸿江, 刘逸飞, 谷付星. 基于深度学习的微纳光纤自动制备系统. 物理学报, 2024, 73(10): 104207. doi: 10.7498/aps.73.20240171
    [2] 吴婉玲, 王向珂, 虞华康, 李志远. 基于微纳光纤双模式干涉的亚波长聚焦光场及光捕获应用. 物理学报, 2024, 73(10): 100401. doi: 10.7498/aps.73.20240181
    [3] 王富杰, 曹晓昱, 高超, 文雪可, 雷兵. 基于矢量光场空间调制的光波偏振方向解算方法研究. 物理学报, 2023, 72(1): 010201. doi: 10.7498/aps.72.20221745
    [4] 姚海云, 闫昕, 梁兰菊, 杨茂生, 杨其利, 吕凯凯, 姚建铨. 图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制. 物理学报, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [5] 曹奇志, 唐金凤, 潘杨柳, 江敏, 蒋思悦, 张晶, 贾辰凌, 樊东鑫, 邓婷, 王华华, 段炼. 线性剪切空间调制快拍成像动态定标技术. 物理学报, 2022, 71(15): 154205. doi: 10.7498/aps.71.20220229
    [6] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [7] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射. 物理学报, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [8] 王小发, 张俊红, 高子叶, 夏光琼, 吴正茂. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器. 物理学报, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [9] 李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥. 保偏微纳光纤倏逝场传感器. 物理学报, 2017, 66(7): 074209. doi: 10.7498/aps.66.074209
    [10] 李成, 蔡理, 王森, 刘保军, 崔焕卿, 危波. 石墨烯沟道全自旋逻辑器件开关特性. 物理学报, 2017, 66(20): 208501. doi: 10.7498/aps.66.208501
    [11] 曹奇志, 张晶, Edward DeHoog, 卢远, 胡宝清, 李武钢, 李建映, 樊东鑫, 邓婷, 闫妍. 空间调制稳态微型快拍成像测偏技术研究. 物理学报, 2016, 65(5): 050702. doi: 10.7498/aps.65.050702
    [12] 毕卫红, 王圆圆, 付广伟, 王晓愚, 李彩丽. 基于石墨烯涂覆空心光纤电光调制特性的研究. 物理学报, 2016, 65(4): 047801. doi: 10.7498/aps.65.047801
    [13] 冯秋燕, 姚佰承, 周金浩, 夏汉定, 范孟秋, 张黎, 吴宇, 饶云江. 基于飞秒激光抽运的石墨烯包裹微光纤波导结构的级联四波混频研究. 物理学报, 2015, 64(18): 184214. doi: 10.7498/aps.64.184214
    [14] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波. 物理学报, 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [15] 王博, 白永林, 曹伟伟, 徐鹏, 刘百玉, 缑永胜, 朱炳利, 候洵. 基于探针光调制的皮秒分辨X-ray探测方法与实验. 物理学报, 2015, 64(20): 200701. doi: 10.7498/aps.64.200701
    [16] 冯德军, 黄文育, 姜守振, 季伟, 贾东方. 基于少数层石墨烯可饱和吸收的锁模光纤激光器. 物理学报, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [17] 刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏. 微纳光纤布拉格光栅折射率传感特性研究. 物理学报, 2013, 62(10): 104218. doi: 10.7498/aps.62.104218
    [18] 侯建平, 赵晨阳, 杨楠, 郝建苹, 赵建林. 微纳光纤端面反射特性的实验测量方法. 物理学报, 2013, 62(14): 144216. doi: 10.7498/aps.62.144216
    [19] 梁瑞冰, 孙琪真, 沃江海, 刘德明. 微纳尺度光纤布拉格光栅折射率传感的理论研究. 物理学报, 2011, 60(10): 104221. doi: 10.7498/aps.60.104221
    [20] 王波, 梁中翥, 孔延梅, 梁静秋, 付建国, 郑莹, 朱万彬, 吕金光, 王维彪, 裴舒, 张军. 用于微型光谱仪的硅基多级微反射镜设计与制作研究. 物理学报, 2010, 59(2): 907-912. doi: 10.7498/aps.59.907
计量
  • 文章访问数:  6587
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-07
  • 修回日期:  2018-07-04
  • 刊出日期:  2018-11-05

/

返回文章
返回