搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于飞秒激光抽运的石墨烯包裹微光纤波导结构的级联四波混频研究

冯秋燕 姚佰承 周金浩 夏汉定 范孟秋 张黎 吴宇 饶云江

引用本文:
Citation:

基于飞秒激光抽运的石墨烯包裹微光纤波导结构的级联四波混频研究

冯秋燕, 姚佰承, 周金浩, 夏汉定, 范孟秋, 张黎, 吴宇, 饶云江

Four-wave-mixing generated by femto-second laser pumping based on graphene coated microfiber structure

Feng Qiu-Yan, Yao Bai-Cheng, Zhou Jin-Hao, Xia Han-Ding, Fan Meng-Qiu, Zhang Li, Wu Yu, Rao Yun-Jiang
PDF
导出引用
  • 基于石墨烯的光学非线性特性和器件研究正在成为新一代微纳光子器件的一个重要方向. 采用峰值功率为kW量级的飞秒脉冲抽运和P型掺杂石墨烯薄膜包裹的微光纤所构成的复合波导结构, 在1550 nm波段成功激发并观察到级联四波混频现象. 实验 结果表明, 这种P型掺杂石墨烯包裹的微光纤复合波导具有非线性系数高、结构紧凑, 可承受高功率和超快响应的特点, 对基于该结构的级联四波混频特性的研究在基于超快光学的多波长光源、光参量放大以及全光再生等领域具有参考价值和应用意义
    Nonlinear optics researches of graphene-based four waves mixing (FWM) effect are important for a new generation of photonic devices. Compared with the ordinary graphene materials, the P-doped graphene based hybrid waveguide structure is more conducive to the simulating of the third-order nonlinear effect in low power due to its smaller transmission loss. In this work, we propose a P-doped graphene coated microfiber hybrid waveguide structure for femto-second laser pumping excited FWM. By the simulations, we analyze the HE11 mode distribution and the effective refractive index of the silica microfiber and P-doped graphene coated microfiber hybrid waveguide with different fiber diameters at a wavelength of ~1550 nm. We also implement the fabrication processing and characterize this P-doped graphene coated microfiber hybrid waveguide. In the experiments, we utilize a femto-second laser as the pump laser with a peak power up to kW. As the graphene material and the microfiber contribute to the nonlinearity, the cascade FWM could be obtained. Experimental results demonstrate that when the peak power of the injection pump is fixed at 1.03 kW, by adjusting the detuning in wavelength to the length less than 10.0nm, there are four sets of frequency components that can be observed. In the present paper, we provide the relationship among the detuning in wavelength, the pump power and the the power of stokes peak. These results indicate that under the condition of a few nanometer detuning wavelength, when the pump power is fixed at 14.1 dBm and the detuning wavelength is 6.7 nm, there are second order stokes light and the second order anti-stokes light, which can be observed, here the obtained conversion efficiency is up to-60 dB, which can be improved by optimizing the waveguide structure and increasing the pump power. Meanwhile, this FWM processing is also fast due to the fast pumping laser.#br#The simulation and experimental results demonstrate that this P-doped graphene coated microfiber hybrid structure has the advantages of highly nonlinearity, compact size and withstanding high power ultrafast laser, showing the important research value and potential applications in fields based on ultrafast optics, such as multi-wavelength laser, phase-sensitive amplification, comb filters and all-optical regeneration.
      通信作者: 吴宇, wuyuzju@163.com
    • 基金项目: 国家自然科学基金(批准号: 61475032) 和国家自然科学基金重大项目 (批准号: 61290312) 资助的课题.
      Corresponding author: Wu Yu, wuyuzju@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61475032), and the Major Program of the National Natural Science Foundation of China (Grant No. 61290312).
    [1]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611

    [2]

    Avouris P 2010 Nano Lett. 10 4285

    [3]

    Cheng Y, Yao B C, Wu Y, Wang Z G, Gong Y, Rao Y J 2013 Acta Phys. Sin. 62 237805(in Chinese) [程杨, 姚佰承, 吴宇, 王泽高, 龚元, 饶云江 2013 物理学报 62 237805]

    [4]

    Li S J, Gan S, Mu H R, Xu Q Y, Qiao H, Li P F, Xue Y Z, Bao Q L 2014 New Carb. Met. 29 330(in Chinese) [李绍娟, 甘胜, 沐浩然, 徐庆阳, 乔虹, 李鹏飞, 薛运周, 鲍桥梁 2014 新型炭材料 29 330]

    [5]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N 2008 Nat. Phys. 4 532

    [6]

    Youngblood N, Anugrah Y, Ma R, Koester S J, LiM 2014 Nano Lett. 14 2741

    [7]

    Manjavacas A, Thongrattanasiri S, Greffet J J, Abajo F J G D 2014 Appl. Phys. Lett. 105 211102

    [8]

    Feng D J, Huang W Y, Jiang S Z, Ji W, Jia D F 2013 Acta Phys. Sin. 62 054202(in Chinese) [冯德军, 黄文育, 姜守振, 季伟, 贾东方 2013 物理学报 62 054202]

    [9]

    Yao B C, Wu Y, Cheng Y, Zhang A Q, Gong Y, Rao Y J, Wang Z G, Chen Y F 2014 Sen. Actuator B 194 142

    [10]

    Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J, Shen Y 2014 Nano Lett. 14 955

    [11]

    Tong Z, Lundstrom C, Andrekson P A, McKinstrie C J, Karlsson M, Blessing D J, Tipsuwannakul E, Puttnam B J, Toda H, Grner-Nielsen L 2011 Nat. Photon. 5 430

    [12]

    Kakande J, Slavik R, Parmigiani F, Bogris A, Syvridis D, Nielsen L, Phelan R, Petropoulos P, Richardson D J 2011 Nat. Photon. 5 748

    [13]

    Hendry E, Hale P, Moger J, Savchenko A 2010 Phys. Rev. Lett. 105 097401

    [14]

    Zhang Z, Voss P L 2011 Opt. Lett. 36 4569

    [15]

    Gu T, Petrone N, McMillan J F, Zande A, Yu M, Lo G, Kwong D, Hone J, Wong C W 2012 Nat. Photon. 6 554

    [16]

    Wu Y, Yao B C, Cheng Y, Rao Y J, Zhou X Y, Wu B J, Chiang K S 2014 IEEE Photo. Tech. Lett. 20 249

    [17]

    Tong L, Lou J, Mazur E 2004 Opt. Express 12 1025

    [18]

    Yao B C, Wu Y, Zhang A Q, Wang Z G, Rao Y J, Gong Y, Zhang W L, Wang Z N, Chiang K S, Sumetsky M 2014 Opt. Express 22 23829

    [19]

    Yao B C, Wu Y, Zhang A Q, Rao Y J, Wang Z N, Cheng Y, Gong Y, Zhang W L, Chen Y F, Chiang K S 2014 Opt. Express 22 28154

    [20]

    Vakil A, Engheta N 2011 Science 332 1291

    [21]

    Agrawal G P 2009 Nonlinear Fiber Optics (4th Ed.) (Singapore: Elsevier) pp35-39

    [22]

    Li Y H, Zhao Y Y, Wang L J 2012 Opt. Lett. 37 3441

  • [1]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611

    [2]

    Avouris P 2010 Nano Lett. 10 4285

    [3]

    Cheng Y, Yao B C, Wu Y, Wang Z G, Gong Y, Rao Y J 2013 Acta Phys. Sin. 62 237805(in Chinese) [程杨, 姚佰承, 吴宇, 王泽高, 龚元, 饶云江 2013 物理学报 62 237805]

    [4]

    Li S J, Gan S, Mu H R, Xu Q Y, Qiao H, Li P F, Xue Y Z, Bao Q L 2014 New Carb. Met. 29 330(in Chinese) [李绍娟, 甘胜, 沐浩然, 徐庆阳, 乔虹, 李鹏飞, 薛运周, 鲍桥梁 2014 新型炭材料 29 330]

    [5]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N 2008 Nat. Phys. 4 532

    [6]

    Youngblood N, Anugrah Y, Ma R, Koester S J, LiM 2014 Nano Lett. 14 2741

    [7]

    Manjavacas A, Thongrattanasiri S, Greffet J J, Abajo F J G D 2014 Appl. Phys. Lett. 105 211102

    [8]

    Feng D J, Huang W Y, Jiang S Z, Ji W, Jia D F 2013 Acta Phys. Sin. 62 054202(in Chinese) [冯德军, 黄文育, 姜守振, 季伟, 贾东方 2013 物理学报 62 054202]

    [9]

    Yao B C, Wu Y, Cheng Y, Zhang A Q, Gong Y, Rao Y J, Wang Z G, Chen Y F 2014 Sen. Actuator B 194 142

    [10]

    Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J, Shen Y 2014 Nano Lett. 14 955

    [11]

    Tong Z, Lundstrom C, Andrekson P A, McKinstrie C J, Karlsson M, Blessing D J, Tipsuwannakul E, Puttnam B J, Toda H, Grner-Nielsen L 2011 Nat. Photon. 5 430

    [12]

    Kakande J, Slavik R, Parmigiani F, Bogris A, Syvridis D, Nielsen L, Phelan R, Petropoulos P, Richardson D J 2011 Nat. Photon. 5 748

    [13]

    Hendry E, Hale P, Moger J, Savchenko A 2010 Phys. Rev. Lett. 105 097401

    [14]

    Zhang Z, Voss P L 2011 Opt. Lett. 36 4569

    [15]

    Gu T, Petrone N, McMillan J F, Zande A, Yu M, Lo G, Kwong D, Hone J, Wong C W 2012 Nat. Photon. 6 554

    [16]

    Wu Y, Yao B C, Cheng Y, Rao Y J, Zhou X Y, Wu B J, Chiang K S 2014 IEEE Photo. Tech. Lett. 20 249

    [17]

    Tong L, Lou J, Mazur E 2004 Opt. Express 12 1025

    [18]

    Yao B C, Wu Y, Zhang A Q, Wang Z G, Rao Y J, Gong Y, Zhang W L, Wang Z N, Chiang K S, Sumetsky M 2014 Opt. Express 22 23829

    [19]

    Yao B C, Wu Y, Zhang A Q, Rao Y J, Wang Z N, Cheng Y, Gong Y, Zhang W L, Chen Y F, Chiang K S 2014 Opt. Express 22 28154

    [20]

    Vakil A, Engheta N 2011 Science 332 1291

    [21]

    Agrawal G P 2009 Nonlinear Fiber Optics (4th Ed.) (Singapore: Elsevier) pp35-39

    [22]

    Li Y H, Zhao Y Y, Wang L J 2012 Opt. Lett. 37 3441

  • [1] 姚海云, 闫昕, 梁兰菊, 杨茂生, 杨其利, 吕凯凯, 姚建铨. 图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制. 物理学报, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [2] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响. 物理学报, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [3] 陈忠, 华林强, 张津, 龚成, 柳晓军. 基于氧化镁晶体中级联四波混频过程的紫外飞秒光脉冲产生. 物理学报, 2021, 70(6): 064201. doi: 10.7498/aps.70.20201573
    [4] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [5] 江孝伟, 武华, 袁寿财. 基于金属光栅实现石墨烯三通道光吸收增强. 物理学报, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [6] 卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析. 物理学报, 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [7] 王小发, 张俊红, 高子叶, 夏光琼, 吴正茂. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器. 物理学报, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [8] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [9] 顾云风, 吴晓莉, 吴宏章. 三终端非对称夹角石墨烯纳米结的弹道热整流. 物理学报, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [10] 姜彦南, 王扬, 葛德彪, 李思敏, 曹卫平, 高喜, 于新华. 一种基于石墨烯的超宽带吸波器. 物理学报, 2016, 65(5): 054101. doi: 10.7498/aps.65.054101
    [11] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [12] 毕卫红, 王圆圆, 付广伟, 王晓愚, 李彩丽. 基于石墨烯涂覆空心光纤电光调制特性的研究. 物理学报, 2016, 65(4): 047801. doi: 10.7498/aps.65.047801
    [13] 李梦梦, 朱宝华, 冉霞, 刘波, 郭立俊. 新型偶氮苯衍生物的三阶非线性光学特性. 物理学报, 2016, 65(2): 024207. doi: 10.7498/aps.65.024207
    [14] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波. 物理学报, 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [15] 刘奇福, 李方家, 刘军. 在固体透明材料中利用级联四波混频方法获得宽带多色飞秒激光脉冲的研究. 物理学报, 2014, 63(9): 094209. doi: 10.7498/aps.63.094209
    [16] 冯德军, 黄文育, 姜守振, 季伟, 贾东方. 基于少数层石墨烯可饱和吸收的锁模光纤激光器. 物理学报, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [17] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究. 物理学报, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [18] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [19] 朱宝华, 王芳芳, 张 琨, 马国宏, 顾玉宗, 郭立俊, 钱士雄. CdSe量子点的线性和非线性光学特性. 物理学报, 2008, 57(10): 6557-6564. doi: 10.7498/aps.57.6557
    [20] 朱宝华, 王芳芳, 张 琨, 马国宏, 郭立俊, 钱士雄. Ag:Bi2O3复合膜的线性和非线性光学性质. 物理学报, 2007, 56(7): 4024-4031. doi: 10.7498/aps.56.4024
计量
  • 文章访问数:  3033
  • PDF下载量:  303
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-19
  • 修回日期:  2015-04-17
  • 刊出日期:  2015-09-05

基于飞秒激光抽运的石墨烯包裹微光纤波导结构的级联四波混频研究

  • 1. 电子科技大学通信与信息工程学院, 光纤传感与通信教育部重点实验室, 成都 611731;
  • 2. 电子科技大学微电子与固体电子学院, 电子薄膜与集成器件国家重点实验室, 成都 610054;
  • 3. 电子科技大学光电信息学院, 成都 610054
  • 通信作者: 吴宇, wuyuzju@163.com
    基金项目: 国家自然科学基金(批准号: 61475032) 和国家自然科学基金重大项目 (批准号: 61290312) 资助的课题.

摘要: 基于石墨烯的光学非线性特性和器件研究正在成为新一代微纳光子器件的一个重要方向. 采用峰值功率为kW量级的飞秒脉冲抽运和P型掺杂石墨烯薄膜包裹的微光纤所构成的复合波导结构, 在1550 nm波段成功激发并观察到级联四波混频现象. 实验 结果表明, 这种P型掺杂石墨烯包裹的微光纤复合波导具有非线性系数高、结构紧凑, 可承受高功率和超快响应的特点, 对基于该结构的级联四波混频特性的研究在基于超快光学的多波长光源、光参量放大以及全光再生等领域具有参考价值和应用意义

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回