搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型偶氮苯衍生物的三阶非线性光学特性

李梦梦 朱宝华 冉霞 刘波 郭立俊

引用本文:
Citation:

新型偶氮苯衍生物的三阶非线性光学特性

李梦梦, 朱宝华, 冉霞, 刘波, 郭立俊

Third-order nonlinear optical properties of an azobenzene derivate

Li Meng-Meng, Zhu Bao-Hua, Ran Xia, Liu Bo, Guo Li-Jun
PDF
导出引用
  • 本文以30 ps的脉冲激光为激发光源, 用Z扫描技术研究了偶氮苯类材料4-羟基-4'-羧基偶氮苯(BN)和N-(3, 4, 5-辛氧基苯基)-N'-4-[(4-羟基苯)偶氮苯]1, 3, 4-恶二唑(AOB-t8) 及金属复合物(Au/AOB-t8)的三阶非线性光学性质, 并从理论上进行了分析和计算. 结果表明, AOB-t8的三阶非线性极化率是BN的1.38倍, 其非线性光学效应的增大是由共轭链增长、大 键增多引起的. 结果同时给出, AOB-t8的三阶非线性极化率是其与金纳米颗粒复合物的4.7倍, 这种与金属复合产生的非线性光学效应的减弱是金属引入的局域场效应与有机分子大键作用之间相互抵消导致的.
    In recent years, azobenzene derivates have received much attention for their potential application in optical data storage, biophotonics, holographic memories and waveguide switches optical sensors, and sensitive optical components from laser damage in both civilian and military applications. Experimental and theoretical studies demonstrate clearly the effect of the sonor-pi-acceptor (D- -A) conjugation on the steady-state and time-resolved PL spectra of azobenzene derivate films in multifarious situations, but comparatively little is concerned about the two-photon absorption and refraction involved in a single benzene ring. Furthermore, the excitation laser source on the azobenzene derivates in some investigations is continuum laser or nanosecond pulsed laser, where it is hard to avoid thermal effect on nonlinear optical (NLO) process produced by these lasers. To explore the origin of the azobenzene derivates' D- -A conjugation-dependent NLO process is a challenging task and has great signicance in describing the molecular structures of these azobenzene nanostructures as well as improving the performance of azobenzene derivates' devices. The D- -A conjugation of azobenzene functional material can be modified by mixing the azobenzene derivates with metal nanoparticles, so it is convenient to study how the D- -A conjugation affects the NLO properties by using the azobenzene derivate-metal composites. In this letter, the D- -A conjugation-dependent NLO absorption and refraction of the two kinds of azobenzene derivates 4-((4'-hydroxybenzene) azo) benzyl acid(BN) and N-(3, 4, 5-octanoxyphnyl)-N'-4-[(4-hydroxyphenyl) azophenyl]1, 3, 4-oxadiazole (AOB-t8) are investigated by Z-scan technology using 32 ps laser pulse width at 532 nm. The azobenzene derivates' surface is modified using the D- -A conjugation control and overcoating Au nanoparticles on the azobenzene derivates; and the Au/AOB-t8 composites, BN and AOB-t8 are characterized by Z-scans and absorption/fluorescence spectrum, and also calculated based on plasma resonance. The third-order NLO susceptibility of AOB-t8 is enhanced as compared with BN due to the growing conjugate chain and the increasingly extended bond. However, the third-order NLO susceptibility of AOB-t8 is decreased in the composite(Au/AOB-t8) for the cooperation of the local field effect induced by the gold nanoparticles and the extended bond of organic molecules. This work may be helpful to the understanding of the physical mechanism of the surface states and the surface-related optical nonlinearity of semiconductor QDs.
    [1]

    Bhagavannarayana G, Riscob B, Shakir M 2011 Mater. Chem. Phys. 126 20

    [2]

    Harutyunyan H, Volpe G, Quidant R, Novotny L 2012 Phys. Rev. Lett. 108 217403

    [3]

    Zhu B H, Wang F F, Zhang K, Ma G H, Guo L J, Qian S X 2007 Acta Phys.Sin. 56 4024 (in Chinese) [朱宝华, 王芳芳, 张琨, 马国宏, 郭立俊, 钱世雄 2007 物理学报 56 4024]

    [4]

    Tabiryan N, Hrozhyk U, Serak S 2004 Phys. Rev. Lett. 93 113901

    [5]

    Jaunet-Lahary T, Chantzis A, Chen K J, Laurent A D, Jacquemin D 2014 J. Phys. Chem. C 118 28831

    [6]

    Zhao F, Wang C, Zeng Y, Jin Z, Ma G 2013 Chem. Phys. Lett. 558 100

    [7]

    Virkki M, Tuominen O, Forni A, Saccone M, Metrangolo P, Resnati G, Priimagi A 2015 J. Mater. Chem. C 3 3003

    [8]

    Brzozowski L, Sargent E H 2001 J. Mater. Sci. Mater. Elect. 12 483

    [9]

    Bandara H M D, Burdette S C 2012 Chem. Soc. Rev. 41 1809

    [10]

    Papagiannouli I, Iliopoulos K, Gindre D, Sahraoui B, Krupka O, Smokal V, Couris S 2012 Chem. Phys. Lett. 554 107

    [11]

    El Ouazzani H, Iliopoulos K, Pranaitis M, Krupka O, Smokal V, Kolendo A, Sahraoui B 2011 J. Phys. Chem. B 115 1944

    [12]

    Li N J, Lu J M, Li H, Kang E T 2011 Dyes Pigments 88 18

    [13]

    Yan Z Q, Guang S Y, Xu H Y, Liu X Y 2013 Dyes Pigments 99 720

    [14]

    Zeng Y, Pan Z H, Zhao F L, Qin M, Zhou Y, Wang C S 2014 Chin. Phys. B 23 024212

    [15]

    Papagiannouli I, Iliopoulos K, Gindre D, Sahraoui B, Krupka O, Smokal V, Kolendo A, Couris S 2012 Chem. Phys. Lett. 554 107

    [16]

    Kerasidou A P, Khammar F, Iliopoulos K, Ayadi A, El-Ghayoury A, Zouari N, Mhiri T, Sahraoui B 2014 Chem. Phys. Lett. 597 106

    [17]

    Liaros N, Couris S, Maggini L, De Leo F, Cattaruzza F, Aurisicchio C, Bonifazi D 2013 Chem. Phys. Chem. 14 2961

    [18]

    El Ouazzani H, Iliopoulos K, Pranaitis M, Krupka O, Smokal V, Kolendo A, Sahraoui B 2011 J. Phys. Chem. B 115 1944

    [19]

    Qian Y, Xiao G M, Wang G, Lin B P, Cui Y, Sun Y M 2007 Dyes Pigments 75 218

    [20]

    Wu S J, Qian W, Xia Z J, Zou Y H, Wang S Q, Shen S Y, Xu H J 2000 Chem. Phys. Lett. 330 535

    [21]

    Zhu B H, Wang F F, Zhang K, Ma G H, Gu Y Z, Guo L J, Qian S X 2008 Acta Phys. Sin. 57 3085 (in Chinese) [朱宝华, 王芳芳, 张琨, 马国宏, 顾玉宗, 郭立俊, 钱世雄 2008 物理学报 57 3085]

    [22]

    Ran X, Wang H, Lou J, Shi L L, Liu B, Li M, Guo L J 2014 Soft Mater. 12 396

    [23]

    Ji X H, Song X, Li J, Bai Y, Yang W, Peng X 2007 J. Am. Chem. Soc. 129 13939

    [24]

    Sheik-Bahae M, SAID A A, WEI T, Hagan D J, Vanstryland E W 1990 IEEE J. Quant. Elect. 26 760

    [25]

    Agrawal G P, Cojan C, Flytzanis C 1978 Phys. Rev. B 17 776

    [26]

    Sipe J E, Boyd R W 1992 Phys. Rev. A 46 1614

  • [1]

    Bhagavannarayana G, Riscob B, Shakir M 2011 Mater. Chem. Phys. 126 20

    [2]

    Harutyunyan H, Volpe G, Quidant R, Novotny L 2012 Phys. Rev. Lett. 108 217403

    [3]

    Zhu B H, Wang F F, Zhang K, Ma G H, Guo L J, Qian S X 2007 Acta Phys.Sin. 56 4024 (in Chinese) [朱宝华, 王芳芳, 张琨, 马国宏, 郭立俊, 钱世雄 2007 物理学报 56 4024]

    [4]

    Tabiryan N, Hrozhyk U, Serak S 2004 Phys. Rev. Lett. 93 113901

    [5]

    Jaunet-Lahary T, Chantzis A, Chen K J, Laurent A D, Jacquemin D 2014 J. Phys. Chem. C 118 28831

    [6]

    Zhao F, Wang C, Zeng Y, Jin Z, Ma G 2013 Chem. Phys. Lett. 558 100

    [7]

    Virkki M, Tuominen O, Forni A, Saccone M, Metrangolo P, Resnati G, Priimagi A 2015 J. Mater. Chem. C 3 3003

    [8]

    Brzozowski L, Sargent E H 2001 J. Mater. Sci. Mater. Elect. 12 483

    [9]

    Bandara H M D, Burdette S C 2012 Chem. Soc. Rev. 41 1809

    [10]

    Papagiannouli I, Iliopoulos K, Gindre D, Sahraoui B, Krupka O, Smokal V, Couris S 2012 Chem. Phys. Lett. 554 107

    [11]

    El Ouazzani H, Iliopoulos K, Pranaitis M, Krupka O, Smokal V, Kolendo A, Sahraoui B 2011 J. Phys. Chem. B 115 1944

    [12]

    Li N J, Lu J M, Li H, Kang E T 2011 Dyes Pigments 88 18

    [13]

    Yan Z Q, Guang S Y, Xu H Y, Liu X Y 2013 Dyes Pigments 99 720

    [14]

    Zeng Y, Pan Z H, Zhao F L, Qin M, Zhou Y, Wang C S 2014 Chin. Phys. B 23 024212

    [15]

    Papagiannouli I, Iliopoulos K, Gindre D, Sahraoui B, Krupka O, Smokal V, Kolendo A, Couris S 2012 Chem. Phys. Lett. 554 107

    [16]

    Kerasidou A P, Khammar F, Iliopoulos K, Ayadi A, El-Ghayoury A, Zouari N, Mhiri T, Sahraoui B 2014 Chem. Phys. Lett. 597 106

    [17]

    Liaros N, Couris S, Maggini L, De Leo F, Cattaruzza F, Aurisicchio C, Bonifazi D 2013 Chem. Phys. Chem. 14 2961

    [18]

    El Ouazzani H, Iliopoulos K, Pranaitis M, Krupka O, Smokal V, Kolendo A, Sahraoui B 2011 J. Phys. Chem. B 115 1944

    [19]

    Qian Y, Xiao G M, Wang G, Lin B P, Cui Y, Sun Y M 2007 Dyes Pigments 75 218

    [20]

    Wu S J, Qian W, Xia Z J, Zou Y H, Wang S Q, Shen S Y, Xu H J 2000 Chem. Phys. Lett. 330 535

    [21]

    Zhu B H, Wang F F, Zhang K, Ma G H, Gu Y Z, Guo L J, Qian S X 2008 Acta Phys. Sin. 57 3085 (in Chinese) [朱宝华, 王芳芳, 张琨, 马国宏, 顾玉宗, 郭立俊, 钱世雄 2008 物理学报 57 3085]

    [22]

    Ran X, Wang H, Lou J, Shi L L, Liu B, Li M, Guo L J 2014 Soft Mater. 12 396

    [23]

    Ji X H, Song X, Li J, Bai Y, Yang W, Peng X 2007 J. Am. Chem. Soc. 129 13939

    [24]

    Sheik-Bahae M, SAID A A, WEI T, Hagan D J, Vanstryland E W 1990 IEEE J. Quant. Elect. 26 760

    [25]

    Agrawal G P, Cojan C, Flytzanis C 1978 Phys. Rev. B 17 776

    [26]

    Sipe J E, Boyd R W 1992 Phys. Rev. A 46 1614

  • [1] 陈娟, 胡巍, 陆大全. 三阶非线性效应对边界限制的自聚焦振荡型响应函数系统中二次孤子的影响. 物理学报, 2022, 71(21): 214205. doi: 10.7498/aps.71.20220865
    [2] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究. 物理学报, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [3] 肖士妍, 贾大功, 聂安然, 余辉, 吉喆, 张红霞, 刘铁根. 开放式多通道多芯少模光纤表面等离子体共振生物传感器. 物理学报, 2020, 69(13): 137802. doi: 10.7498/aps.69.20200353
    [4] 施伟华, 尤承杰, 吴静. 基于表面等离子体共振和定向耦合的D形光子晶体光纤折射率和温度传感器. 物理学报, 2015, 64(22): 224221. doi: 10.7498/aps.64.224221
    [5] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [6] 荆庆丽, 杜春光, 高健存. 表面等离子共振现象的新应用——微弱磁场的测量. 物理学报, 2013, 62(3): 037302. doi: 10.7498/aps.62.037302
    [7] 甘平, 辜敏, 卿胜兰, 鲜晓东. Te/TeO2-SiO2复合薄膜的吸收和非线性光学特性研究. 物理学报, 2013, 62(7): 078101. doi: 10.7498/aps.62.078101
    [8] 张喆, 柳倩, 祁志美. 基于金银合金薄膜的近红外表面等离子体共振传感器研究. 物理学报, 2013, 62(6): 060703. doi: 10.7498/aps.62.060703
    [9] 冯李航, 曾捷, 梁大开, 张为公. 契形结构光纤表面等离子体共振传感器研究. 物理学报, 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [10] 邹志宇, 刘晓芳, 曾敏, 杨白, 于荣海, 姜鹤, 唐瑞鹤, 吴章奔. 电场辅助溶解法实现玻璃表面金纳米粒子的形貌控制. 物理学报, 2012, 61(10): 104208. doi: 10.7498/aps.61.104208
    [11] 闫红丹, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling. 基于表面等离子体耦合的高密度金纳米线阵列. 物理学报, 2012, 61(23): 237105. doi: 10.7498/aps.61.237105
    [12] 钟明亮, 李山, 熊祖洪, 张中月. 十字形银纳米结构的表面等离子体光子学性质. 物理学报, 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [13] 邱东江, 范文志, 翁圣, 吴惠桢, 王俊. 以表面等离子体为媒介的ZnO薄膜发光增强特性研究. 物理学报, 2011, 60(8): 087301. doi: 10.7498/aps.60.087301
    [14] 郝鹏, 吴一辉, 张平. 纳米金表面修饰与表面等离子体共振传感器的相互作用研究. 物理学报, 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
    [15] 刘启明, 何漩, 干福熹, 钱士雄. 硫系非晶半导体薄膜中的超快光 Kerr效应. 物理学报, 2009, 58(2): 1002-1006. doi: 10.7498/aps.58.1002
    [16] 龙拥兵, 张剑, 汪国平. 基于表面等离子体激元共振的飞秒抽运探测技术研究. 物理学报, 2009, 58(11): 7722-7726. doi: 10.7498/aps.58.7722
    [17] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻. 物理学报, 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [18] 朱宝华, 王芳芳, 张 琨, 马国宏, 顾玉宗, 郭立俊, 钱士雄. CdSe量子点的线性和非线性光学特性. 物理学报, 2008, 57(10): 6557-6564. doi: 10.7498/aps.57.6557
    [19] 朱宝华, 王芳芳, 张 琨, 马国宏, 顾玉宗, 郭立俊, 钱士雄. Au:TiO2和Au:Al2O3纳米颗粒复合膜的线性和非线性光学特性. 物理学报, 2008, 57(5): 3085-3092. doi: 10.7498/aps.57.3085
    [20] 朱宝华, 王芳芳, 张 琨, 马国宏, 郭立俊, 钱士雄. Ag:Bi2O3复合膜的线性和非线性光学性质. 物理学报, 2007, 56(7): 4024-4031. doi: 10.7498/aps.56.4024
计量
  • 文章访问数:  5618
  • PDF下载量:  344
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-09
  • 修回日期:  2015-09-18
  • 刊出日期:  2016-01-20

/

返回文章
返回