搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三终端非对称夹角石墨烯纳米结的弹道热整流

顾云风 吴晓莉 吴宏章

引用本文:
Citation:

三终端非对称夹角石墨烯纳米结的弹道热整流

顾云风, 吴晓莉, 吴宏章

Ballistic thermal rectification in the three-terminal graphene nanojunction with asymmetric connection angles

Gu Yun-Feng, Wu Xiao-Li, Wu Hong-Zhang
PDF
导出引用
  • 提出并通过非平衡格林函数法验证了一个三终端石墨烯纳米结弹道热整流的理论模型石墨烯带两端作为左右热极,其上加一倾斜分支作为控制热极形成一个Y形纳米结.结果发现:热流倾向于从与控制热极夹角较小的热极流向另一个热极;控制热极与左右热极间夹角差别的增大有利于热整流,这一现象在扶手椅型石墨烯带上尤其明显;锯齿型石墨烯带加上与其呈30夹角的扶手椅型分支具有最明显的热整流效应;对于左右热极宽度不同的热整流器,倾斜控制热极可以使整流比在原来的基础上提高超过50%.
    By using the nonequilibrium Green's function method, the ballistic thermal rectification in the three-terminal graphene nanojunction is studied. The dynamics of atoms is described by the interatomic fourth-nearest neighbor force-constant model. The nanojunction has a Y-shaped structure, created by a combination of a straight graphene nanoribbon and a leaning branch as the control terminal holding a fixed temperature. No heat flux flows through the control terminal. There exists a temperature bias between the two ends of the graphene nanoribbon serving as the left and right terminals, respectively. The primary goal of this paper is to demonstrate that the ballistic thermal rectification can be introduced by the asymmetric structure with different connection angles between terminals. The control terminal has a smaller connection angle with respect to the left terminal than to the right terminal. The forward direction is defined as being from the left terminal to the right terminal. The results demonstrate that, given the same control temperature and absolute temperature bias, the heat flux in the graphene nanoribbon tends to run preferentially along the forward direction. When the difference between the connection angles increases, the rectification ratio rises. Compared with that of the zigzag graphene nanoribbon, the rectification ratio of the armchair nanoribbon is much sensitive to the direction the control terminal. However, the greatest rectification ratio is found in the zigzag graphene nanoribbon which has a connection angle of 30 degrees with respect to the armchair branch. In addition, the direction of the control terminal can be adjusted to raise more than 50% of the rectification ratio of the graphene thermal rectifier based on the width discrepancy between the left and right terminals. The mechanism of the ballistic thermal rectification is also discussed. In the three-terminal graphene nanojunction, a smaller connection angle with respect to the control terminal leads to more phonon scatterings. The confirmation of this conclusion comes from a comparison of phonon transmission between different couples of terminals, which shows that in most of the frequency spectrum, the phonon transmission between the control terminal and the left terminal is smaller than between the control terminal and the right terminal. Given the same control terminal temperature and temperature bias, the asymmetric connection angles therefore will introduce a higher average temperature of the left and right terminals, and a larger heat flux in the forward process. Moreover, the average temperature difference between in the forward process and in the reverse process is found to be proportional to the temperature bias, and the proportionality coefficient will become bigger if the asymmetry is strengthened.
      通信作者: 顾云风, gu_yunfeng@sina.com
    • 基金项目: 国家自然科学基金(批准号:51376094,51476033)资助的课题.
      Corresponding author: Gu Yun-Feng, gu_yunfeng@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51376094, 51476033).
    [1]

    Maldovan M 2013 Nature 503 209

    [2]

    Terraneo M, Peyrard M, Casati G 2002 Phys. Rev. Lett. 88 094302

    [3]

    Li B W, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [4]

    Chang C W, Okawa D, Majumdar A, Zettl A 2006 Science 314 1121

    [5]

    Scheibner R, König M, Reuter D, Wieck A D, Buhmann H, Molenkamp L W 2007 New J. Phys. 10 083016

    [6]

    Tian H, Xie D, Yang Y, Ren T L, Zhang G, Wang Y F, Zhou C J, Peng P G, Wang L G, Liu L T 2012 Sci. Rep. 2 523

    [7]

    Zeng N, Wang J S 2008 Phys. Rev. B 78 024305

    [8]

    Yang N, Li N B, Wang L, Li B W 2007 Phys. Rev. B 76 020301

    [9]

    Shah T N, Gajjar P N 2013 Eur. Phys. J. B 86 497

    [10]

    Yang N, Zhang G, Li B W 2008 Appl. Phys. Lett. 93 243111

    [11]

    Wang Y, Vallabhaneni A, Hu J N, Qiu B, Chen Y P, Ruan X L 2014 Nano Lett. 14 592

    [12]

    Wang Y, Chen S Y, Ruan X L 2012 Appl. Phys. Lett. 100 163101

    [13]

    Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Carbon 100 492

    [14]

    Ding X, Ming Y 2014 Chin. Phys. Lett. 31 046601

    [15]

    Ouyang T, Chen Y P, Xie Y E, Wei X L, Yang K K, Yang P, Zhong J X 2010 Phys. Rev. B 82 245403

    [16]

    Liang B, Yuan Y, Cheng J C 2015 Acta Phys. Sin. 64 094305 (in Chinese)[梁彬, 袁樱, 程建春2015物理学报 64 094305]

    [17]

    Ming Y, Wang Z X, Ding Z J, Li H M 2010 New J. Phys. 12 103041

    [18]

    Zhang L F, Wang J S, Li B W 2010 Phys. Rev. B 81 100301

    [19]

    Xie Z X, Li K M, Tang L M, Pan C N, Chen K Q 2012 Appl. Phys. Lett. 100 183110

    [20]

    Gu Y F, Ni Z H, Chen M H, Bi K D, Chen Y F 2012 J. Heat Trans. 134 062401

    [21]

    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911

    [22]

    Zhang Y, Liu L Q, Xi N, Wang Y C, Dong Z L 2012 Sci. Sin.:Phys. Mech. Astron. 42 358 (in Chinese)[张嵛, 刘连庆, 席宁, 王越超, 董再励2012中国科学:物理学力学天文学 42 358]

    [23]

    Areshkin D A, White C T 2007 Nano Lett. 7 3253

    [24]

    Xu Y, Chen X B, Wang J S, Gu B L, Duan W H 2010 Phys. Rev. B 81 195425

    [25]

    Bao Z G, Chen Y P, Ouyang T, Yang K K, Zhong J X 2011 Acta Phys. Sin. 60 028103 (in Chinese)[鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新2011物理学报 60 028103]

    [26]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese)[陈晓彬, 段文晖2015物理学报 64 186302]

    [27]

    Saito R, Dresselhaus G, Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London:Imperial College Press) pp166-171

    [28]

    Pourfath M 2014 Non-equilibrium Green's Function Method for Nanoscale Device Simulation (Wien:Springer-Verlag) pp221-230

    [29]

    Scuracchio P, Dobry A, Costamagna S, Peeters F M 2015 Nanotechnology 26 305401

    [30]

    Wang J S, Wang J, L J T 2008 Eur. Phys. J. B 62 381

    [31]

    Roberts N A, Walker D G 2011 Int. J. Therm. Sci. 50 648

    [32]

    Zhang G 2015 Nanoscale Energy Transport and Harvesting:A Computational Study (Boca Raton:CRC Press) pp91-141

    [33]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [34]

    Balandin A A 2011 Nat. Mater. 10 569

    [35]

    Munoz E, Lu J, Yakobson B I 2010 Nano Lett. 10 1652

    [36]

    Kim T Y, Park C H, Marzari N 2016 Nano Lett. 16 2439

    [37]

    Ye E J, Sui W Q, Zhao X A 2012 Appl. Phys. Lett. 100 193303

    [38]

    Chen Y P, Xie Y E, Yan X H 2008 J. Appl. Phys. 103 063711

  • [1]

    Maldovan M 2013 Nature 503 209

    [2]

    Terraneo M, Peyrard M, Casati G 2002 Phys. Rev. Lett. 88 094302

    [3]

    Li B W, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [4]

    Chang C W, Okawa D, Majumdar A, Zettl A 2006 Science 314 1121

    [5]

    Scheibner R, König M, Reuter D, Wieck A D, Buhmann H, Molenkamp L W 2007 New J. Phys. 10 083016

    [6]

    Tian H, Xie D, Yang Y, Ren T L, Zhang G, Wang Y F, Zhou C J, Peng P G, Wang L G, Liu L T 2012 Sci. Rep. 2 523

    [7]

    Zeng N, Wang J S 2008 Phys. Rev. B 78 024305

    [8]

    Yang N, Li N B, Wang L, Li B W 2007 Phys. Rev. B 76 020301

    [9]

    Shah T N, Gajjar P N 2013 Eur. Phys. J. B 86 497

    [10]

    Yang N, Zhang G, Li B W 2008 Appl. Phys. Lett. 93 243111

    [11]

    Wang Y, Vallabhaneni A, Hu J N, Qiu B, Chen Y P, Ruan X L 2014 Nano Lett. 14 592

    [12]

    Wang Y, Chen S Y, Ruan X L 2012 Appl. Phys. Lett. 100 163101

    [13]

    Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Carbon 100 492

    [14]

    Ding X, Ming Y 2014 Chin. Phys. Lett. 31 046601

    [15]

    Ouyang T, Chen Y P, Xie Y E, Wei X L, Yang K K, Yang P, Zhong J X 2010 Phys. Rev. B 82 245403

    [16]

    Liang B, Yuan Y, Cheng J C 2015 Acta Phys. Sin. 64 094305 (in Chinese)[梁彬, 袁樱, 程建春2015物理学报 64 094305]

    [17]

    Ming Y, Wang Z X, Ding Z J, Li H M 2010 New J. Phys. 12 103041

    [18]

    Zhang L F, Wang J S, Li B W 2010 Phys. Rev. B 81 100301

    [19]

    Xie Z X, Li K M, Tang L M, Pan C N, Chen K Q 2012 Appl. Phys. Lett. 100 183110

    [20]

    Gu Y F, Ni Z H, Chen M H, Bi K D, Chen Y F 2012 J. Heat Trans. 134 062401

    [21]

    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911

    [22]

    Zhang Y, Liu L Q, Xi N, Wang Y C, Dong Z L 2012 Sci. Sin.:Phys. Mech. Astron. 42 358 (in Chinese)[张嵛, 刘连庆, 席宁, 王越超, 董再励2012中国科学:物理学力学天文学 42 358]

    [23]

    Areshkin D A, White C T 2007 Nano Lett. 7 3253

    [24]

    Xu Y, Chen X B, Wang J S, Gu B L, Duan W H 2010 Phys. Rev. B 81 195425

    [25]

    Bao Z G, Chen Y P, Ouyang T, Yang K K, Zhong J X 2011 Acta Phys. Sin. 60 028103 (in Chinese)[鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新2011物理学报 60 028103]

    [26]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese)[陈晓彬, 段文晖2015物理学报 64 186302]

    [27]

    Saito R, Dresselhaus G, Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London:Imperial College Press) pp166-171

    [28]

    Pourfath M 2014 Non-equilibrium Green's Function Method for Nanoscale Device Simulation (Wien:Springer-Verlag) pp221-230

    [29]

    Scuracchio P, Dobry A, Costamagna S, Peeters F M 2015 Nanotechnology 26 305401

    [30]

    Wang J S, Wang J, L J T 2008 Eur. Phys. J. B 62 381

    [31]

    Roberts N A, Walker D G 2011 Int. J. Therm. Sci. 50 648

    [32]

    Zhang G 2015 Nanoscale Energy Transport and Harvesting:A Computational Study (Boca Raton:CRC Press) pp91-141

    [33]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [34]

    Balandin A A 2011 Nat. Mater. 10 569

    [35]

    Munoz E, Lu J, Yakobson B I 2010 Nano Lett. 10 1652

    [36]

    Kim T Y, Park C H, Marzari N 2016 Nano Lett. 16 2439

    [37]

    Ye E J, Sui W Q, Zhao X A 2012 Appl. Phys. Lett. 100 193303

    [38]

    Chen Y P, Xie Y E, Yan X H 2008 J. Appl. Phys. 103 063711

  • [1] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化. 物理学报, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [2] 王子, 张丹妹, 任捷. 声子系统中弹性波与热输运的拓扑与非互易现象. 物理学报, 2019, 68(22): 220302. doi: 10.7498/aps.68.20191463
    [3] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性. 物理学报, 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [4] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究. 物理学报, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [5] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [6] 任晓霞, 申凤娟, 林歆悠, 郑瑞伦. 石墨烯低温热膨胀和声子弛豫时间随温度的变化规律. 物理学报, 2017, 66(22): 224701. doi: 10.7498/aps.66.224701
    [7] 王孜博, 江华, 谢心澄. 多端口石墨烯系统中的非局域电阻. 物理学报, 2017, 66(21): 217201. doi: 10.7498/aps.66.217201
    [8] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [9] 程正富, 郑瑞伦. 非简谐振动对石墨烯杨氏模量与声子频率的影响. 物理学报, 2016, 65(10): 104701. doi: 10.7498/aps.65.104701
    [10] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究. 物理学报, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [11] 周青春, 狄尊燕. 声子对隧穿量子点分子辐射场系统量子相位的影响. 物理学报, 2013, 62(13): 134206. doi: 10.7498/aps.62.134206
    [12] 鲍华. 固体氩的晶格热导率的非简谐晶格动力学计算. 物理学报, 2013, 62(18): 186302. doi: 10.7498/aps.62.186302
    [13] 王亚珍, 黄平, 龚中良. 热激发效应对界面摩擦的影响. 物理学报, 2012, 61(6): 063203. doi: 10.7498/aps.61.063203
    [14] 邓艳平, 吕彬彬, 田强. 非对称方势阱中的激子及其与声子的相互作用. 物理学报, 2010, 59(7): 4961-4966. doi: 10.7498/aps.59.4961
    [15] 高当丽, 张翔宇, 张正龙, 徐良敏, 雷瑜, 郑海荣. 调控声子提高Tm3+掺杂体系的频率上转换荧光. 物理学报, 2009, 58(9): 6108-6112. doi: 10.7498/aps.58.6108
    [16] 丁凌云, 龚中良, 黄平. 声子摩擦能量耗散机理研究. 物理学报, 2009, 58(12): 8522-8528. doi: 10.7498/aps.58.8522
    [17] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [18] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率. 物理学报, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [19] 吴延昭, 于 平, 王玉芳, 金庆华, 丁大同, 蓝国祥. 非共振条件下单壁碳纳米管拉曼散射强度的计算. 物理学报, 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
    [20] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
计量
  • 文章访问数:  2868
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-14
  • 修回日期:  2016-07-28
  • 刊出日期:  2016-12-05

三终端非对称夹角石墨烯纳米结的弹道热整流

  • 1. 南京林业大学机械电子工程学院, 南京 210037
  • 通信作者: 顾云风, gu_yunfeng@sina.com
    基金项目: 国家自然科学基金(批准号:51376094,51476033)资助的课题.

摘要: 提出并通过非平衡格林函数法验证了一个三终端石墨烯纳米结弹道热整流的理论模型石墨烯带两端作为左右热极,其上加一倾斜分支作为控制热极形成一个Y形纳米结.结果发现:热流倾向于从与控制热极夹角较小的热极流向另一个热极;控制热极与左右热极间夹角差别的增大有利于热整流,这一现象在扶手椅型石墨烯带上尤其明显;锯齿型石墨烯带加上与其呈30夹角的扶手椅型分支具有最明显的热整流效应;对于左右热极宽度不同的热整流器,倾斜控制热极可以使整流比在原来的基础上提高超过50%.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回