搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯电极的齐聚苯乙炔分子器件的整流特性

崔焱 夏蔡娟 苏耀恒 张博群 陈爱民 杨爱云 张婷婷 刘洋

引用本文:
Citation:

基于石墨烯电极的齐聚苯乙炔分子器件的整流特性

崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋

Rectifying performances of oligo phenylene ethynylene molecular devices based on graphene electrodes

Cui Yan, Xia Cai-Juan, Su Yao-Heng, Zhang Bo-Qun, Chen Ai-Min, Yang Ai-Yun, Zhang Ting-Ting, Liu Yang
PDF
导出引用
  • 以齐聚苯乙炔分子为研究对象,采用密度泛函理论与非平衡格林函数相结合的第一性原理方法,对基于石墨烯电极的齐聚苯乙炔分子器件整流特性进行了研究,系统地分析了官能团对分子器件整流特性的影响.通过研究发现,官能团对齐聚苯乙炔分子器件整流特性影响显著,当添加失电子官能团氨基(NH2)时出现正向整流,添加得电子官能团硝基(NO2)时出现反向整流,当同时添加氨基和硝基官能团时,会出现正反向整流交替现象,研究结果表明通过添加不同类型的官能团能有效控制分子整流器的整流特性.
    With the experimental advances in microscale fabrication technology, the designing of functional devices by using single molecules has become one of the most promising methods for the next generation of electronic devices. Molecular rectifier, as a basic component almost for any electronic device, has become a research hotspot in molecular electronics. Recently, one-dimensional graphene nanoribbons (GNRs) which cut off from the novel two-dimensional material-graphene were used as the electrodes for several molecular devices due to their unique electronic structures and transport characteristics. The GNRs have less serious contact problems than metallic electrode materials like gold. In this paper, we investigate the rectifying performances of oligo phenylene ethynylene molecular devices based on graphene electrodes by using the density-functional theory and the non-equilibrium Green's function method. The effect of functional group on the rectifying performances of molecular device is discussed. The results show that the functional group plays a significant role in determining the rectifying performances of oligo phenylene ethynylene molecular device. The rectifying ratio can be effectively tuned by the functional group: adding the donor group (NH2) can lead to the positive rectifying phenomenon, adding the acceptor group (NO2) can trigger the negative rectifying phenomenon, and simultaneously adding NH2 and NO2 groups can bring about an alternate phenomenon between positive and reverse rectifying . The physical mechanism of the rectifying behavior is explained based on the transmission spectra and molecular projected self-consistent Hamiltonian. The transmission spectra of four models (M1-M4) bias voltages in range from-1.0 V to 1.0 V are given. The main transmission peak of M1 for positive bias is similar to that for negative bias, resulting in a weak rectification ratio. However, for M2 and M3, the main transmission peaks for positive and negative bias are significantly different from each other, which shows obviously a rectifying behavior. For M4, the main transmission peak is higher for the bias of (0.44-0.83 V) and also for the bias (0.95-1.00 V), showing an alternate phenomenon between positive and reverse rectifying. The maximum rectification ratio reaches 2.71 by adding an acceptor group (NO2), which suggests that this system has attractive potential applications in future molecular circuit.
      通信作者: 夏蔡娟, caijuanxia@xpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11004156,11547172,11475162)、陕西省教育厅专项科研计划(批准号:17JK0339)和陕西省青年科技新星计划(批准号:2016KJXX-45)资助的课题.
      Corresponding author: Xia Cai-Juan, caijuanxia@xpu.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 11004156, 11547172,11475162), the Scientific Research Program Fund from Shaanxi Provincial Education Department, China (Grant No. 17JK0339), and the Youth Science and Technology Star Project of Shaanxi Province, China (Grant No. 2016KJXX-45).
    [1]

    Jalili S, Rafii-Tabar H 2005 Phys. Rev. B 71 165410

    [2]

    Seminario J M, Zacarias A G, Tour J M 1999 J. Am. Chem. Soc. 121 411

    [3]

    Ren Y, Chen K Q, Wan Q, Zou B S, Zhang Y 2009 Appl. Phys. Lett. 94 183506

    [4]

    Soudi A, Aivazian G, Shi S F, Xu X D, Gu Y 2012 Appl. Phys. Lett. 100 033115

    [5]

    Guisinger N P, Basu R, Baluch A S, Hersam M C 2004 Nanotechnology 15 452

    [6]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509

    [7]

    Long M Q, Chen K Q, Wang L L, Zou B S 2007 Appl. Phys. Lett. 91 233512

    [8]

    Fan Z Q, Chen K Q, Wan Q, Duan W H, Zou B S, Shuai Z 2008 Appl. Phys. Lett. 92 263304

    [9]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252

    [10]

    Wang Z C, Gu T, Tada T, Watanabe S 2008 Appl. Phys. Lett. 93 152106

    [11]

    Donhauser Z J, Mantooth B A, Kelly L A, et al. 2001 Science 292 2303

    [12]

    Jiang P, Morales G M, You W, Yu L 2004 Angew. Chem. Int. Ed. 43 4471

    [13]

    Oleynik I I, Kozhushner M A, Posvyanskii V S, Yu L 2006 Phys. Rev. Lett. 96 096803

    [14]

    Stephane L, Christophe K, Christophe D, Guy A, Dominique V 2003 Nano Lett. 3 741

    [15]

    Zeng M, Shen L, Yang M, Zhang C, Feng Y 2011 Appl. Phys. Lett. 98 053101

    [16]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277

    [17]

    Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501(in Chinese) [俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 物理学报 66 098501]

    [18]

    Zhitenev N B, Meng H, Bao Z 2002 Phys. Rev. Lett. 88 226801

    [19]

    Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J, Zhao M W 2008 Acta Phys. Sin. 57 3148(in Chinese) [夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰, 赵明文 2008 物理学报 57 3148]

    [20]

    Reddy P, Jang S Y, Majumdar A 2007 Science 315 1568

    [21]

    Zou B, Li Z L, Wang C K, Xue Q K 2005 Acta Phys. Sin. 54 1341(in Chinese) [邹斌, 李宗良, 王传奎, 薛其坤 2005 物理学报 54 1341]

    [22]

    Chen J, Wang W, Reed M A, Rawlett A M, Price D W, Tour J M 2000 Appl. Phys. Lett. 77 1224

    [23]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550

    [24]

    Martn S, Grace I, Bryce M R, Wang C, Jitchati R, Batsanov A S, Higgins S J, Lambert C J, Nichols R J 2010 J. Am. Chem. Soc. 132 9157

    [25]

    Gonzalez C, Simn-Manso Y, Batteas J, Marquez M, Ratner M, Mujica V 2004 J. Phys. Chem. B 108 18414

    [26]

    Wan H Q, Xu Y, Zhou G H 2012 J. Chem. Phys. 136 184704

    [27]

    Tour J M, Kozaki M, Seminario J M 1998 J. Am. Chem. Soc. 120 8486

    [28]

    Chen C S, Chen X H, Li X Q, Zhang G, Yi G J, Zhang H, Hu J 2004 Acta Phys. Sin. 53 0531(in Chinese) [陈传盛, 陈小华, 李学谦, 张刚, 易国军, 张华, 胡静 2004 物理学报 53 0531]

    [29]

    Venkataraman L, Park Y S, Whalley A C, Nuckolls C, Hybertsen M S, Steigerwald M L 2007 Nano Lett. 7 502

    [30]

    Aragones A C, Darwish N, Im J, Lim B, Choi J, Koo S, Diez-Perez I 2015 Chem. Eur. J. 21 7716

    [31]

    Zheng J M, Guo P, Ren Z, Jiang Z, Bai J, Zhang Z 2012 Appl. Phys. Lett. 101 083101

    [32]

    Zheng H X, Wang Z F, Luo T, Shi Q W, Chen J 2007 Phys. Rev. B 75 165414

    [33]

    Zhao J, Zeng H, Wei J W, Li B, Xu D H 2014 Phys. Lett. A 378 416

    [34]

    An Y P, Yang Z Q 2011 Appl. Phys. Lett. 99 192102

    [35]

    Zheng X H, Song L L, Wang R N, Hao H, Guo L J, Zeng Z 2010 Appl. Phys. Lett. 97 153129

    [36]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [37]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748

    [38]

    Han M Y, zyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [39]

    Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229

    [40]

    Cai Y Q, Zhang A H, Feng Y P, Zhang C 2011 J. Chem. Phys. 135 184703

    [41]

    Liu H M, Li P, Zhao J W 2008 J. Chem. Phys. 129 224704

    [42]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [43]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [44]

    Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejn P, Snchez-Portal D 2002 J. Phys. Condens. Matter 14 2745

  • [1]

    Jalili S, Rafii-Tabar H 2005 Phys. Rev. B 71 165410

    [2]

    Seminario J M, Zacarias A G, Tour J M 1999 J. Am. Chem. Soc. 121 411

    [3]

    Ren Y, Chen K Q, Wan Q, Zou B S, Zhang Y 2009 Appl. Phys. Lett. 94 183506

    [4]

    Soudi A, Aivazian G, Shi S F, Xu X D, Gu Y 2012 Appl. Phys. Lett. 100 033115

    [5]

    Guisinger N P, Basu R, Baluch A S, Hersam M C 2004 Nanotechnology 15 452

    [6]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509

    [7]

    Long M Q, Chen K Q, Wang L L, Zou B S 2007 Appl. Phys. Lett. 91 233512

    [8]

    Fan Z Q, Chen K Q, Wan Q, Duan W H, Zou B S, Shuai Z 2008 Appl. Phys. Lett. 92 263304

    [9]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252

    [10]

    Wang Z C, Gu T, Tada T, Watanabe S 2008 Appl. Phys. Lett. 93 152106

    [11]

    Donhauser Z J, Mantooth B A, Kelly L A, et al. 2001 Science 292 2303

    [12]

    Jiang P, Morales G M, You W, Yu L 2004 Angew. Chem. Int. Ed. 43 4471

    [13]

    Oleynik I I, Kozhushner M A, Posvyanskii V S, Yu L 2006 Phys. Rev. Lett. 96 096803

    [14]

    Stephane L, Christophe K, Christophe D, Guy A, Dominique V 2003 Nano Lett. 3 741

    [15]

    Zeng M, Shen L, Yang M, Zhang C, Feng Y 2011 Appl. Phys. Lett. 98 053101

    [16]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277

    [17]

    Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501(in Chinese) [俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 物理学报 66 098501]

    [18]

    Zhitenev N B, Meng H, Bao Z 2002 Phys. Rev. Lett. 88 226801

    [19]

    Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J, Zhao M W 2008 Acta Phys. Sin. 57 3148(in Chinese) [夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰, 赵明文 2008 物理学报 57 3148]

    [20]

    Reddy P, Jang S Y, Majumdar A 2007 Science 315 1568

    [21]

    Zou B, Li Z L, Wang C K, Xue Q K 2005 Acta Phys. Sin. 54 1341(in Chinese) [邹斌, 李宗良, 王传奎, 薛其坤 2005 物理学报 54 1341]

    [22]

    Chen J, Wang W, Reed M A, Rawlett A M, Price D W, Tour J M 2000 Appl. Phys. Lett. 77 1224

    [23]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550

    [24]

    Martn S, Grace I, Bryce M R, Wang C, Jitchati R, Batsanov A S, Higgins S J, Lambert C J, Nichols R J 2010 J. Am. Chem. Soc. 132 9157

    [25]

    Gonzalez C, Simn-Manso Y, Batteas J, Marquez M, Ratner M, Mujica V 2004 J. Phys. Chem. B 108 18414

    [26]

    Wan H Q, Xu Y, Zhou G H 2012 J. Chem. Phys. 136 184704

    [27]

    Tour J M, Kozaki M, Seminario J M 1998 J. Am. Chem. Soc. 120 8486

    [28]

    Chen C S, Chen X H, Li X Q, Zhang G, Yi G J, Zhang H, Hu J 2004 Acta Phys. Sin. 53 0531(in Chinese) [陈传盛, 陈小华, 李学谦, 张刚, 易国军, 张华, 胡静 2004 物理学报 53 0531]

    [29]

    Venkataraman L, Park Y S, Whalley A C, Nuckolls C, Hybertsen M S, Steigerwald M L 2007 Nano Lett. 7 502

    [30]

    Aragones A C, Darwish N, Im J, Lim B, Choi J, Koo S, Diez-Perez I 2015 Chem. Eur. J. 21 7716

    [31]

    Zheng J M, Guo P, Ren Z, Jiang Z, Bai J, Zhang Z 2012 Appl. Phys. Lett. 101 083101

    [32]

    Zheng H X, Wang Z F, Luo T, Shi Q W, Chen J 2007 Phys. Rev. B 75 165414

    [33]

    Zhao J, Zeng H, Wei J W, Li B, Xu D H 2014 Phys. Lett. A 378 416

    [34]

    An Y P, Yang Z Q 2011 Appl. Phys. Lett. 99 192102

    [35]

    Zheng X H, Song L L, Wang R N, Hao H, Guo L J, Zeng Z 2010 Appl. Phys. Lett. 97 153129

    [36]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [37]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748

    [38]

    Han M Y, zyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [39]

    Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229

    [40]

    Cai Y Q, Zhang A H, Feng Y P, Zhang C 2011 J. Chem. Phys. 135 184703

    [41]

    Liu H M, Li P, Zhao J W 2008 J. Chem. Phys. 129 224704

    [42]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [43]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [44]

    Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejn P, Snchez-Portal D 2002 J. Phys. Condens. Matter 14 2745

  • [1] 邢海英, 张子涵, 吴文静, 郭志英, 茹金豆. 石墨烯电极弯折对2-苯基吡啶分子器件负微分电阻特性的调控和机理. 物理学报, 2023, 72(3): 038502. doi: 10.7498/aps.72.20221212
    [2] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究. 物理学报, 2022, 71(2): 027803. doi: 10.7498/aps.71.20211477
    [3] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211477
    [4] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运. 物理学报, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [5] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [6] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究. 物理学报, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [7] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [8] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [9] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究. 物理学报, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [10] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光. 不同N掺杂构型石墨烯的量子电容研究. 物理学报, 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
    [11] 柳福提, 程艳, 陈向荣, 程晓洪, 曾志强. Au-Si60-Au分子结电子输运性质的理论计算. 物理学报, 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [12] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Si4团簇电子输运性质的第一性原理计算. 物理学报, 2013, 62(14): 140504. doi: 10.7498/aps.62.140504
    [13] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Au-Si-Au结点电子输运性质的第一性原理计算. 物理学报, 2013, 62(10): 107401. doi: 10.7498/aps.62.107401
    [14] 黄耀清, 郝成红, 郑继明, 任兆玉. 硅团簇自旋电子器件的理论研究. 物理学报, 2013, 62(8): 083601. doi: 10.7498/aps.62.083601
    [15] 王建军, 王飞, 原鹏飞, 孙强, 贾瑜. 石墨烯层间纳米摩擦性质的第一性原理研究. 物理学报, 2012, 61(10): 106801. doi: 10.7498/aps.61.106801
    [16] 范志强, 谢芳. 硼氮原子取代掺杂对分子器件负微分电阻效应的影响. 物理学报, 2012, 61(7): 077303. doi: 10.7498/aps.61.077303
    [17] 郭超, 张振华, 潘金波, 张俊俊. D-B-A分子整流特性的端基效应. 物理学报, 2011, 60(11): 117303. doi: 10.7498/aps.60.117303
    [18] 潘金波, 张振华, 邱明, 郭超. 分子整流器整流特性的键桥调控效应. 物理学报, 2011, 60(3): 037302. doi: 10.7498/aps.60.037302
    [19] 邱明, 张振华, 邓小清. 碳链输运对基团吸附的敏感性分析. 物理学报, 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [20] 郑新亮, 郑继明, 任兆玉, 郭平, 田进寿, 白晋涛. 钽硅团簇电子输运性质的第一性原理研究. 物理学报, 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
计量
  • 文章访问数:  6963
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-12
  • 修回日期:  2018-03-12
  • 刊出日期:  2018-06-05

/

返回文章
返回