搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质

梁锦涛 颜晓红 张影 肖杨

引用本文:
Citation:

硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质

梁锦涛, 颜晓红, 张影, 肖杨

Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon

Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang
PDF
HTML
导出引用
  • 基于非共线磁序密度泛函/非平衡格林函数方法, 研究了硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子透射系数. 未掺杂的石墨烯纳米带的计算结果表明磁化分布主要遵循类似于Neel磁畴壁的螺旋式磁化分布. 相比于未掺杂的情况, 硼/氮掺杂的石墨烯纳米带的磁化分布出现了双区域的特征, 即杂质原子附近的磁化较小, 杂质原子左(右)侧区域的磁化分布更接近于左(右)电极的磁化方向, 这为通过掺杂手段在石墨烯纳米带边缘上构建不同磁畴壁提供了可能性. 与未掺杂的透射系数不同的是, 硼/氮掺杂的石墨烯纳米带的透射系数在费米面附近随着磁化偏转角增大而减小, 表明非共线磁序引起的自旋翻转散射占据主导地位. 而在E = ±0.65 eV处, 出现了一个较宽的dip结构, 投影电子态密度的分析表明其来源于杂质原子形成的束缚态所引起的背散射. 我们的研究结果对于理解石墨烯纳米带中的非共线磁序与杂质散射以及器件设计具有一定的意义.
    Zigzag graphene nanoribbon (ZGNR) is important for novel carbon-based spintronic applications. Currently, most of ZGNR spintronic studies focus on the collinear magnetism where the up-spin and down-spin are separated clearly. But in some cases, e.g. doping and adsorption, the magnetization profile can be modulated and thus noncollinear magnetism can occur. In order to shed light on possible noncollinear magnetism in ZGNR, we study non-collinear magnetism and electronic transport of boron or nitrogen-doped zigzag graphene nanoribbon based on noncollinear density functional theory and non-equilibrium Green's function method. For pristine ZGNR, our results show that the ZGNR presents helical magnetization distribution due to noncollinear magnetization in left and right lead. As the ZGNR is doped with boron and nitrogen atoms, the ZGNR shows a characteristic two-zone feature in the magnetization distribution. Near the dopant site, the magnetic moment of carbon atom is small. However, the magnetic moments of carbon atoms in the left (right) region of dopant are close to those of the left (right) lead. Such a feature provides the possibility of constructing domain walls with various widths on the edge of ZGNR. Moreover, the transmission at the Fermi level (E = 0 eV) decreases with the increase of relative angle between magnetizations of left and right lead, indicating that the spin-flip scattering dominates the electronic transport. However, at E = ±0.65 eV, there is a transmission dip with low transmission, which implies that the dopant induces the strong backscattering. To understand the origin of this dip, we calculate the density of states (DOS) and project the DOS onto each atom of doped ZGNR. The projected DOS shows a large and broad peak at E = −0.65 eV for N-doped ZGNR but at E = +0.65 eV for B-doped ZGNR. The consistency between the position of dip in transmission and the position of peak in DOS indicates that the transmission dip mentioned above is attributed to strong backscattering from the dopant-induced bound state. Our theoretical results are expected to be useful for understanding the noncollinear magnetism and spin scattering in the doped ZGNR-based devices. Also, our work provides a considerable insight into the design of ZGNR-based nanoelectronic devices, such as the transistor based on spin transfer torque effect.
      通信作者: 肖杨, fryxiao@nuaa.edu.cn
    • 基金项目: 中央高校基本科研业务费(批准号: NS2017055)资助的课题.
      Corresponding author: Xiao Yang, fryxiao@nuaa.edu.cn
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities, China (Grant No. NS2017055).
    [1]

    Peng B, Zhang H, Shao H Z, Xu Y F, Ni G, Zhang R, Zhu H Y 2016 Phys. Rev. B 94 245420Google Scholar

    [2]

    Wang W X, Zhou M, Li X Q, Li S Y, Wu X S, Duan W H, He L 2016 Phys. Rev. B 93 241403Google Scholar

    [3]

    Cui P, Zhang Q, Zhu H B, Li X X, Wang W Y, Li Q X, Zeng C G, Zhang Z Y 2016 Phys. Rev. Lett. 116 026802Google Scholar

    [4]

    Pan J B, Du S X, Zhang Y Y, Pan L D, Zhang Y F, Gao H J, Pantelides S T 2015 Phys. Rev. B 92 205429Google Scholar

    [5]

    Chen X B, Liu Y Z, Gu B L, Duan W H, Liu F 2014 Phys. Rev. B 90 121403Google Scholar

    [6]

    Wang Z F, Jin S, Liu F 2013 Phys. Rev. Lett. 111 096803Google Scholar

    [7]

    Yue Q, Chang S G, Tan J C, Qin S Q, Kang J, Li J B 2012 Phys. Rev. B 86 235448Google Scholar

    [8]

    Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2012 Phys. Rev. B 86 195418Google Scholar

    [9]

    Hu T, Zhou J, Dong J M, Kawazoe Y 2012 Phys. Rev. B 86 125420Google Scholar

    [10]

    Zheng X H, Wang X L, Huang L F, Hao H, Lan J, Zeng Z 2012 Phys. Rev. B 86 081408Google Scholar

    [11]

    Zhou J, Hu T, Dong J M, Kawazoe Y 2012 Phys. Rev. B 86 035434Google Scholar

    [12]

    Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505Google Scholar

    [13]

    Cheng Y C, Wang H T, Zhu Z Y, Zhu Y H, Han Y, Zhang X X, Schwingenschlgl U 2012 Phys. Rev. B 85 073406Google Scholar

    [14]

    Xiang H J, Huang B, Li Z Y, Wei S H, Yang J L, Gong X G 2012 Phys. Rev. X 2 011003Google Scholar

    [15]

    Zhang J C, Huang X P, Yue Y A, Wang J M, Wang X W 2011 Phys. Rev. B 84 235416Google Scholar

    [16]

    Lin X Q, Ni J 2011 Phys. Rev. B 84 075461Google Scholar

    [17]

    Li Y C, Chen X B, Zhou G, Duan W H, Kim Y, Kim M, Ihm J 2011 Phys. Rev. B 83 195443Google Scholar

    [18]

    Li W, Sevinli H, Roche S, Cuniberti G 2011 Phys. Rev. B 83 155416Google Scholar

    [19]

    Zhang Z H, Guo W L, Zeng X C 2010 Phys. Rev. B 82 235423Google Scholar

    [20]

    Wang Z F, Li Q X, Zheng H X, Ren H, Su H B, Shi Q W, Chen J 2007 Phys. Rev. B 75 113406Google Scholar

    [21]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920Google Scholar

    [22]

    Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571Google Scholar

    [23]

    Huang B, Liu F, Wu J, Gu B L, Duan W H 2008 Phys. Rev. B 77 153411Google Scholar

    [24]

    Ozaki T, Nishio K, Weng H M, Kino H 2010 Phys. Rev. B 81 075422Google Scholar

    [25]

    邓小清, 孙琳, 李春先 2016 物理学报 65 068503Google Scholar

    Deng X Q, Sun L, Li C X 2016 Acta Phys. Sin. 65 068503Google Scholar

    [26]

    李彪, 徐大海, 曾晖 2014 物理学报 63 117102Google Scholar

    Li B, Xu D H, Zeng H 2014 Acta Phys. Sin. 63 117102Google Scholar

    [27]

    林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103

    Lin Q, Chen Y X, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese)

    [28]

    李骏, 张振华, 王成志, 邓小清, 范志强 2013 物理学报 62 036103

    Li J, Zhang Z H, Wang C Z, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 036103 (in Chinese)

    [29]

    胡小会, 许俊敏, 孙立涛 2012 物理学报 61 047106

    Hu X H, Xu J M, Su L T 2012 Acta Phys. Sin. 61 047106 (in Chinese)

    [30]

    王鼎, 张振华, 邓小清, 范志强 2013 物理学报 62 207101Google Scholar

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta. Phys. Sin. 62 207101Google Scholar

    [31]

    Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209Google Scholar

    [32]

    Zhang Y, Yan X H, Guo Y D, Xiao Y 2017 J. Appl. Phys. 121 174303Google Scholar

    [33]

    Li H D, Wang L, Lan Z H, Zheng Y S 2009 Phys. Rev. B 79 155429Google Scholar

    [34]

    Xu B, Yin J, Weng H G, Xia Y D, Wan X G, Liu Z G 2010 Phys. Rev. B 81 205419Google Scholar

    [35]

    Wang B, Wang J, Guo H 2009 Phys. Rev. B 79 165417Google Scholar

    [36]

    Ozaki T, Kino H 2005 Phys. Rev. B 72 045121Google Scholar

    [37]

    Tersoff J, Hamann D R 1985 Phys. Rev. B 31 805Google Scholar

    [38]

    Chantis A N, Smith D L, Fransson J, Balatsky A V 2009 Phys. Rev. B 79 165423Google Scholar

    [39]

    Slonczewski J C 1989 Phys. Rev. B 39 6995Google Scholar

    [40]

    Press M R, Liu F, Khanna S N, Jena P 1989 Phys. Rev. B 40 399Google Scholar

  • 图 1  掺杂石墨烯纳米带的结构示意图, 其结构由左右电极、中心区组成, 左右电极磁化之间的偏转角由$\theta$ 定义, 中心区宽度由Ly给出, buffer是为了计算收敛加入的缓冲区, 红色小球代表掺杂原子

    Fig. 1.  Schematic diagram of doped ZGNR which consists of left, right leads and central region. The relative angle between two lead magnetizations is defined by $\theta$. The length of central region is defined by Ly. The buffer regions are introduced for the consideration of convergence. The dopant atom is denoted by red sphere.

    图 2  (a)—(f) 不同角度下的未掺杂石墨烯纳米带的磁化分布; (g) 透射系数; (h) 能带结构(红色与黑色分别代表自旋向上和自旋向下)

    Fig. 2.  (a)−(f) Magnetization distribution; (g) transmission; (h) band structure of undoped ZGNR (red and black lines in (h) denote up-spin and down-spin).

    图 3  氮原子掺杂的石墨烯纳米带在不同角度下的磁化分布

    Fig. 3.  Magnetization distribution of N-doped ZGNR.

    图 4  石墨烯纳米带投影到几个原子上的电子态密度 (a) 未掺杂; (b) 硼掺杂; (c) 氮掺杂. C1代表中心区上边缘的最左边的碳原子, C8代表掺杂原子左侧的最近邻碳原子, B/N代表掺杂原子, C9代表未掺杂时上边缘最中心的碳原子

    Fig. 4.  Projected density of states: (a) Undoped; (b) B-doped; (c) N-doped ZGNR. C1 denotes the leftmost carbon atom on the upper edge. C8 denotes the left nearest neighboring carbon atom of the dopant. B/N is boron/nitrogen atom. C9 denotes the central carbon atom in the upper edge of undoped ZGNR.

    图 5  硼原子掺杂的石墨烯纳米带在不同角度下的磁化分布

    Fig. 5.  Magnetization distribution of B-doped ZGNR.

    图 6  $\theta=30$°时未掺杂与硼/氮掺杂的石墨烯纳米带的上边缘碳原子的(a)磁矩大小和(b)方向与碳原子位置之间的关系

    Fig. 6.  (a) Size and (b) direction of magnetic moment of atoms in upper edge of ZGNR as function of atom position at $\theta=30$°.

    图 7  掺杂石墨烯纳米带的透射系数和投影态密度与能量之间的关系 (a), (b)为氮掺杂; (c), (d)为硼掺杂

    Fig. 7.  Transmission (top panel) and projected density of states (bottom panel) of doped ZGNRs as function of energy: (a), (b) N-doping; (c), (d) B-doping.

  • [1]

    Peng B, Zhang H, Shao H Z, Xu Y F, Ni G, Zhang R, Zhu H Y 2016 Phys. Rev. B 94 245420Google Scholar

    [2]

    Wang W X, Zhou M, Li X Q, Li S Y, Wu X S, Duan W H, He L 2016 Phys. Rev. B 93 241403Google Scholar

    [3]

    Cui P, Zhang Q, Zhu H B, Li X X, Wang W Y, Li Q X, Zeng C G, Zhang Z Y 2016 Phys. Rev. Lett. 116 026802Google Scholar

    [4]

    Pan J B, Du S X, Zhang Y Y, Pan L D, Zhang Y F, Gao H J, Pantelides S T 2015 Phys. Rev. B 92 205429Google Scholar

    [5]

    Chen X B, Liu Y Z, Gu B L, Duan W H, Liu F 2014 Phys. Rev. B 90 121403Google Scholar

    [6]

    Wang Z F, Jin S, Liu F 2013 Phys. Rev. Lett. 111 096803Google Scholar

    [7]

    Yue Q, Chang S G, Tan J C, Qin S Q, Kang J, Li J B 2012 Phys. Rev. B 86 235448Google Scholar

    [8]

    Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2012 Phys. Rev. B 86 195418Google Scholar

    [9]

    Hu T, Zhou J, Dong J M, Kawazoe Y 2012 Phys. Rev. B 86 125420Google Scholar

    [10]

    Zheng X H, Wang X L, Huang L F, Hao H, Lan J, Zeng Z 2012 Phys. Rev. B 86 081408Google Scholar

    [11]

    Zhou J, Hu T, Dong J M, Kawazoe Y 2012 Phys. Rev. B 86 035434Google Scholar

    [12]

    Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505Google Scholar

    [13]

    Cheng Y C, Wang H T, Zhu Z Y, Zhu Y H, Han Y, Zhang X X, Schwingenschlgl U 2012 Phys. Rev. B 85 073406Google Scholar

    [14]

    Xiang H J, Huang B, Li Z Y, Wei S H, Yang J L, Gong X G 2012 Phys. Rev. X 2 011003Google Scholar

    [15]

    Zhang J C, Huang X P, Yue Y A, Wang J M, Wang X W 2011 Phys. Rev. B 84 235416Google Scholar

    [16]

    Lin X Q, Ni J 2011 Phys. Rev. B 84 075461Google Scholar

    [17]

    Li Y C, Chen X B, Zhou G, Duan W H, Kim Y, Kim M, Ihm J 2011 Phys. Rev. B 83 195443Google Scholar

    [18]

    Li W, Sevinli H, Roche S, Cuniberti G 2011 Phys. Rev. B 83 155416Google Scholar

    [19]

    Zhang Z H, Guo W L, Zeng X C 2010 Phys. Rev. B 82 235423Google Scholar

    [20]

    Wang Z F, Li Q X, Zheng H X, Ren H, Su H B, Shi Q W, Chen J 2007 Phys. Rev. B 75 113406Google Scholar

    [21]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920Google Scholar

    [22]

    Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571Google Scholar

    [23]

    Huang B, Liu F, Wu J, Gu B L, Duan W H 2008 Phys. Rev. B 77 153411Google Scholar

    [24]

    Ozaki T, Nishio K, Weng H M, Kino H 2010 Phys. Rev. B 81 075422Google Scholar

    [25]

    邓小清, 孙琳, 李春先 2016 物理学报 65 068503Google Scholar

    Deng X Q, Sun L, Li C X 2016 Acta Phys. Sin. 65 068503Google Scholar

    [26]

    李彪, 徐大海, 曾晖 2014 物理学报 63 117102Google Scholar

    Li B, Xu D H, Zeng H 2014 Acta Phys. Sin. 63 117102Google Scholar

    [27]

    林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103

    Lin Q, Chen Y X, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese)

    [28]

    李骏, 张振华, 王成志, 邓小清, 范志强 2013 物理学报 62 036103

    Li J, Zhang Z H, Wang C Z, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 036103 (in Chinese)

    [29]

    胡小会, 许俊敏, 孙立涛 2012 物理学报 61 047106

    Hu X H, Xu J M, Su L T 2012 Acta Phys. Sin. 61 047106 (in Chinese)

    [30]

    王鼎, 张振华, 邓小清, 范志强 2013 物理学报 62 207101Google Scholar

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta. Phys. Sin. 62 207101Google Scholar

    [31]

    Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209Google Scholar

    [32]

    Zhang Y, Yan X H, Guo Y D, Xiao Y 2017 J. Appl. Phys. 121 174303Google Scholar

    [33]

    Li H D, Wang L, Lan Z H, Zheng Y S 2009 Phys. Rev. B 79 155429Google Scholar

    [34]

    Xu B, Yin J, Weng H G, Xia Y D, Wan X G, Liu Z G 2010 Phys. Rev. B 81 205419Google Scholar

    [35]

    Wang B, Wang J, Guo H 2009 Phys. Rev. B 79 165417Google Scholar

    [36]

    Ozaki T, Kino H 2005 Phys. Rev. B 72 045121Google Scholar

    [37]

    Tersoff J, Hamann D R 1985 Phys. Rev. B 31 805Google Scholar

    [38]

    Chantis A N, Smith D L, Fransson J, Balatsky A V 2009 Phys. Rev. B 79 165423Google Scholar

    [39]

    Slonczewski J C 1989 Phys. Rev. B 39 6995Google Scholar

    [40]

    Press M R, Liu F, Khanna S N, Jena P 1989 Phys. Rev. B 40 399Google Scholar

  • [1] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究. 物理学报, 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [2] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运. 物理学报, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [3] 蒋元祺, 彭平. 稳态Cu-Zr二十面体团簇电子结构的密度泛函研究. 物理学报, 2018, 67(13): 132101. doi: 10.7498/aps.67.20180296
    [4] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [5] 柳福提, 张淑华, 程艳, 陈向荣, 程晓洪. (GaAs)n(n=1-4)原子链电子输运性质的理论计算. 物理学报, 2016, 65(10): 106201. doi: 10.7498/aps.65.106201
    [6] 陈晓彬, 段文晖. 低维纳米材料量子热输运与自旋热电性质 ——非平衡格林函数方法的应用. 物理学报, 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [7] 柳福提, 程艳, 陈向荣, 程晓洪, 曾志强. Au-Si60-Au分子结电子输运性质的理论计算. 物理学报, 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [8] 李彪, 徐大海, 曾晖. 边缘重构对锯齿型石墨烯纳米带电子输运的影响. 物理学报, 2014, 63(11): 117102. doi: 10.7498/aps.63.117102
    [9] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO. 物理学报, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [10] 李骏, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带卷曲效应对其电子特性的影响. 物理学报, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [11] 曾永昌, 田文, 张振华. 周期性纳米洞内边缘氧饱和石墨烯纳米带的电子特性. 物理学报, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [12] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Si4团簇电子输运性质的第一性原理计算. 物理学报, 2013, 62(14): 140504. doi: 10.7498/aps.62.140504
    [13] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Au-Si-Au结点电子输运性质的第一性原理计算. 物理学报, 2013, 62(10): 107401. doi: 10.7498/aps.62.107401
    [14] 陶强, 胡小颖, 朱品文. 羟基饱和锯齿型石墨烯纳米带的电子结构. 物理学报, 2011, 60(9): 097301. doi: 10.7498/aps.60.097301
    [15] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [16] 郑新亮, 郑继明, 任兆玉, 郭平, 田进寿, 白晋涛. 钽硅团簇电子输运性质的第一性原理研究. 物理学报, 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
    [17] 唐春梅, 陈宣, 邓开明, 胡凤兰, 黄德财, 夏海燕. 富勒烯衍生物C60(CF3)n(n=2,4,6,10)几何结构和电子性质变化规律的密度泛函研究. 物理学报, 2009, 58(4): 2675-2679. doi: 10.7498/aps.58.2675
    [18] 蒋岩玲, 付石友, 邓开明, 唐春梅, 谭伟石, 黄德财, 刘玉真, 吴海平. C60富勒烯-巴比妥酸及其二聚体几何结构和电子结构的密度泛函计算研究. 物理学报, 2008, 57(6): 3690-3697. doi: 10.7498/aps.57.3690
    [19] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构. 物理学报, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [20] 童宏勇, 顾 牡, 汤学峰, 梁 玲, 姚明珍. PbWO4电子结构的密度泛函计算. 物理学报, 2000, 49(8): 1545-1549. doi: 10.7498/aps.49.1545
计量
  • 文章访问数:  8391
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-23
  • 修回日期:  2018-11-28
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回