搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质

梁锦涛 颜晓红 张影 肖杨

引用本文:
Citation:

硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质

梁锦涛, 颜晓红, 张影, 肖杨

Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon

Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang
PDF
HTML
导出引用
  • 基于非共线磁序密度泛函/非平衡格林函数方法, 研究了硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子透射系数. 未掺杂的石墨烯纳米带的计算结果表明磁化分布主要遵循类似于Neel磁畴壁的螺旋式磁化分布. 相比于未掺杂的情况, 硼/氮掺杂的石墨烯纳米带的磁化分布出现了双区域的特征, 即杂质原子附近的磁化较小, 杂质原子左(右)侧区域的磁化分布更接近于左(右)电极的磁化方向, 这为通过掺杂手段在石墨烯纳米带边缘上构建不同磁畴壁提供了可能性. 与未掺杂的透射系数不同的是, 硼/氮掺杂的石墨烯纳米带的透射系数在费米面附近随着磁化偏转角增大而减小, 表明非共线磁序引起的自旋翻转散射占据主导地位. 而在E = ±0.65 eV处, 出现了一个较宽的dip结构, 投影电子态密度的分析表明其来源于杂质原子形成的束缚态所引起的背散射. 我们的研究结果对于理解石墨烯纳米带中的非共线磁序与杂质散射以及器件设计具有一定的意义.
    Zigzag graphene nanoribbon (ZGNR) is important for novel carbon-based spintronic applications. Currently, most of ZGNR spintronic studies focus on the collinear magnetism where the up-spin and down-spin are separated clearly. But in some cases, e.g. doping and adsorption, the magnetization profile can be modulated and thus noncollinear magnetism can occur. In order to shed light on possible noncollinear magnetism in ZGNR, we study non-collinear magnetism and electronic transport of boron or nitrogen-doped zigzag graphene nanoribbon based on noncollinear density functional theory and non-equilibrium Green's function method. For pristine ZGNR, our results show that the ZGNR presents helical magnetization distribution due to noncollinear magnetization in left and right lead. As the ZGNR is doped with boron and nitrogen atoms, the ZGNR shows a characteristic two-zone feature in the magnetization distribution. Near the dopant site, the magnetic moment of carbon atom is small. However, the magnetic moments of carbon atoms in the left (right) region of dopant are close to those of the left (right) lead. Such a feature provides the possibility of constructing domain walls with various widths on the edge of ZGNR. Moreover, the transmission at the Fermi level (E = 0 eV) decreases with the increase of relative angle between magnetizations of left and right lead, indicating that the spin-flip scattering dominates the electronic transport. However, at E = ±0.65 eV, there is a transmission dip with low transmission, which implies that the dopant induces the strong backscattering. To understand the origin of this dip, we calculate the density of states (DOS) and project the DOS onto each atom of doped ZGNR. The projected DOS shows a large and broad peak at E = −0.65 eV for N-doped ZGNR but at E = +0.65 eV for B-doped ZGNR. The consistency between the position of dip in transmission and the position of peak in DOS indicates that the transmission dip mentioned above is attributed to strong backscattering from the dopant-induced bound state. Our theoretical results are expected to be useful for understanding the noncollinear magnetism and spin scattering in the doped ZGNR-based devices. Also, our work provides a considerable insight into the design of ZGNR-based nanoelectronic devices, such as the transistor based on spin transfer torque effect.
      通信作者: 肖杨, fryxiao@nuaa.edu.cn
    • 基金项目: 中央高校基本科研业务费(批准号: NS2017055)资助的课题.
      Corresponding author: Xiao Yang, fryxiao@nuaa.edu.cn
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities, China (Grant No. NS2017055).
    [1]

    Peng B, Zhang H, Shao H Z, Xu Y F, Ni G, Zhang R, Zhu H Y 2016 Phys. Rev. B 94 245420Google Scholar

    [2]

    Wang W X, Zhou M, Li X Q, Li S Y, Wu X S, Duan W H, He L 2016 Phys. Rev. B 93 241403Google Scholar

    [3]

    Cui P, Zhang Q, Zhu H B, Li X X, Wang W Y, Li Q X, Zeng C G, Zhang Z Y 2016 Phys. Rev. Lett. 116 026802Google Scholar

    [4]

    Pan J B, Du S X, Zhang Y Y, Pan L D, Zhang Y F, Gao H J, Pantelides S T 2015 Phys. Rev. B 92 205429Google Scholar

    [5]

    Chen X B, Liu Y Z, Gu B L, Duan W H, Liu F 2014 Phys. Rev. B 90 121403Google Scholar

    [6]

    Wang Z F, Jin S, Liu F 2013 Phys. Rev. Lett. 111 096803Google Scholar

    [7]

    Yue Q, Chang S G, Tan J C, Qin S Q, Kang J, Li J B 2012 Phys. Rev. B 86 235448Google Scholar

    [8]

    Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2012 Phys. Rev. B 86 195418Google Scholar

    [9]

    Hu T, Zhou J, Dong J M, Kawazoe Y 2012 Phys. Rev. B 86 125420Google Scholar

    [10]

    Zheng X H, Wang X L, Huang L F, Hao H, Lan J, Zeng Z 2012 Phys. Rev. B 86 081408Google Scholar

    [11]

    Zhou J, Hu T, Dong J M, Kawazoe Y 2012 Phys. Rev. B 86 035434Google Scholar

    [12]

    Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505Google Scholar

    [13]

    Cheng Y C, Wang H T, Zhu Z Y, Zhu Y H, Han Y, Zhang X X, Schwingenschlgl U 2012 Phys. Rev. B 85 073406Google Scholar

    [14]

    Xiang H J, Huang B, Li Z Y, Wei S H, Yang J L, Gong X G 2012 Phys. Rev. X 2 011003Google Scholar

    [15]

    Zhang J C, Huang X P, Yue Y A, Wang J M, Wang X W 2011 Phys. Rev. B 84 235416Google Scholar

    [16]

    Lin X Q, Ni J 2011 Phys. Rev. B 84 075461Google Scholar

    [17]

    Li Y C, Chen X B, Zhou G, Duan W H, Kim Y, Kim M, Ihm J 2011 Phys. Rev. B 83 195443Google Scholar

    [18]

    Li W, Sevinli H, Roche S, Cuniberti G 2011 Phys. Rev. B 83 155416Google Scholar

    [19]

    Zhang Z H, Guo W L, Zeng X C 2010 Phys. Rev. B 82 235423Google Scholar

    [20]

    Wang Z F, Li Q X, Zheng H X, Ren H, Su H B, Shi Q W, Chen J 2007 Phys. Rev. B 75 113406Google Scholar

    [21]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920Google Scholar

    [22]

    Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571Google Scholar

    [23]

    Huang B, Liu F, Wu J, Gu B L, Duan W H 2008 Phys. Rev. B 77 153411Google Scholar

    [24]

    Ozaki T, Nishio K, Weng H M, Kino H 2010 Phys. Rev. B 81 075422Google Scholar

    [25]

    邓小清, 孙琳, 李春先 2016 物理学报 65 068503Google Scholar

    Deng X Q, Sun L, Li C X 2016 Acta Phys. Sin. 65 068503Google Scholar

    [26]

    李彪, 徐大海, 曾晖 2014 物理学报 63 117102Google Scholar

    Li B, Xu D H, Zeng H 2014 Acta Phys. Sin. 63 117102Google Scholar

    [27]

    林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103

    Lin Q, Chen Y X, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese)

    [28]

    李骏, 张振华, 王成志, 邓小清, 范志强 2013 物理学报 62 036103

    Li J, Zhang Z H, Wang C Z, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 036103 (in Chinese)

    [29]

    胡小会, 许俊敏, 孙立涛 2012 物理学报 61 047106

    Hu X H, Xu J M, Su L T 2012 Acta Phys. Sin. 61 047106 (in Chinese)

    [30]

    王鼎, 张振华, 邓小清, 范志强 2013 物理学报 62 207101Google Scholar

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta. Phys. Sin. 62 207101Google Scholar

    [31]

    Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209Google Scholar

    [32]

    Zhang Y, Yan X H, Guo Y D, Xiao Y 2017 J. Appl. Phys. 121 174303Google Scholar

    [33]

    Li H D, Wang L, Lan Z H, Zheng Y S 2009 Phys. Rev. B 79 155429Google Scholar

    [34]

    Xu B, Yin J, Weng H G, Xia Y D, Wan X G, Liu Z G 2010 Phys. Rev. B 81 205419Google Scholar

    [35]

    Wang B, Wang J, Guo H 2009 Phys. Rev. B 79 165417Google Scholar

    [36]

    Ozaki T, Kino H 2005 Phys. Rev. B 72 045121Google Scholar

    [37]

    Tersoff J, Hamann D R 1985 Phys. Rev. B 31 805Google Scholar

    [38]

    Chantis A N, Smith D L, Fransson J, Balatsky A V 2009 Phys. Rev. B 79 165423Google Scholar

    [39]

    Slonczewski J C 1989 Phys. Rev. B 39 6995Google Scholar

    [40]

    Press M R, Liu F, Khanna S N, Jena P 1989 Phys. Rev. B 40 399Google Scholar

  • 图 1  掺杂石墨烯纳米带的结构示意图, 其结构由左右电极、中心区组成, 左右电极磁化之间的偏转角由$\theta$ 定义, 中心区宽度由Ly给出, buffer是为了计算收敛加入的缓冲区, 红色小球代表掺杂原子

    Fig. 1.  Schematic diagram of doped ZGNR which consists of left, right leads and central region. The relative angle between two lead magnetizations is defined by $\theta$. The length of central region is defined by Ly. The buffer regions are introduced for the consideration of convergence. The dopant atom is denoted by red sphere.

    图 2  (a)—(f) 不同角度下的未掺杂石墨烯纳米带的磁化分布; (g) 透射系数; (h) 能带结构(红色与黑色分别代表自旋向上和自旋向下)

    Fig. 2.  (a)−(f) Magnetization distribution; (g) transmission; (h) band structure of undoped ZGNR (red and black lines in (h) denote up-spin and down-spin).

    图 3  氮原子掺杂的石墨烯纳米带在不同角度下的磁化分布

    Fig. 3.  Magnetization distribution of N-doped ZGNR.

    图 4  石墨烯纳米带投影到几个原子上的电子态密度 (a) 未掺杂; (b) 硼掺杂; (c) 氮掺杂. C1代表中心区上边缘的最左边的碳原子, C8代表掺杂原子左侧的最近邻碳原子, B/N代表掺杂原子, C9代表未掺杂时上边缘最中心的碳原子

    Fig. 4.  Projected density of states: (a) Undoped; (b) B-doped; (c) N-doped ZGNR. C1 denotes the leftmost carbon atom on the upper edge. C8 denotes the left nearest neighboring carbon atom of the dopant. B/N is boron/nitrogen atom. C9 denotes the central carbon atom in the upper edge of undoped ZGNR.

    图 5  硼原子掺杂的石墨烯纳米带在不同角度下的磁化分布

    Fig. 5.  Magnetization distribution of B-doped ZGNR.

    图 6  $\theta=30$°时未掺杂与硼/氮掺杂的石墨烯纳米带的上边缘碳原子的(a)磁矩大小和(b)方向与碳原子位置之间的关系

    Fig. 6.  (a) Size and (b) direction of magnetic moment of atoms in upper edge of ZGNR as function of atom position at $\theta=30$°.

    图 7  掺杂石墨烯纳米带的透射系数和投影态密度与能量之间的关系 (a), (b)为氮掺杂; (c), (d)为硼掺杂

    Fig. 7.  Transmission (top panel) and projected density of states (bottom panel) of doped ZGNRs as function of energy: (a), (b) N-doping; (c), (d) B-doping.

  • [1]

    Peng B, Zhang H, Shao H Z, Xu Y F, Ni G, Zhang R, Zhu H Y 2016 Phys. Rev. B 94 245420Google Scholar

    [2]

    Wang W X, Zhou M, Li X Q, Li S Y, Wu X S, Duan W H, He L 2016 Phys. Rev. B 93 241403Google Scholar

    [3]

    Cui P, Zhang Q, Zhu H B, Li X X, Wang W Y, Li Q X, Zeng C G, Zhang Z Y 2016 Phys. Rev. Lett. 116 026802Google Scholar

    [4]

    Pan J B, Du S X, Zhang Y Y, Pan L D, Zhang Y F, Gao H J, Pantelides S T 2015 Phys. Rev. B 92 205429Google Scholar

    [5]

    Chen X B, Liu Y Z, Gu B L, Duan W H, Liu F 2014 Phys. Rev. B 90 121403Google Scholar

    [6]

    Wang Z F, Jin S, Liu F 2013 Phys. Rev. Lett. 111 096803Google Scholar

    [7]

    Yue Q, Chang S G, Tan J C, Qin S Q, Kang J, Li J B 2012 Phys. Rev. B 86 235448Google Scholar

    [8]

    Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2012 Phys. Rev. B 86 195418Google Scholar

    [9]

    Hu T, Zhou J, Dong J M, Kawazoe Y 2012 Phys. Rev. B 86 125420Google Scholar

    [10]

    Zheng X H, Wang X L, Huang L F, Hao H, Lan J, Zeng Z 2012 Phys. Rev. B 86 081408Google Scholar

    [11]

    Zhou J, Hu T, Dong J M, Kawazoe Y 2012 Phys. Rev. B 86 035434Google Scholar

    [12]

    Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505Google Scholar

    [13]

    Cheng Y C, Wang H T, Zhu Z Y, Zhu Y H, Han Y, Zhang X X, Schwingenschlgl U 2012 Phys. Rev. B 85 073406Google Scholar

    [14]

    Xiang H J, Huang B, Li Z Y, Wei S H, Yang J L, Gong X G 2012 Phys. Rev. X 2 011003Google Scholar

    [15]

    Zhang J C, Huang X P, Yue Y A, Wang J M, Wang X W 2011 Phys. Rev. B 84 235416Google Scholar

    [16]

    Lin X Q, Ni J 2011 Phys. Rev. B 84 075461Google Scholar

    [17]

    Li Y C, Chen X B, Zhou G, Duan W H, Kim Y, Kim M, Ihm J 2011 Phys. Rev. B 83 195443Google Scholar

    [18]

    Li W, Sevinli H, Roche S, Cuniberti G 2011 Phys. Rev. B 83 155416Google Scholar

    [19]

    Zhang Z H, Guo W L, Zeng X C 2010 Phys. Rev. B 82 235423Google Scholar

    [20]

    Wang Z F, Li Q X, Zheng H X, Ren H, Su H B, Shi Q W, Chen J 2007 Phys. Rev. B 75 113406Google Scholar

    [21]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920Google Scholar

    [22]

    Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571Google Scholar

    [23]

    Huang B, Liu F, Wu J, Gu B L, Duan W H 2008 Phys. Rev. B 77 153411Google Scholar

    [24]

    Ozaki T, Nishio K, Weng H M, Kino H 2010 Phys. Rev. B 81 075422Google Scholar

    [25]

    邓小清, 孙琳, 李春先 2016 物理学报 65 068503Google Scholar

    Deng X Q, Sun L, Li C X 2016 Acta Phys. Sin. 65 068503Google Scholar

    [26]

    李彪, 徐大海, 曾晖 2014 物理学报 63 117102Google Scholar

    Li B, Xu D H, Zeng H 2014 Acta Phys. Sin. 63 117102Google Scholar

    [27]

    林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103

    Lin Q, Chen Y X, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese)

    [28]

    李骏, 张振华, 王成志, 邓小清, 范志强 2013 物理学报 62 036103

    Li J, Zhang Z H, Wang C Z, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 036103 (in Chinese)

    [29]

    胡小会, 许俊敏, 孙立涛 2012 物理学报 61 047106

    Hu X H, Xu J M, Su L T 2012 Acta Phys. Sin. 61 047106 (in Chinese)

    [30]

    王鼎, 张振华, 邓小清, 范志强 2013 物理学报 62 207101Google Scholar

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta. Phys. Sin. 62 207101Google Scholar

    [31]

    Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209Google Scholar

    [32]

    Zhang Y, Yan X H, Guo Y D, Xiao Y 2017 J. Appl. Phys. 121 174303Google Scholar

    [33]

    Li H D, Wang L, Lan Z H, Zheng Y S 2009 Phys. Rev. B 79 155429Google Scholar

    [34]

    Xu B, Yin J, Weng H G, Xia Y D, Wan X G, Liu Z G 2010 Phys. Rev. B 81 205419Google Scholar

    [35]

    Wang B, Wang J, Guo H 2009 Phys. Rev. B 79 165417Google Scholar

    [36]

    Ozaki T, Kino H 2005 Phys. Rev. B 72 045121Google Scholar

    [37]

    Tersoff J, Hamann D R 1985 Phys. Rev. B 31 805Google Scholar

    [38]

    Chantis A N, Smith D L, Fransson J, Balatsky A V 2009 Phys. Rev. B 79 165423Google Scholar

    [39]

    Slonczewski J C 1989 Phys. Rev. B 39 6995Google Scholar

    [40]

    Press M R, Liu F, Khanna S N, Jena P 1989 Phys. Rev. B 40 399Google Scholar

  • [1] 焦宝宝. 基于原子核密度的核电荷半径新关系. 物理学报, 2023, 72(11): 112101. doi: 10.7498/aps.72.20230126
    [2] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [3] 王飞, 李全军, 胡阔, 刘冰冰. 高压导致纳米TiO2形变的电子显微研究. 物理学报, 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [4] 翟荟. 基于冷原子的非平衡量子多体物理研究. 物理学报, 2023, 72(23): 230701. doi: 10.7498/aps.72.20231375
    [5] 宋谢飞, 晒旭霞, 李洁, 马新茹, 伏云昌, 曾春华. 无机非铅钙钛矿Cs3Bi2I9的电子和光学性质. 物理学报, 2022, 71(1): 017101. doi: 10.7498/aps.71.20211599
    [6] 祁云平, 贾迎君, 张婷, 丁京徽, 尉净雯, 王向贤. 基于Fano共振的金属-绝缘体-金属-石墨烯纳米管混合结构动态可调折射率传感器. 物理学报, 2022, 71(17): 178101. doi: 10.7498/aps.71.20220652
    [7] 张乐, 袁训锋, 谭小东. 退相位环境下Werner态在石墨烯基量子通道中的隐形传输. 物理学报, 2022, 71(7): 070304. doi: 10.7498/aps.71.20211881
    [8] 刘尚阔, 王涛, 李坤, 曹昆, 张玺斌, 周艳, 赵建科, 姚保利. 光源光谱特性对空间相机调制传递函数检测的影响. 物理学报, 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [9] 张泽程, 刘珍, 王孟妮, 张福建, 张忠强. 柱状石墨烯膜反渗透滤盐特性及机理. 物理学报, 2021, 70(9): 098201. doi: 10.7498/aps.70.20201764
    [10] 蔡子. 非平衡量子物态中的对称性与时间维度效应. 物理学报, 2021, 70(23): 230310. doi: 10.7498/aps.70.20211741
    [11] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究. 物理学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [12] 张超江, 许洪光, 徐西玲, 郑卫军. ${\bf Ta_4C}_{ n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性. 物理学报, 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [13] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [14] 张旭, 曹佳慧, 艾保全, 高天附, 郑志刚. 摩擦不对称耦合布朗马达的定向输运. 物理学报, 2020, 69(10): 100503. doi: 10.7498/aps.69.20191961
    [15] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能. 物理学报, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [16] 董慧莹, 秦晓茹, 薛文瑞, 程鑫, 李宁, 李昌勇. 涂覆石墨烯的非对称椭圆电介质纳米并行线的模式分析. 物理学报, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [17] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [18] 侯滨朋, 淦作亮, 雷雪玲, 钟淑英, 徐波, 欧阳楚英. 第一性原理对氮掺杂石墨烯作为锂-空电池阴极材料还原氧分子的机理研究. 物理学报, 2019, 68(12): 128801. doi: 10.7498/aps.68.20190181
    [19] 王飞, 魏兵. 含石墨烯分界面有耗分层介质的传播矩阵. 物理学报, 2019, 68(24): 244101. doi: 10.7498/aps.68.20190823
    [20] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
计量
  • 文章访问数:  6301
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-23
  • 修回日期:  2018-11-28
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回