搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

边缘重构对锯齿型石墨烯纳米带电子输运的影响

李彪 徐大海 曾晖

引用本文:
Citation:

边缘重构对锯齿型石墨烯纳米带电子输运的影响

李彪, 徐大海, 曾晖

Influence of edge reconstruction on the electron transport in zigzag graphene nanoribbon

Li Biao, Xu Da-Hai, Zeng Hui
PDF
导出引用
  • 实验研究表明石墨烯纳米带中广泛地存在边缘结构重构且稳定的边缘缺陷结构. 本文采用第一性原理的计算方法研究了锯齿型石墨烯纳米带中边缘结构重构形成的两种不同缺陷结构对材料电子输运性能的影响. 研究发现两种缺陷边缘结构对稳定纳米尺度位型结构和电子能带结构具有显著影响,它使得费米能级发生移动并引起了共振背散射. 两种边缘缺陷重构均抑制了费米能级附近电子输运特性并导致不同区域的电子完全共振背散射,电导的抑制不仅与边缘缺陷结构的大小有关,它更取决于边缘缺陷重构位型引起的缺陷态的具体分布和电子能带的移动.
    Edge reconstructions of graphene nanoribbons and their stable defective configurations were identified by experimental characterization. First principles calculations are performed to evaluate the effects of atomic edge arrangement on the electronic transport properties of zigzag graphene nanoribbons. It is found that these two defective edge structures affect effectively the high stable nanostructure configuration and give rise to pronounced modifications on electronic bands, leading to the shift of Fermi level as well as the occurrence of resonant energies. Both of these two atomic reconstructions would limit the electron transport around the Fermi level, and result in the complete resonant backscattering taking place at different locations. The suppression of conductance is not only related with increasing defect size, but more sensitive to the distribution of defect state, and the modifications on the electronic bands that are influenced by the edge reconstructions.
    • 基金项目: 国家自然科学基金(批准号:11304022,11347010)、湖北省教育厅科学研究项目(批准号:T201204,Q20131208)和长江大学优秀青年教师科研支持计划(批准号:cyq201321,cyq201322)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 11304022, 11347010), the Scientific Research Foundation of the Higher Education Institutions of Hubei Province, China(Grant Nos. T201204, Q20131208), and the Foundation of Yangtze University for Outstanding Young Teachers, China (cyq201321, cyq201322).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. Rev. B 54 17954

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [6]

    Geim A K 2009 Science 324 1530

    [7]

    Dresselhaus M S, Jorio A, Hofmann M, Dresselhaus G, Saito R 2010 Nano. Lett. 10 751

    [8]

    Enoki T, Kobayashi Y, Fukui K I 2007 Int. Rev. Phys. Chem. 26 609

    [9]

    Girit C Ö, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C H, Crommie M F, Cohen M L, Louie S G, Zettl A 2009 Science 323 1705

    [10]

    Jia X, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M, Dresselhaus M S 2009 Science 323 1701

    [11]

    Koskinen P, Malola S, Häkkinen H 2009 Phys. Rev. B 80 073401

    [12]

    Koskinen P, Malola S, Häkkinen H 2008 Phys. Rev. Lett. 101 115502

    [13]

    Dubois S M M, Lopez-Bezanilla A, Cresti A, Triozon F, Biel B, Charlier J C, Roche S 2010 ACS Nano 4 1971

    [14]

    Zeng H, Zhao J, Wei J W 2011 Eur. Phys. J. Appl. Phys. 53 20602

    [15]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese)[王雪梅, 刘红 2011 物理学报 60 047102]

    [16]

    Krasheninnikov A V, Nordlund K 2010 J. Appl. Phys. 107 071301

    [17]

    Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A 2008 Nano Lett. 8 3582

    [18]

    Ren Y, Chen K Q 2010 J. Appl. Phys. 107 044514

    [19]

    Wang Z Y, Hu H F, Gu L, Wang W, Jia J F 2011 Acta Phys. Sin. 60 017102 (in Chinese)[王志勇, 胡慧芳, 顾林, 王巍, 贾金凤 2011 物理学报 60 017102]

    [20]

    Lei S L, Li B, Huang J, Li Q X, Yang J L 2013 Chinese Phys. Lett. 30 077502

    [21]

    Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, OuYang F P 2012 Chin. Phys. B 21 027102

    [22]

    Banhart F, Kotakoski J, Krasheninnikov A V 2011 ACS Nano 5 26

    [23]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [24]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [25]

    Ordejón P, Artacho E, Soler J M 1996 Phys. Rev. B 53 10441

    [26]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Portal D S 2002 J. Phys: Condens. Matter. 14 2745

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [30]

    Datta S 2005 Quantum Transport: Atom to Transistor (New York: Cambridge University Press) pp232-240

    [31]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [32]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [33]

    Stone A J, Wales D J 1986 Chem. Phys. Lett. 128 501

    [34]

    Zeng H, Leburton J P, Hu H F, Wei J W 2011 Solid State Commun. 151 9

    [35]

    Zeng H, Leburton J P, Xu Y, Wei J W 2011 Nanoscale Res. Lett. 6 254

    [36]

    Topsakal M, Aktrk E, Sevincli H, Ciraci S 2008 Phys. Rev. B 78 235435

    [37]

    Biel B, Blase X, Triozon F, Roche S 2009 Phys. Rev. Lett. 102 096803

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. Rev. B 54 17954

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [6]

    Geim A K 2009 Science 324 1530

    [7]

    Dresselhaus M S, Jorio A, Hofmann M, Dresselhaus G, Saito R 2010 Nano. Lett. 10 751

    [8]

    Enoki T, Kobayashi Y, Fukui K I 2007 Int. Rev. Phys. Chem. 26 609

    [9]

    Girit C Ö, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C H, Crommie M F, Cohen M L, Louie S G, Zettl A 2009 Science 323 1705

    [10]

    Jia X, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M, Dresselhaus M S 2009 Science 323 1701

    [11]

    Koskinen P, Malola S, Häkkinen H 2009 Phys. Rev. B 80 073401

    [12]

    Koskinen P, Malola S, Häkkinen H 2008 Phys. Rev. Lett. 101 115502

    [13]

    Dubois S M M, Lopez-Bezanilla A, Cresti A, Triozon F, Biel B, Charlier J C, Roche S 2010 ACS Nano 4 1971

    [14]

    Zeng H, Zhao J, Wei J W 2011 Eur. Phys. J. Appl. Phys. 53 20602

    [15]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese)[王雪梅, 刘红 2011 物理学报 60 047102]

    [16]

    Krasheninnikov A V, Nordlund K 2010 J. Appl. Phys. 107 071301

    [17]

    Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A 2008 Nano Lett. 8 3582

    [18]

    Ren Y, Chen K Q 2010 J. Appl. Phys. 107 044514

    [19]

    Wang Z Y, Hu H F, Gu L, Wang W, Jia J F 2011 Acta Phys. Sin. 60 017102 (in Chinese)[王志勇, 胡慧芳, 顾林, 王巍, 贾金凤 2011 物理学报 60 017102]

    [20]

    Lei S L, Li B, Huang J, Li Q X, Yang J L 2013 Chinese Phys. Lett. 30 077502

    [21]

    Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, OuYang F P 2012 Chin. Phys. B 21 027102

    [22]

    Banhart F, Kotakoski J, Krasheninnikov A V 2011 ACS Nano 5 26

    [23]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [24]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [25]

    Ordejón P, Artacho E, Soler J M 1996 Phys. Rev. B 53 10441

    [26]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Portal D S 2002 J. Phys: Condens. Matter. 14 2745

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [30]

    Datta S 2005 Quantum Transport: Atom to Transistor (New York: Cambridge University Press) pp232-240

    [31]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [32]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [33]

    Stone A J, Wales D J 1986 Chem. Phys. Lett. 128 501

    [34]

    Zeng H, Leburton J P, Hu H F, Wei J W 2011 Solid State Commun. 151 9

    [35]

    Zeng H, Leburton J P, Xu Y, Wei J W 2011 Nanoscale Res. Lett. 6 254

    [36]

    Topsakal M, Aktrk E, Sevincli H, Ciraci S 2008 Phys. Rev. B 78 235435

    [37]

    Biel B, Blase X, Triozon F, Roche S 2009 Phys. Rev. Lett. 102 096803

  • [1] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运. 物理学报, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [2] 左敏, 廖文虎, 吴丹, 林丽娥. 石墨烯纳米带电极同分异构喹啉分子结电子输运性质. 物理学报, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [3] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [4] 张华林, 孙琳, 韩佳凝. 掺杂三角形硼氮片的锯齿型石墨烯纳米带的磁电子学性质. 物理学报, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [5] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [6] 柳福提, 程艳, 陈向荣, 程晓洪. GaAs纳米结点电子输运性质的第一性原理计算. 物理学报, 2014, 63(13): 137303. doi: 10.7498/aps.63.137303
    [7] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应. 物理学报, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [8] 邓小清, 杨昌虎, 张华林. B/N掺杂对于石墨烯纳米片电子输运的影响. 物理学报, 2013, 62(18): 186102. doi: 10.7498/aps.62.186102
    [9] 李骏, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带卷曲效应对其电子特性的影响. 物理学报, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [10] 曾永昌, 田文, 张振华. 周期性纳米洞内边缘氧饱和石墨烯纳米带的电子特性. 物理学报, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [11] 秦军瑞, 陈书明, 张超, 陈建军, 梁斌, 刘必慰. A-Z-A型石墨烯场效应晶体管吸附效应的第一性原理研究. 物理学报, 2012, 61(2): 023102. doi: 10.7498/aps.61.023102
    [12] 胡飞, 段玲, 丁建文. 锯齿型石墨纳米带叠层复合结的电子输运. 物理学报, 2012, 61(7): 077201. doi: 10.7498/aps.61.077201
    [13] 段玲, 胡飞, 丁建文. 准一维纳米线电子输运的梯度无序效应. 物理学报, 2011, 60(11): 117201. doi: 10.7498/aps.60.117201
    [14] 赵佩, 郑继明, 陈有为, 郭平, 任兆玉. 单壁碳纳米管吸附氧分子的电子输运性质理论研究. 物理学报, 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [15] 王志勇, 胡慧芳, 顾林, 王巍, 贾金凤. 含Stone-Wales缺陷zigzag型石墨烯纳米带的电学和光学性能研究. 物理学报, 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [16] 张迷, 陈元平, 张再兰, 欧阳滔, 钟建新. 堆叠石墨片对锯齿型石墨纳米带电子输运的影响. 物理学报, 2011, 60(12): 127204. doi: 10.7498/aps.60.127204
    [17] 陶强, 胡小颖, 朱品文. 羟基饱和锯齿型石墨烯纳米带的电子结构. 物理学报, 2011, 60(9): 097301. doi: 10.7498/aps.60.097301
    [18] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [19] 王利光, 张鸿宇, 王畅, Terence K. S. W.. 嵌入锂原子的zigzag型单壁碳纳米管的电子传导特性. 物理学报, 2010, 59(1): 536-540. doi: 10.7498/aps.59.536
    [20] 胡海鑫, 张振华, 刘新海, 邱明, 丁开和. 石墨烯纳米带电子结构的紧束缚法研究. 物理学报, 2009, 58(10): 7156-7161. doi: 10.7498/aps.58.7156
计量
  • 文章访问数:  3632
  • PDF下载量:  736
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-31
  • 修回日期:  2014-02-25
  • 刊出日期:  2014-06-05

边缘重构对锯齿型石墨烯纳米带电子输运的影响

  • 1. 长江大学物理科学与技术学院, 荆州 434023
    基金项目: 国家自然科学基金(批准号:11304022,11347010)、湖北省教育厅科学研究项目(批准号:T201204,Q20131208)和长江大学优秀青年教师科研支持计划(批准号:cyq201321,cyq201322)资助的课题.

摘要: 实验研究表明石墨烯纳米带中广泛地存在边缘结构重构且稳定的边缘缺陷结构. 本文采用第一性原理的计算方法研究了锯齿型石墨烯纳米带中边缘结构重构形成的两种不同缺陷结构对材料电子输运性能的影响. 研究发现两种缺陷边缘结构对稳定纳米尺度位型结构和电子能带结构具有显著影响,它使得费米能级发生移动并引起了共振背散射. 两种边缘缺陷重构均抑制了费米能级附近电子输运特性并导致不同区域的电子完全共振背散射,电导的抑制不仅与边缘缺陷结构的大小有关,它更取决于边缘缺陷重构位型引起的缺陷态的具体分布和电子能带的移动.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回