搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂三角形硼氮片的锯齿型石墨烯纳米带的磁电子学性质

张华林 孙琳 韩佳凝

引用本文:
Citation:

掺杂三角形硼氮片的锯齿型石墨烯纳米带的磁电子学性质

张华林, 孙琳, 韩佳凝

Magneto-electronic properties of zigzag graphene nanoribbons doped with triangular boron nitride segment

Zhang Hua-Lin, Sun Lin, Han Jia-Ning
PDF
导出引用
  • 利用基于密度泛函理论的第一性原理方法,研究了三角形BN片掺杂的锯齿型石墨烯纳米带(ZGNR)的磁电子学特性.研究表明:当处于无磁态时,不同位置掺杂的ZGNR都为金属;当处于铁磁态时,随着杂质位置由纳米带的一边移向另一边时,依次可以实现自旋金属-自旋半金属-自旋半导体的变化过程,且只要不在纳米带的边缘掺杂,掺杂的ZGNR就为自旋半金属;当处于反铁磁态时,在中间区域掺杂的ZGNR都为自旋金属,而在两边缘掺杂的ZGNR没有反铁磁态.掺杂ZGNR的结构稳定,在中间区域掺杂时反铁磁态是基态,而在边缘掺杂时铁磁态为基态.研究结果对于发展基于石墨烯的纳米电子器件具有重要意义.
    In this paper, magneto-electronic properties of zigzag graphene nanoribbons (ZGNR) doped with triangular boron nitride (BN) segments are investigated by using first-principles method based on density functional theory. It is shown that in the nonmagnetic state, the ZGNRs doped with triangular BN segments at different positions are metals. In the ferromagnetic state, with the impurities moving from one edge of the nanoribbon to the other edge, a transition is caused from a spin metal to a spin half-metal, and then to spin semiconductor, and as long as the impurity is not on the edge of the nanoribbon, the doped ZGNR is always spin half-metal. In the antiferromagnetic state, the ZGNR doped in the middle of the nanoribbon is spin metal, while the ZGNR doped on the edge of the nanoribbon has no antiferromagnetic state. The electronic structures of the ZGNRs doped with BN segments at different positions are explained by the difference in charge density. The binding energies of doped ZGNRs are negative, thus the structures of the doped ZGNRs are stable. As the impurity moves from position P1 to position P5, the binding energy decreases gradually. When the impurity is located at position P5, the binding energy of ZGNR is smallest, and the structure of ZGNR is most stable. When the impurity doped in the middle of the nanoribbon, the antiferromagnetic state is the ground state, while the impurity is doped on the edge of the nanoribbon, the ferromagnetic state is the ground state. These obtained results are of significance for developing electronic nanodevices based on graphene.
      通信作者: 张华林, zhanghualin0703@126.com
    • 基金项目: 湖南省教育厅科研项目(批准号:16C0029)、湖南省高校科技创新团队支持计划和湖南省重点学科建设项目资助的课题.
      Corresponding author: Zhang Hua-Lin, zhanghualin0703@126.com
    • Funds: Project supported by the Scientific Research Project of the Education Department of Hunan Province, China (Grant No. 16C0029), the Aid Program for the Science and Technology Innovation Team in Colleges, and Universities of Hunan Province, and the Construct Program of the Key Discipline in Hunan Province, China.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748

    [3]

    Yang L, Park C H, Son Y W, Cohen M L, Louie S G 2007 Phys. Rev. Lett. 99 186801

    [4]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

    [5]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 物理学报 62 207101]

    [6]

    Farzaneh S 2015 J. Phys. Chem. C 119 12681

    [7]

    Wang Q H, Shih C J, Paulus G L C, Strano M S 2013 J. Am. Chem. Soc. 135 18866

    [8]

    Kan Z, Nelson C, Khatun M 2014 J. Appl. Phys. 115 153704

    [9]

    Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657

    [10]

    Yu Z L, Wang D, Zhu Z, Zhang Z H 2015 Phys. Chem. Chem. Phys. 17 24020

    [11]

    Zhang W X, He C, Li T, Gong S B 2015 RSC Adv. 5 33407

    [12]

    Tang G P, Zhang Z H, Deng X Q, Fan Z Q, Zhu H L 2015 Phys. Chem. Chem. Phys. 17 638

    [13]

    Zhang H L, Sun L, Wang D 2016 Acta Phys. Sin. 65 016101 (in Chinese) [张华林, 孙琳, 王鼎 2016 物理学报 65 016101]

    [14]

    Zhao S Q, L Y, L W G, Liang W J, Wang E G 2014 Chin. Phys. B 23 067305

    [15]

    Liu J, Zhang Z H, Deng X Q, Fan Z Q, Tang G P 2015 Org. Electron. 18 135

    [16]

    Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, Ouyang F P 2012 Chin. Phys. B 21 027102

    [17]

    Liu Z M, Zhu Y, Yang Z Q 2011 J. Chem. Phys. 134 074708

    [18]

    Xu B, Lu Y H, Feng Y P, Lin J Y 2010 J. Appl. Phys. 108 073711

    [19]

    Manna A K, Pati S K 2011 J. Phys. Chem. C 115 10842

    [20]

    Menezes M G, Capaz R B 2012 Phys. Rev. B 86 195413

    [21]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P 2010 Appl. Phys. Lett. 97 193305

    [22]

    Seol G, Guo J 2011 Appl. Phys. Lett. 98 143107

    [23]

    Ci L J, Song L, Jin C H, Jariwala D, Wu D X, Li Y J, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F, Ajayan P M 2010 Nat. Mater. 9 430

    [24]

    Hu R, Fan Z Q, Zhang Z H 2017 Acta Phys. Sin. 66 138501 (in Chinese) [胡锐, 范志强, 张振华 2017 物理学报 66 138501]

    [25]

    Zhang Z, Zhang J, Kwong G, Li J, Fan Z, Deng X, Tang G 2013 Sci. Rep. 3 2575

    [26]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765

    [27]

    Kan M, Zhou J, Sun Q, Wang Q, Kawazoe Y, Jena P 2012 Phys. Rev. B 85 155450

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748

    [3]

    Yang L, Park C H, Son Y W, Cohen M L, Louie S G 2007 Phys. Rev. Lett. 99 186801

    [4]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

    [5]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 物理学报 62 207101]

    [6]

    Farzaneh S 2015 J. Phys. Chem. C 119 12681

    [7]

    Wang Q H, Shih C J, Paulus G L C, Strano M S 2013 J. Am. Chem. Soc. 135 18866

    [8]

    Kan Z, Nelson C, Khatun M 2014 J. Appl. Phys. 115 153704

    [9]

    Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657

    [10]

    Yu Z L, Wang D, Zhu Z, Zhang Z H 2015 Phys. Chem. Chem. Phys. 17 24020

    [11]

    Zhang W X, He C, Li T, Gong S B 2015 RSC Adv. 5 33407

    [12]

    Tang G P, Zhang Z H, Deng X Q, Fan Z Q, Zhu H L 2015 Phys. Chem. Chem. Phys. 17 638

    [13]

    Zhang H L, Sun L, Wang D 2016 Acta Phys. Sin. 65 016101 (in Chinese) [张华林, 孙琳, 王鼎 2016 物理学报 65 016101]

    [14]

    Zhao S Q, L Y, L W G, Liang W J, Wang E G 2014 Chin. Phys. B 23 067305

    [15]

    Liu J, Zhang Z H, Deng X Q, Fan Z Q, Tang G P 2015 Org. Electron. 18 135

    [16]

    Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, Ouyang F P 2012 Chin. Phys. B 21 027102

    [17]

    Liu Z M, Zhu Y, Yang Z Q 2011 J. Chem. Phys. 134 074708

    [18]

    Xu B, Lu Y H, Feng Y P, Lin J Y 2010 J. Appl. Phys. 108 073711

    [19]

    Manna A K, Pati S K 2011 J. Phys. Chem. C 115 10842

    [20]

    Menezes M G, Capaz R B 2012 Phys. Rev. B 86 195413

    [21]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P 2010 Appl. Phys. Lett. 97 193305

    [22]

    Seol G, Guo J 2011 Appl. Phys. Lett. 98 143107

    [23]

    Ci L J, Song L, Jin C H, Jariwala D, Wu D X, Li Y J, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F, Ajayan P M 2010 Nat. Mater. 9 430

    [24]

    Hu R, Fan Z Q, Zhang Z H 2017 Acta Phys. Sin. 66 138501 (in Chinese) [胡锐, 范志强, 张振华 2017 物理学报 66 138501]

    [25]

    Zhang Z, Zhang J, Kwong G, Li J, Fan Z, Deng X, Tang G 2013 Sci. Rep. 3 2575

    [26]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765

    [27]

    Kan M, Zhou J, Sun Q, Wang Q, Kawazoe Y, Jena P 2012 Phys. Rev. B 85 155450

  • [1] 亢玉彬, 唐吉龙, 李科学, 李想, 侯效兵, 楚学影, 林逢源, 王晓华, 魏志鹏. Be, Si掺杂调控GaAs纳米线结构相变及光学特性. 物理学报, 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [2] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算. 物理学报, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [3] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性. 物理学报, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [4] 于鹏, 曹盛, 曾若生, 邹炳锁, 赵家龙. 金属离子掺杂提高全无机钙钛矿纳米晶发光性质的研究进展. 物理学报, 2020, 69(18): 187801. doi: 10.7498/aps.69.20200795
    [5] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [6] 侯海燕, 姚慧, 李志坚, 聂一行. 磁性硅烯超晶格中电场调制的谷极化和自旋极化. 物理学报, 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [7] 马霞, 王静. 掺杂硅纳米梁谐振频率的理论模型及分子动力学模拟. 物理学报, 2017, 66(10): 106103. doi: 10.7498/aps.66.106103
    [8] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运. 物理学报, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [9] 张华林, 孙琳, 王鼎. 含单排线缺陷锯齿型石墨烯纳米带的电磁性质. 物理学报, 2016, 65(1): 016101. doi: 10.7498/aps.65.016101
    [10] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [11] 刘奎立, 周思华, 陈松岭. 金属离子掺杂对CuO基纳米复合材料的交换偏置调控. 物理学报, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [12] 万步勇, 苑进社, 冯庆, 王奥. K,Na掺杂Cu-S纳米晶的水热合成及对结构、性能的影响. 物理学报, 2013, 62(17): 178102. doi: 10.7498/aps.62.178102
    [13] 王鼎, 张振华, 邓小清, 范志强. BN链掺杂的石墨烯纳米带的电学及磁学特性. 物理学报, 2013, 62(20): 207101. doi: 10.7498/aps.62.207101
    [14] 胡小会, 许俊敏, 孙立涛. 金掺杂锯齿型石墨烯纳米带的电磁学特性研究 . 物理学报, 2012, 61(4): 047106. doi: 10.7498/aps.61.047106
    [15] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [16] 王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生. 不同浓度Er掺杂Si纳米晶粒电子结构和光学性质的第一性原理研究. 物理学报, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [17] 张建东, 杨春, 陈元涛, 张变霞, 邵文英. 金原子掺杂的碳纳米管吸附CO气体的密度泛函理论研究. 物理学报, 2011, 60(10): 106102. doi: 10.7498/aps.60.106102
    [18] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [19] 乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军. 过渡金属掺杂钛酸纳米管的电子结构和光学性质研究. 物理学报, 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [20] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
计量
  • 文章访问数:  2865
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-26
  • 修回日期:  2017-09-17
  • 刊出日期:  2017-12-05

掺杂三角形硼氮片的锯齿型石墨烯纳米带的磁电子学性质

  • 1. 长沙理工大学物理与电子科学学院, 长沙 410114
  • 通信作者: 张华林, zhanghualin0703@126.com
    基金项目: 湖南省教育厅科研项目(批准号:16C0029)、湖南省高校科技创新团队支持计划和湖南省重点学科建设项目资助的课题.

摘要: 利用基于密度泛函理论的第一性原理方法,研究了三角形BN片掺杂的锯齿型石墨烯纳米带(ZGNR)的磁电子学特性.研究表明:当处于无磁态时,不同位置掺杂的ZGNR都为金属;当处于铁磁态时,随着杂质位置由纳米带的一边移向另一边时,依次可以实现自旋金属-自旋半金属-自旋半导体的变化过程,且只要不在纳米带的边缘掺杂,掺杂的ZGNR就为自旋半金属;当处于反铁磁态时,在中间区域掺杂的ZGNR都为自旋金属,而在两边缘掺杂的ZGNR没有反铁磁态.掺杂ZGNR的结构稳定,在中间区域掺杂时反铁磁态是基态,而在边缘掺杂时铁磁态为基态.研究结果对于发展基于石墨烯的纳米电子器件具有重要意义.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回