搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮氧锚定的单原子铜掺杂石墨烯作为碱离子电池负极的理论预测研究

胡军平 梁丝思 段惠贤 田俊程 陈硕 戴柏杨 黄春来 刘宇 吕营 万利佳 欧阳楚英

引用本文:
Citation:

氮氧锚定的单原子铜掺杂石墨烯作为碱离子电池负极的理论预测研究

胡军平, 梁丝思, 段惠贤, 田俊程, 陈硕, 戴柏杨, 黄春来, 刘宇, 吕营, 万利佳, 欧阳楚英

Theoretical prediction of nitrogen-oxygen-anchored monatomic copper-doped graphene as an anode for alkaline ion batteries

HU Junping, LIANG Sisi, DUAN Huixian, TIAN Juncheng, CHEN Shuo, DAI Boyang, HUANG Chunlai, LIU Yu, LV Ying, WAN Lijia, OUYANG Chuying
PDF
HTML
导出引用
  • 合理设计高容量的新型电极材料是进一步提高离子电池能量密度的关键. 石墨烯曾被认为是离子电池负极材料最有前景的候选者之一, 然而因纯的石墨烯与相应离子的相互作用较弱, 导致其理论容量都不高. 基于此, 本文通过第一性原理评估氮氧(N, O)锚定的单原子铜掺杂石墨烯的二维材料Cu/NO2G作为锂/钠/钾离子电池负极的可行性. 计算结果显示, Cu/NO2G在热力学和动力学上都是稳定的, 在吸附Li/Na/K前后均保持良好导电性, 并且Cu/NO2G储存Li/Na/K的理论容量分别高达1639.9 mAh/g, 2025.8 mAh/g, 1157.6 mAh/g, 在Li/Na/K嵌入的过程中, 其晶格常数变化微小(<1%), 这预示着其循环稳定性能佳. 此外, Li, Na, K在Cu/NO2G表面上的迁移势垒分别为0.339 eV, 0.209 eV和0.098 eV, 表明其具有优异的倍率性能. 综上所述, 本文结果为合理设计金属单原子掺杂石墨烯作为碱金属离子电池的新型负极材料奠定了坚实的理论基础. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00063中访问获取.
    Reasonably designing high-capacity novel electrode materials is key to further enhancing the energy density of ion batteries. Graphene has been considered one of the most promising candidates for anodes in ion batteries. However, the weak interaction between pure graphene and the corresponding ions results in a low theoretical capacity. Based on this, in this work the first-principles calculation is used to assess the viability of two-dimensional Cu/NO2G, a single-atom copper-doped graphene anchored by nitrogen and oxygen, as an anode material for Li/Na/K-ion batteries. The results show that Cu/NO2G is stable in terms of thermodynamics and kinetics. It maintains good conductivity before and after the adsorption of Li/Na/K, with theoretical capacities of 1639.9 mAh/g for lithium, 2025.8 mAh/g for sodium, and 1157.6 mAh/g for potassium. In the embedding process of Li/Na/K, the lattice constant changes minimally (less than 1%), indicating excellent cycling stability. Additionally, the migration energy barriers for Li, Na, and K on the surface of Cu/NO2G are 0.339 eV, 0.209 eV, and 0.098 eV, respectively, demonstrating its superior rate performance. In summary, these results provide a solid theoretical foundation for rationally designing metal single-atom doped graphene as a novel anode material for alkali metal ion batteries. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00063.
  • 图 1  (a) 结构优化后Cu/NO2G的俯视图; (b) 结构优化后Cu/NO2G的侧视图; (c) Cu/NO2G单层的声子色散曲线; (d) 300 K下AIMD模拟的结果, 插图为5 ps和10 ps时的原子结构俯视图

    Fig. 1.  (a) Top view of the optimized Cu/NO2G; (b) side view of the optimized Cu/NO2G; (c) phonon dispersion curves of Cu/NO2G monolayer; (d) results of AIMD simulations at 300 K, where insets are snapshots of atomic structures at 5 ps and 10 ps.

    图 2  (a) Cu/NO2G上A面和B面所考虑的吸附位点俯视图; (b)—(d)分别为Li/Na/K在A面最稳定的吸附构型的俯视图和侧视图; (e)—(g) 分别为Li/Na/K在B面最稳定的吸附构型的俯视图和侧视图

    Fig. 2.  (a) Top view of adsorption sites on Cu/NO2G that we have considered on side A and side B; (b)–(d) the top and side views of the most stable adsorption configurations of Li/Na/K on the A side; (e)–(g) the top and side views of the most stable adsorption configurations of Li/Na/K on the B side.

    图 3  (a) Li, (b) Na, (c) K吸附在Cu/NO2G的B面上的电荷密度差的侧视图, 蓝色和黄色分别代表电子耗尽区和积累区, 相应的等值面(isosurface level)的数值为0.0015 Bohr–3

    Fig. 3.  Side views of the charge density difference of (a) Li, (b) Na and (c) K atom adsorbed on B side of Cu/NO2G. The blue and the yellow colors represent regions with electron depletion and accumulation, respectively. The corresponding value of isosurface level is 0.0015 /Bohr–3.

    图 4  (a) Cu/NO2G态密度图; (b) Cu/NO2G 中C和Cu的局部态密度图; (c) Cu/NO2G 中N和O的局部态密度图; (d) Cu/NO2G吸附Li原子后态密度图; (e) Cu/NO2G吸附Na原子后态密度图; (f) Cu/NO2G吸附K原子后态密度图

    Fig. 4.  (a) DOS of Cu/NO2G; (b) LDOS plots for C and Cu in Cu/NO2G; (c) LDOS plots for N and O in Cu/NO2G; (d) DOS of Cu/NO2G after Li adsorption; (e) DOS of Cu/NO2G after Na adsorption; (f) DOS of Cu/NO2G after K adsorption.

    图 5  不同浓度Li/Na/K嵌入Cu/NO2G的$ {V}_{{\mathrm{o}}{\mathrm{c}}{\mathrm{v}}} $

    Fig. 5.  Vocv of different Li/Na/K concentrations intercalation in the Cu/NO2G.

    图 6  Cu/NO2G与其他二维材料的理论比容量对比图

    Fig. 6.  Comparison of the theoretical specific capacities between Cu/NO2G monolayer and other 2D anode materials.

    图 7  (a) Li/Na/K在Cu/NO2G的A面迁移路径; (b) Li/Na/K在Cu/NO2G的B面迁移路径; (c) Li/Na/K在Cu/NO2G的A面迁移路径上的扩散势垒; (d) Li/Na/K在Cu/NO2G的B面迁移路径上的扩散势垒

    Fig. 7.  (a) Migration pathways of Li/Na/K on side A of Cu/NO2G; (b) migration pathways of Li/Na/K on side B of Cu/NO2G; (c) diffusion barriers of Li/Na/K for the pathways on side A of Cu/NO2G; (d) diffusion barriers of Li/Na/K for the pathways on side B of Cu/NO2G.

    表 1  Cu/NO2G 吸附Li/Na/K后的Bader电荷分析

    Table 1.  Bader charge analysis of Cu/NO2G Li/Na/K adsorbed states.

    Average charge states
    LiNaKCNOCu
    $ {{\mathrm{L}}{\mathrm{i}}{\mathrm{C}}{\mathrm{u}}{\mathrm{N}}{{\mathrm{O}}}_{2}{\mathrm{C}}}_{14} $–0.845–0.1621.2321.115–0.355
    $ {{\mathrm{N}}{\mathrm{a}}{\mathrm{C}}{\mathrm{u}}{\mathrm{N}}{{\mathrm{O}}}_{2}{\mathrm{C}}}_{14} $–0.835–0.1541.2061.097–0.403
    $ {{\mathrm{K}}{\mathrm{C}}{\mathrm{u}}{\mathrm{N}}{{\mathrm{O}}}_{2}{\mathrm{C}}}_{14} $–0.842–0.1421.2241.053–0.503
    下载: 导出CSV
  • [1]

    Liu A, Chen Y T, Cheng X 2022 Environ. Res. Lett. 17 054031Google Scholar

    [2]

    陈海生, 刘畅, 徐玉杰, 岳芬, 刘为, 俞振华 2021 储能科学与技术 10 1477

    Chen H S, Liu C, Xu Y J, Yue F, Liu W, Yu Z H 2021 Energy Storage Sci. Technol. 10 1477

    [3]

    Nzereogu P U, Omah A D, Ezema F I, Iwuoha E I, Nwanya A C 2022 Appl. Surf. Sci. Adv. 9 100233Google Scholar

    [4]

    Hossain M H, Chowdhury M A, Hossain N, Islam M A, Mobarak M H 2023 Chem. Eng. J. Adv. 16 100569Google Scholar

    [5]

    Guo Q B, Han S, Lu Y X, Chen L Q, Hu Y S 2023 Chin. Phys. Lett. 40 028801Google Scholar

    [6]

    Jian Z L, Luo W, Ji X L 2015 J. Am. Chem. Soc. 137 11566Google Scholar

    [7]

    Perveen T, Siddiq M, Shahzad N, Ihsan R, Ahmad A, Shahzad M I 2020 Renew. Sustain. Energy Rev. 119 109549Google Scholar

    [8]

    Sha M, Liu L, Zhao H P, Lei Y 2020 Carbon Energy 2 350Google Scholar

    [9]

    Aslam M K, Niu Y, Xu M 2021 Adv. Energy Mater. 11 2000681Google Scholar

    [10]

    Wen Y, He K, Zhu Y J, Han F D, Xu Y H, Matsuda I, Ishii Y, Cumings J, Wang C S 2014 Nat. Commun. 5 4033Google Scholar

    [11]

    Tan S H, Yang H, Zhang Z, Xu X Y, Xu Y Y, Zhou J, Zhou X C, Pan Z D, Rao X Y, Gu Y D, Wang Z L, Wu Y T, Liu X, Zhang Y 2023 Molecules 28 3134Google Scholar

    [12]

    Lu X Y, Peng H D, Liu G P, Qi F Y, Shi C L, Wu S, Wu Y X, Yang H P, Shan J, Sun Z P 2023 Energy Adv. 2 1294Google Scholar

    [13]

    Kuai J, Xie J, Wang J D, Chen J Y, Liu F, Xu X W, Tu J, Cheng J P 2024 Chem. Phys. Lett. 842 141214Google Scholar

    [14]

    Zhang K, He Q, Xiong F Y, Zhou J P, Zhao Y, Mai L Q, Zhang L N 2020 Nano Energy 77 105018Google Scholar

    [15]

    Lei K X, Wang J, Chen C, Li S Y, Wang S W, Zheng S J, Li F J 2020 Rare Met. 39 989Google Scholar

    [16]

    Feng Z Y, Peng W J, Wang Z X, Guo H J, Li X H, Yan G C, Wang J X 2021 Int. J. Miner. Metall. Mater. 28 1549Google Scholar

    [17]

    Garayt M D L, Zhang L B, Zhang Y X, Obialor M C, Deshmukh J, Xing Y J, Yang C Y, Metzger M, Dahn J R 2024 J. Electrochem. Soc. 171 070523Google Scholar

    [18]

    Lin J Y, Yu T, Han F J J, Yang G C 2020 Wires Comput. Mol. Sci. 10 e1473Google Scholar

    [19]

    Kulish V V, Malyi O I, Persson C, Wu P 2015 Phys. Chem. Chem. Phys. 17 13921Google Scholar

    [20]

    Hu J P, Xu B, Ouyang C Y, Yang S Y A, Yao Y G 2014 J. Phys. Chem. C 118 24274Google Scholar

    [21]

    Xu Z M, Lv X J, Chen J G, Jiang L X, Lai Y Q, Li J 2017 Phys. Chem. Chem. Phys. 19 7807Google Scholar

    [22]

    Yu Y D, Guo Z L, Peng Q, Zhou J, Sun Z M 2019 J. Mater. Chem. A 7 12145Google Scholar

    [23]

    Yu T, Zhang S T, Li F, Zhao Z Y, Liu L L, Xu H Y, Yang G C 2017 J. Mater. Chem. A 5 18698Google Scholar

    [24]

    张改, 谢海妹, 宋海滨, 李晓菲, 张茜, 亢一澜 2022 物理学报 71 066501Google Scholar

    Zhang G, Xie H M, Song H B, Li X F, Zhang Q, Kang Y L 2022 Acta Phys. Sin. 71 066501Google Scholar

    [25]

    雷雪玲, 朱巨湧, 柯强, 欧阳楚英 2024 物理学报 73 098804Google Scholar

    Lei X L, Zhu J Y, Ke Q, Ouyang C Y 2024 Acta Phys. Sin. 73 098804Google Scholar

    [26]

    Liang Y B, Liu Z, Wang J, Liu Y 2022 Chin. Phys. B 31 116302Google Scholar

    [27]

    Aghamohammadi H, Hassanzadeh N, Eslami-Farsani R 2021 Ceram. Int. 47 22269Google Scholar

    [28]

    Mahmood N, Tang T, Hou Y 2016 Adv. Energy Mater. 6 1600374Google Scholar

    [29]

    Bi J X, Du Z Z, Sun J M, Liu Y H, Wang K, Du H F, Ai W, Huang W 2023 Adv. Mater. 35 2210734Google Scholar

    [30]

    Fan X, Zheng W T, Kuo J L, Singh D J 2013 ACS Appl. Mater. Interfaces 5 7793Google Scholar

    [31]

    Liu M, Kutana A, Liu Y, Yakobson B I 2014 J. Phys. Chem. Lett. 5 1225Google Scholar

    [32]

    Pollak E, Geng B, Jeon K J, Lucas I T, Richardson T J, Wang F, Kostecki R 2010 Nano Lett. 10 3386Google Scholar

    [33]

    Ferrighi L, Trioni M I, Di Valentin C D 2015 J. Phys. Chem. C 119 6056Google Scholar

    [34]

    Lee H, Paeng K, Kim I S 2018 Synth. Met. 244 36Google Scholar

    [35]

    Datta D, Li J, Shenoy V B 2014 ACS Appl. Mater. Interfaces 6 1788Google Scholar

    [36]

    Ma L B, Lv Y H, Wu J X, Xia C, Kang Q, Zhang Y Z, Liang H F, Jin Z 2021 Nano Res. 14 4442Google Scholar

    [37]

    Share K, Cohn A P, Carter R, Rogers B, Pint C L 2016 ACS Nano 10 9738Google Scholar

    [38]

    Ma C C, Shao X H, Cao D P 2012 J. Mater. Chem. 22 8911Google Scholar

    [39]

    Cai D D, Wang C S, Shi C Y, Tan N 2018 J. Alloys Compd. 731 235Google Scholar

    [40]

    Denis P A 2024 J. Mol. Model. 30 96Google Scholar

    [41]

    Fei H L, Dong J C, Chen D L, Hu T D, Duan X D, Shakir I, Huang Y, Duan X F 2019 Chem. Soc. Rev. 48 5207Google Scholar

    [42]

    Xiao R, Yu T, Yang S, Chen K, Li Z N, Liu Z B, Hu T Z, Hu G J, Li J, Cheng H M, Sun Z H, Li F 2022 Energy Storage Mater. 51 890Google Scholar

    [43]

    Kresse G 1995 J. Non-Cryst. Solids 192–193 222

    [44]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [45]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [46]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [47]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048Google Scholar

    [48]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566Google Scholar

    [49]

    Chadi D J 1977 Phys. Rev. B 16 1746Google Scholar

    [50]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [51]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [52]

    Khan M I, Nadeem G, Majid A, Shakil M 2021 Mater. Sci. Eng. B 266 115061Google Scholar

    [53]

    Li Y F, Jiang J Z, Li X F, Li M, Zheng Y J, Sun K 2024 Phys. Rev. B 110 155401Google Scholar

    [54]

    Tarascon J M, Armand M 2001 Nature 414 359Google Scholar

    [55]

    Li P, Li Z Y, Yang J L 2018 J. Phys. Chem. Lett. 9 4852Google Scholar

    [56]

    Lei S F, Chen X F, Xiao B B, Zhang W T, Liu J 2019 ACS Appl. Mater. Interfaces 11 28830Google Scholar

    [57]

    Yang M R, Kong F, Chen L, Tian B W, Guo J 2023 Thin Solid Films 769 139734Google Scholar

    [58]

    Jiang H R, Shyy W, Liu M, Wei L, Wu M C, Zhao T S 2017 J. Mater. Chem. A 5 672Google Scholar

    [59]

    Lin H, Liu G J, Zhu L L, Zhang Z J, Jin R C, Huang Y, Gao S M 2021 Appl. Surf. Sci. 544 148895Google Scholar

    [60]

    Wang Y N, Li Y S 2020 J. Mater. Chem. A 8 4274Google Scholar

    [61]

    Wang Y T, Zhou M, Xu L C, Zhao W T, Li R, Yang Z, Liu R P, Li X Y 2020 J. Power Sources 451 227791Google Scholar

    [62]

    Li Q F, Duan C G, Wan X G, Kuo J L 2015 J. Phys. Chem. C 119 8662Google Scholar

    [63]

    Mukherjee S, Kavalsky L, Singh C V 2018 ACS Appl. Mater. Interfaces 10 8630Google Scholar

    [64]

    Zhang X, Yu Z, Wang S S, Guan S, Yang H Y, Yao Y, Yang S A 2016 J. Mater. Chem. A 4 15224Google Scholar

    [65]

    Ahmad S, Din H U, Nguyen C Q, Nguyen S T, Nguyen C 2024 Dalton. Trans. 53 3785Google Scholar

    [66]

    Sannyal A, Zhang Z Q, Gao X F, Jang J 2018 Comput. Mater. Sci. 154 204Google Scholar

    [67]

    Liu M, Cheng Z S, Zhang X M, Li Y F, Jin L, Liu C, Dai X F, Liu Y, Wang X T, Liu G D 2023 Chin. Phys. B 32 096303Google Scholar

    [68]

    Fan K, Ying Y R, Li X, Luo X Y, Huang H T 2019 J. Phys. Chem. C 123 18207Google Scholar

    [69]

    Wang Y, Liang S S, Tian J C, Duan H X, Lv Y, Wan L J, Huang C L, Wu M S, Ouyang C Y, Hu J P 2024 Phys. Chem. Chem. Phys. 26 4455Google Scholar

    [70]

    Li F, Qu Y Y, Zhao M W 2016 J. Mater. Chem. A 4 8905Google Scholar

    [71]

    Samad A, Shafique A, Shin Y H 2017 Nanotechnology 28 175401Google Scholar

    [72]

    Yang Z F, Zheng Y P, Li W L, Zhang J P 2021 Nanoscale 13 11534Google Scholar

    [73]

    Er D, Li J, Naguib M, Gogotsi Y, Shenoy V B 2014 ACS Appl. Mater. Interfaces 6 11173Google Scholar

    [74]

    Jing Y, Liu J, Zhou Z P, Zhang J, Li Y 2019 J. Phys. Chem. C 123 26803Google Scholar

    [75]

    Hu J P, Xu B, Ouyang C Y, Zhang Y, Yang S A 2016 RSC Adv. 6 27467Google Scholar

    [76]

    Wang D S, Liu Y H, Meng X, Wei Y J, Zhao Y Y, Pang Q, Chen G 2017 J. Mater. Chem. A 5 21370Google Scholar

    [77]

    Putungan D B, Lin S H, Kuo J L 2016 ACS Appl. Mater. Interfaces 8 18754Google Scholar

  • [1] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算. 物理学报, doi: 10.7498/aps.73.20240992
    [2] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20201287
    [3] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, doi: 10.7498/aps.70.20202078
    [4] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190503
    [5] 侯滨朋, 淦作亮, 雷雪玲, 钟淑英, 徐波, 欧阳楚英. 第一性原理对氮掺杂石墨烯作为锂-空电池阴极材料还原氧分子的机理研究. 物理学报, doi: 10.7498/aps.68.20190181
    [6] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, doi: 10.7498/aps.67.20172356
    [7] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究. 物理学报, doi: 10.7498/aps.67.20172290
    [8]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质. 物理学报, doi: 10.7498/aps.66.187102
    [9] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算. 物理学报, doi: 10.7498/aps.66.057301
    [10] 朱玥, 李永成, 王福合. Li掺杂对MgH2(001)表面H2分子扩散释放影响的第一性原理研究. 物理学报, doi: 10.7498/aps.65.056801
    [11] 路战胜, 李燕, 程莹洁, 李硕, 张喜林, 徐国亮, 杨宗献. 第一性原理研究O2在TiN4掺杂石墨烯上的氢化. 物理学报, doi: 10.7498/aps.64.216101
    [12] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, doi: 10.7498/aps.64.087101
    [13] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.64.207101
    [14] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, doi: 10.7498/aps.63.163101
    [15] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究. 物理学报, doi: 10.7498/aps.62.187102
    [16] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.62.037103
    [17] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, doi: 10.7498/aps.62.047101
    [18] 夏中秋, 李蓉萍. 稀土掺杂CdTe太阳电池背接触层ZnTe的第一性原理研究. 物理学报, doi: 10.7498/aps.61.017108
    [19] 吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军. 硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究. 物理学报, doi: 10.7498/aps.61.073601
    [20] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.58.5624
计量
  • 文章访问数:  199
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-18
  • 修回日期:  2024-12-05
  • 上网日期:  2024-12-12

/

返回文章
返回