搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究

吴江滨 钱耀 郭小杰 崔先慧 缪灵 江建军

引用本文:
Citation:

硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究

吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军

First-principles study on the Li-storage performance of silicon clusters and graphene composite structure

Wu Jiang-Bin, Qian Yao, Guo Xiao-Jie, Cui Xian-Hui, Miao Ling, Jiang Jian-Jun
PDF
导出引用
  • 本文采用第一性原理计算方法, 研究了不同晶向硅纳米团簇与石墨烯复合结构稳定性及其储锂性能. 计算了不同高度、大小硅团簇与石墨烯复合结构的结合能, 复合结构中嵌锂吸附能和PDOS. 分析表明, 硅团簇和石墨烯之间形成较强的SiC键, 其中[111]晶向硅团簇与石墨烯作用的形成能最高, 结构最为稳定. 进一步计算其嵌锂吸附能, 发现硅团簇中靠近石墨烯界面处的储锂位置更加有利于锂的吸附, 由于锂和碳、硅之间有较强电荷转移, 其吸附能明显大于其他储锂位置. 同时在锂嵌入过程中, 由于石墨烯的引入, 明显减小了界面处硅的形变, 有望提高其作为锂电池负极材料的可逆容量.
    This paper focuses on the Li-storage performances and the stabilities of the hybrid structure of different lattice planes of the silicon clusters and graphene by the first-principles theory. In this paper, we calculate the binding energy, the adsorption energy, and the PDOS of the hybrid structure of the different heights and sizes of the silicon clusters and graphene. We figure out that strong Si-C bonds between the silicon cluster and graphene can form. Especially, the hybrid structure of the silicon clusters with plane (111) and graphene performs best with the highest formation energy and the outstanding stability. According to the calculation of Li-absorption energy, we conclude that the location of the silicon cluster near the graphene has higher possibility and higher absorption energy of the Li storage, owing to the charge transfers between lithium and carbon, and between lithium and silicon. Because the graphene is used, the deformation of the interface of the silicon cluster can be obviously reduced during the absorption of Li, which brings about a good future for the hybrid structure used as the battery anode materials.
    • 基金项目: 国家自然科学基金(批准号:50771047)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50771047).
    [1]

    Tarascon J M, Armand M 2001 Nature 414 359

    [2]

    Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T 1997 Science 276 1395

    [3]

    Jian Y H, Zhong L, Wang C M, Sullivan J P, Xu W 2010 Science 330 1515

    [4]

    Magasinski A, Dixon P, Hertzberg B Kvit A, Ayala J, Yushin G 2010 Nat. Mater. 9 353

    [5]

    Hou X H, Hu Z J, LiW S, Zhao L Z, Yu H W, Tan C L 2008 Acta. Phy. Sin. 57 2374(in Chinese) [侯贤华, 胡社军, 李伟善, 赵灵智, 余洪文, 谭春林, 2008物理学报57 2374]

    [6]

    Boukamp B A, Lesh G C, Huggins R A 1981 J. Electrochem. Soc. 128 725

    [7]

    Chan C K, Peng H, Liu G,McIlwrath K, Zhang X F, Huggins R A, Cui Y 2008 Nat. Nanotech. 3 31

    [8]

    Hwang C M, Lim C H, Yang J H, Park JW2009 J. Power Sources 194:1061

    [9]

    Song T, Xia J, Lee J H, Lee D H, Kwon M S, Choi J M,Wu J 2010 Nano Lett. 10 1710

    [10]

    LeeWJ, ParkMH,Wang Y, Lee J Y, Cho J 2010 Chem. Commun. 46 622

    [11]

    Zhang Q F, Zhang W X, Wan W H, Cui Y, Wang E 2010 Nano Lett. 10 3243

    [12]

    Chan T L, Chelikowsky J R 2010 Nano Lett. 10 821

    [13]

    Che G G, Laksshmi B B, Fisher E R, Martin CR 1998 Nature 393 346

    [14]

    Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F 1999 Carbon 37 61

    [15]

    Gao B, Kleinhammes A, Tang X P, Bower C, Fleming L, Wu L, Zhou Q 1999 Phys. Lett. 307 153

    [16]

    Zhou Z, Zhao J J 2007 Progress in Physics 27 92(in Chinese) [周震, 赵纪军 2007 物理学进展 27 92]

    [17]

    Novoselov, K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [18]

    Paek S M, Yoo E J, Honma I 2009 Nano Lett. 9 72

    [19]

    Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H 2008 Nat. Nanotech. 3 538

    [20]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z Y, De S, McGovern I T, Holland B, Byrne M, Gun’Ko Y K, Boland J J, Niraj P 2008 Nat. Nanotech. 3 563

    [21]

    Yoo E, Kim J, Hosono E Zhou H, Kudo T, Honma I 2008 Nano Lett. 8 2277

    [22]

    Cui L, Hu L, Choi J W, Cui Y 2010 ACS Nano 4 3671

    [23]

    Wang W, Kumta P N 2010 ACS Nano 4 2233

    [24]

    Wang X L,Han W Q 2010 Appl. Mater. Interfaces 2 3709

    [25]

    Xiang H F, Zhang K, Ji G 2011 Carbon 49 1787

    [26]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [27]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [28]

    Portal D S, Ordejón P, Artacho E, Soler J M 1997 J. Quantum. Chem. 65 453

    [29]

    Kohn W, Sham L J 1965 Phys. Rev. 137 A1697

    [30]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

  • [1]

    Tarascon J M, Armand M 2001 Nature 414 359

    [2]

    Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T 1997 Science 276 1395

    [3]

    Jian Y H, Zhong L, Wang C M, Sullivan J P, Xu W 2010 Science 330 1515

    [4]

    Magasinski A, Dixon P, Hertzberg B Kvit A, Ayala J, Yushin G 2010 Nat. Mater. 9 353

    [5]

    Hou X H, Hu Z J, LiW S, Zhao L Z, Yu H W, Tan C L 2008 Acta. Phy. Sin. 57 2374(in Chinese) [侯贤华, 胡社军, 李伟善, 赵灵智, 余洪文, 谭春林, 2008物理学报57 2374]

    [6]

    Boukamp B A, Lesh G C, Huggins R A 1981 J. Electrochem. Soc. 128 725

    [7]

    Chan C K, Peng H, Liu G,McIlwrath K, Zhang X F, Huggins R A, Cui Y 2008 Nat. Nanotech. 3 31

    [8]

    Hwang C M, Lim C H, Yang J H, Park JW2009 J. Power Sources 194:1061

    [9]

    Song T, Xia J, Lee J H, Lee D H, Kwon M S, Choi J M,Wu J 2010 Nano Lett. 10 1710

    [10]

    LeeWJ, ParkMH,Wang Y, Lee J Y, Cho J 2010 Chem. Commun. 46 622

    [11]

    Zhang Q F, Zhang W X, Wan W H, Cui Y, Wang E 2010 Nano Lett. 10 3243

    [12]

    Chan T L, Chelikowsky J R 2010 Nano Lett. 10 821

    [13]

    Che G G, Laksshmi B B, Fisher E R, Martin CR 1998 Nature 393 346

    [14]

    Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F 1999 Carbon 37 61

    [15]

    Gao B, Kleinhammes A, Tang X P, Bower C, Fleming L, Wu L, Zhou Q 1999 Phys. Lett. 307 153

    [16]

    Zhou Z, Zhao J J 2007 Progress in Physics 27 92(in Chinese) [周震, 赵纪军 2007 物理学进展 27 92]

    [17]

    Novoselov, K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [18]

    Paek S M, Yoo E J, Honma I 2009 Nano Lett. 9 72

    [19]

    Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H 2008 Nat. Nanotech. 3 538

    [20]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z Y, De S, McGovern I T, Holland B, Byrne M, Gun’Ko Y K, Boland J J, Niraj P 2008 Nat. Nanotech. 3 563

    [21]

    Yoo E, Kim J, Hosono E Zhou H, Kudo T, Honma I 2008 Nano Lett. 8 2277

    [22]

    Cui L, Hu L, Choi J W, Cui Y 2010 ACS Nano 4 3671

    [23]

    Wang W, Kumta P N 2010 ACS Nano 4 2233

    [24]

    Wang X L,Han W Q 2010 Appl. Mater. Interfaces 2 3709

    [25]

    Xiang H F, Zhang K, Ji G 2011 Carbon 49 1787

    [26]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [27]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [28]

    Portal D S, Ordejón P, Artacho E, Soler J M 1997 J. Quantum. Chem. 65 453

    [29]

    Kohn W, Sham L J 1965 Phys. Rev. 137 A1697

    [30]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

  • [1] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应. 物理学报, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [2] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [3] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211397
    [4] 沈丁, 刘耀汉, 唐树伟, 董伟, 孙闻, 王来贵, 杨绍斌. Sin团簇/石墨烯(n ≤ 6)结构稳定性和储锂性能的第一性原理计算. 物理学报, 2021, 70(19): 198101. doi: 10.7498/aps.70.20210521
    [5] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211619
    [6] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [7] 侯滨朋, 淦作亮, 雷雪玲, 钟淑英, 徐波, 欧阳楚英. 第一性原理对氮掺杂石墨烯作为锂-空电池阴极材料还原氧分子的机理研究. 物理学报, 2019, 68(12): 128801. doi: 10.7498/aps.68.20190181
    [8] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究. 物理学报, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [9] 彭劼扬, 王家海, 沈斌, 李浩亮, 孙昊明. 纳米颗粒的表面效应和电极颗粒间挤压作用对锂离子电池电压迟滞的影响. 物理学报, 2019, 68(9): 090202. doi: 10.7498/aps.68.20182302
    [10] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [11] 盛喆, 戴显英, 苗东铭, 吴淑静, 赵天龙, 郝跃. 各Li吸附组分下硅烯氢存储性能的第一性原理研究. 物理学报, 2018, 67(10): 107103. doi: 10.7498/aps.67.20172720
    [12] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算. 物理学报, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [13] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [14] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性. 物理学报, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [15] 刘源, 姚洁, 陈驰, 缪灵, 江建军. 氢修饰石墨烯纳米带压电性质的第一性原理研究. 物理学报, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [16] 王建军, 王飞, 原鹏飞, 孙强, 贾瑜. 石墨烯层间纳米摩擦性质的第一性原理研究. 物理学报, 2012, 61(10): 106801. doi: 10.7498/aps.61.106801
    [17] 窦俊青, 康雪雅, 吐尔迪·吾买尔, 华宁, 韩英. Mn掺杂LiFePO4的第一性原理研究. 物理学报, 2012, 61(8): 087101. doi: 10.7498/aps.61.087101
    [18] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [19] 刘相, 谢凯, 郑春满, 王军. 不同气氛下裂解含苯环聚硅氧烷制备锂离子电池Si-O-C复合负极材料的电池性能研究. 物理学报, 2011, 60(11): 118202. doi: 10.7498/aps.60.118202
    [20] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
计量
  • 文章访问数:  5330
  • PDF下载量:  1162
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-12
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究

  • 1. 华中科技大学电子科学与技术系, 武汉 430074
    基金项目: 国家自然科学基金(批准号:50771047)资助的课题.

摘要: 本文采用第一性原理计算方法, 研究了不同晶向硅纳米团簇与石墨烯复合结构稳定性及其储锂性能. 计算了不同高度、大小硅团簇与石墨烯复合结构的结合能, 复合结构中嵌锂吸附能和PDOS. 分析表明, 硅团簇和石墨烯之间形成较强的SiC键, 其中[111]晶向硅团簇与石墨烯作用的形成能最高, 结构最为稳定. 进一步计算其嵌锂吸附能, 发现硅团簇中靠近石墨烯界面处的储锂位置更加有利于锂的吸附, 由于锂和碳、硅之间有较强电荷转移, 其吸附能明显大于其他储锂位置. 同时在锂嵌入过程中, 由于石墨烯的引入, 明显减小了界面处硅的形变, 有望提高其作为锂电池负极材料的可逆容量.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回