搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sin团簇/石墨烯(n ≤ 6)结构稳定性和储锂性能的第一性原理计算

沈丁 刘耀汉 唐树伟 董伟 孙闻 王来贵 杨绍斌

引用本文:
Citation:

Sin团簇/石墨烯(n ≤ 6)结构稳定性和储锂性能的第一性原理计算

沈丁, 刘耀汉, 唐树伟, 董伟, 孙闻, 王来贵, 杨绍斌

First-principles study of structural stability and lithium storage property of Sin clusters (n ≤ 6) adsorbed on graphene

Shen Ding, Liu Yao-Han, Tang Shu-Wei, Dong Wei, Sun Wen, Wang Lai-Gui, Yang Shao-Bin
PDF
HTML
导出引用
  • 目前, 硅/碳复合材料是锂离子电池最有潜在应用前景的高容量负极材料之一, 硅与碳材料的界面状态是影响其电化学性能的重要因素. 本文在作为碳材料结构单元的石墨烯表面构建了Sin(n ≤ 6)团簇, 采用基于密度泛函理论(DFT)的第一性原理方法研究了Sin团簇/石墨烯(Sin/Gr)的几何构型、结构稳定性和电子性质. 结果表明, 当Si原子数n ≤ 4时, Sin团簇优先以平行于石墨烯的二维构型沉积在石墨烯表面, 当n ≥ 5时, Sin团簇优先以三维立体构型沉积在石墨烯表面. 随着n的增大, Sin团簇在石墨烯表面的热力学稳定性显著降低, 两者之间的界面结合减弱, 并且伴随着Sin团簇与石墨烯之间的电荷转移也越来越少. 同时还研究了Sin/Gr复合构型的储锂能力, Li原子主要存储在Sin团簇临近的石墨烯表面和Sin团簇周围, Sin团簇与石墨烯复合形成的协同作用增强了Li原子吸附的热力学稳定性. 当n ≤ 4时, 存储2个Li原子有利于提高xLi-Sin/Gr体系的热力学稳定性, 继续增加Li原子数x会导致稳定性降低; 当n ≥ 5时, 稳定性随着Li原子数x的增多而逐渐降低.
    Silicon/carbon composite is one of the most potential high-capacity anode materials for lithium-ion batteries. The interface state between silicon and carbon of silicon/carbon composite is an important factor affecting its electrochemical performance. In this paper, Sin (n ≤ 6) clusters with different numbers of Si atoms are constructed on graphene as a structural unit of carbon material. The geometric configuration, structure stability and electronic property of Sin clusters adsorbed on graphene (Sin/Gr) are studied by the first-principles method based on density functional theory (DFT). The results show that when the number of Si atoms n ≤ 4, the Sin clusters are preferentially adsorbed on graphene in a two-dimensional configuration parallel to graphene. When n ≥ 5, the Sin clusters are preferentially adsorbed on graphene in a three-dimensional configuration. With the increase of the number of Si atoms n, the thermodynamic stability of Sin clusters on graphene decreases significantly, the interface binding strength between Sin clusters and graphene decreases, and the charge transfer between Sin clusters and graphene becomes less. At the same time, the storage capacity of Li atoms in Sin/Gr complex is also studied. Li atoms are mainly stored on the graphene surface near Sin clusters and around Sin clusters. The complex synergistic effect of Sin clusters and graphene enhances the thermodynamic stability of Li adsorption. When n ≤ 4, storing two Li atoms is beneficial to improving the thermodynamic stability of xLi-Sin/Gr system, and the thermodynamic stability decreases with the increase of Li atom number. When n ≥ 5, the thermodynamic stability of xLi-Sin/Gr system decreases with the increase of Li atom number. In the xLi-Si5/Gr system, the C-C bond and Si-Si bond are mainly covalent bonds, while the Li-C bond and Li-Si bond are mainly ionic bonds with certain covalent properties.
      通信作者: 杨绍斌, lngdysb@163.com
    • 基金项目: 国家自然科学基金(批准号: 51874167, 21808095, 51774175)、中国博士后科学基金(批准号: 2018M641707)和辽宁工程技术大学学科创新团队(批准号: LNTU20TD-09)资助的课题
      Corresponding author: Yang Shao-Bin, lngdysb@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51874167, 21808095, 51774175), the China Postdoctoral Science Foundation (Grant No. 2018M641707), and the Discipline Innovation Team of Liaoning Technical University, China (Grant No. LNTU20TD-09)
    [1]

    王晓钰, 张渝, 马磊, 魏良明 2019 化学学报 77 24Google Scholar

    Wang X Y, Zhang Y, Ma L, Wei L M 2019 Acta Chim. Sin. 77 24Google Scholar

    [2]

    Feng K, Li M, Liu W, Kashkooli A G, Chen Z 2018 Small 14 1702737Google Scholar

    [3]

    魏剑, 秦葱敏, 苏欢, 王佳敏, 李雪婷 2020 新型炭材料 35 97

    Wei J, Qin C M, Su H, Wang J M, Li X T 2020 New Carbon Materials 35 97

    [4]

    Zhao X Y, Lehto V P 2021 Nanotechnology 32 042002Google Scholar

    [5]

    Gao H, Xiao L, Plümel I, Xu G L, Ren Y, Zuo X, Liu Y, Schulz C, Wiggers H, Amine K 2017 Nano Lett. 17 1512Google Scholar

    [6]

    Liu J, Kopold P, Aken P A, Maier J, Yu Y 2015 Angew. Chem. Int. Ed. 54 9632Google Scholar

    [7]

    Li X, Gu M, Hu S, Kennard R, Yan P, Chen X, Wang C, Sailor M J, Zhang J G, Liu J 2014 Nat. Commun. 5 4105Google Scholar

    [8]

    Song H C, Wang H X, Lin Z X, et al. 2016 Adv. Funct. Mater. 26 524Google Scholar

    [9]

    Su J M, Zhang C C, Chen X Liu S Y, Huang T, Yu A S 2018 J. Power Sources 381 66Google Scholar

    [10]

    Zuo X X, Wang X Y, Xia Y G, Yin S S Ji Q, Yang Z H, Wang M M, Zheng X F, Qiu B, Liu Z P, Zhu J, Müller P, Cheng Y J 2019 J. Power Sources 412 93Google Scholar

    [11]

    Shi J, Jiang X S, Sun J F, Ban B Y, Li J W, Chen J 2021 J. Colloid Interface Sci. 588 737Google Scholar

    [12]

    Ko M, Chae S, Ma J, Kim N, Lee H W, Cui Y Cho J 2016 Nat. Energy 1 16113Google Scholar

    [13]

    李昆儒, 胡省辉, 张正富, 郭玉忠, 黄瑞安 2021 无机材料学报 3 454

    Li K R, Hu X H, Zhang Z F, Guo Y Z, Huang R A 2021 Journal of Inorganic Materials 3 454

    [14]

    刘振源, 刘烈凯, 金鑫, 汤昊, 孙润光 2019 复合材料学报 36 1568

    Liu Z Y, Liu L K, Jin X, Tang H, Sun R G 2019 Acta Mater. Compos. Sin. 36 1568

    [15]

    Luo W, Wang Y X, Chou S L, Xu Y F, Li W, Kong B, Dou S X, Liu H K, Yang J P 2016 Nano Energy 27 255Google Scholar

    [16]

    Cai W, Liu X, Zhu Y, Lan Y, Ma K, Qian Y 2016 Dalton Trans. 45 13667Google Scholar

    [17]

    林伟国, 孙伟航, 曲宗凯, 冯晓磊, 荣峻峰, 陈旭, 杨文胜 2019 高等学校化学学报 40 1216Google Scholar

    Lin W G, Sun W H, Qu Z K, Feng X L, Rong J F, Chen X, Yang W S 2019 Chem. J. Chin. Univ. 40 1216Google Scholar

    [18]

    Zhu X, Choi S H, Tao R, Jia X L, Lu Y F 2019 J. Alloys Compd. 791 1105Google Scholar

    [19]

    Yu Y, Li G, Zhou S, Chen X, Yang W 2017 Carbon 120 397Google Scholar

    [20]

    Deiss E, Wokaun A, Barras J L, Daul C, Dufek P 1997 J. Electrochem. Soc. 144 3877Google Scholar

    [21]

    Ullah A, Majid A, Rani N 2018 J. Energy Chem. 27 219

    [22]

    闫小童, 侯育花, 郑寿红, 黄有林, 陶小马 2019 物理学报 68 187101Google Scholar

    Yan X Tong, Hou Y H, Zheng S H, Huang Y L, Tao X M 2019 Acta Phys. Sin. 68 187101Google Scholar

    [23]

    张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉 2020 化学进展 32 454

    Zhang W, Qing X P, Fang S, Zhang J H, Shi B M, Yang J Y 2020 Prog. Chem. 32 454

    [24]

    Li G C, Yang Z W, Yin Z L, Guo H J, Wang Z X, Yan G C, Liu Y, Li L J, Wang J X 2019 J. Mater. Chem. A 26 15541

    [25]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [28]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [30]

    Gao H, Jian Z, Lu M, Wei F, Chen Y 2010 J. Appl. Phys. 107 666

    [31]

    Aktuerk E, Ataca C, Ciraci S 2010 Appl. Phys. Lett. 96 123112Google Scholar

    [32]

    Stockmeier M, Müller R, Sakwe S A, Wellmann P J, Magerl A 2009 J. Appl. Phys. 105 033511Google Scholar

    [33]

    Tsirelson V, Stash A 2002 Chem. Phys. Lett. 351 142Google Scholar

    [34]

    Zhang S, Wang Q, Kawazoe Y, Jena P 2013 J. Am. Chem. Soc. 135 18216Google Scholar

  • 图 1  单个Si原子在石墨烯表面的吸附行为 (a)吸附能量ΔEab; (b) Si—C键长dSi—C和C原子位移高度Δh

    Fig. 1.  Adsorption behavior for a single Si atom on graphene: (a) Adsorption energy ΔEab; (b) length of Si—C dSi—C and shift height Δh of C atom.

    图 2  石墨烯表面Sin团簇的构型 (ΔErel为亚稳态与稳态构型的总能量之差)

    Fig. 2.  Configuration for Sin clusters on graphene (ΔErel is the difference of total energy between metastable and steady-state configurations).

    图 3  孤立Sin团簇和Sin/Gr复合材料的态密度图 (a) 孤立Sin团簇的分波态密度; (b), (c) Sin/Gr复合材料的分波态密度; (d) Sin/Gr复合材料的总态密度

    Fig. 3.  Density of states for isolated Sin clusters and Sin/Gr composites: (a) Partial density of states for isolated Sin clusters; (b), (c) partial density of states for Sin/Gr composites; (d) total density of states for Sin/Gr composites.

    图 4  Sin/Gr复合结构吸附不同Li原子数的稳态构型

    Fig. 4.  Configuration for Sin/Gr system with different Li atom numbers.

    图 5  稳态构型(xLi-Sin/Gr)中Li原子数与平均吸附能ΔEab的关系

    Fig. 5.  Relationship between the average adsorption energy ΔEab and the number of Li atoms in the steady-state configuration (xLi-Sin/Gr).

    图 6  xLi-Si5/Gr体系(x = 1, 3和6)稳态构型的电子结构分析(图中数据为Mulliken布局)

    Fig. 6.  Electronic structure analysis of steady-state configuration of xLi-Si5/Gr system (x = 1, 3 and 6) (The data in figure is Mulliken population).

    表 1  石墨烯表面Sin团簇的平均吸附能、结构参数和Mulliken布局

    Table 1.  Average adsorption energy, structural parameters and Mulliken population for Sin clusters on graphene.

    nΔEab/eVhΔhdSi—CdSi—SiMulliken
    population/e
    1–1.2162.1680.0782.0930.50
    2–0.3122.5320.1672.2232.2620.30
    3–0.1163.3650.0073.4562.187–0.02
    4–0.1523.2350.0103.2462.335–0.02
    5–0.0883.3140.0053.4032.3160.02
    6–0.0833.4250.0083.5122.3710.04
    下载: 导出CSV
  • [1]

    王晓钰, 张渝, 马磊, 魏良明 2019 化学学报 77 24Google Scholar

    Wang X Y, Zhang Y, Ma L, Wei L M 2019 Acta Chim. Sin. 77 24Google Scholar

    [2]

    Feng K, Li M, Liu W, Kashkooli A G, Chen Z 2018 Small 14 1702737Google Scholar

    [3]

    魏剑, 秦葱敏, 苏欢, 王佳敏, 李雪婷 2020 新型炭材料 35 97

    Wei J, Qin C M, Su H, Wang J M, Li X T 2020 New Carbon Materials 35 97

    [4]

    Zhao X Y, Lehto V P 2021 Nanotechnology 32 042002Google Scholar

    [5]

    Gao H, Xiao L, Plümel I, Xu G L, Ren Y, Zuo X, Liu Y, Schulz C, Wiggers H, Amine K 2017 Nano Lett. 17 1512Google Scholar

    [6]

    Liu J, Kopold P, Aken P A, Maier J, Yu Y 2015 Angew. Chem. Int. Ed. 54 9632Google Scholar

    [7]

    Li X, Gu M, Hu S, Kennard R, Yan P, Chen X, Wang C, Sailor M J, Zhang J G, Liu J 2014 Nat. Commun. 5 4105Google Scholar

    [8]

    Song H C, Wang H X, Lin Z X, et al. 2016 Adv. Funct. Mater. 26 524Google Scholar

    [9]

    Su J M, Zhang C C, Chen X Liu S Y, Huang T, Yu A S 2018 J. Power Sources 381 66Google Scholar

    [10]

    Zuo X X, Wang X Y, Xia Y G, Yin S S Ji Q, Yang Z H, Wang M M, Zheng X F, Qiu B, Liu Z P, Zhu J, Müller P, Cheng Y J 2019 J. Power Sources 412 93Google Scholar

    [11]

    Shi J, Jiang X S, Sun J F, Ban B Y, Li J W, Chen J 2021 J. Colloid Interface Sci. 588 737Google Scholar

    [12]

    Ko M, Chae S, Ma J, Kim N, Lee H W, Cui Y Cho J 2016 Nat. Energy 1 16113Google Scholar

    [13]

    李昆儒, 胡省辉, 张正富, 郭玉忠, 黄瑞安 2021 无机材料学报 3 454

    Li K R, Hu X H, Zhang Z F, Guo Y Z, Huang R A 2021 Journal of Inorganic Materials 3 454

    [14]

    刘振源, 刘烈凯, 金鑫, 汤昊, 孙润光 2019 复合材料学报 36 1568

    Liu Z Y, Liu L K, Jin X, Tang H, Sun R G 2019 Acta Mater. Compos. Sin. 36 1568

    [15]

    Luo W, Wang Y X, Chou S L, Xu Y F, Li W, Kong B, Dou S X, Liu H K, Yang J P 2016 Nano Energy 27 255Google Scholar

    [16]

    Cai W, Liu X, Zhu Y, Lan Y, Ma K, Qian Y 2016 Dalton Trans. 45 13667Google Scholar

    [17]

    林伟国, 孙伟航, 曲宗凯, 冯晓磊, 荣峻峰, 陈旭, 杨文胜 2019 高等学校化学学报 40 1216Google Scholar

    Lin W G, Sun W H, Qu Z K, Feng X L, Rong J F, Chen X, Yang W S 2019 Chem. J. Chin. Univ. 40 1216Google Scholar

    [18]

    Zhu X, Choi S H, Tao R, Jia X L, Lu Y F 2019 J. Alloys Compd. 791 1105Google Scholar

    [19]

    Yu Y, Li G, Zhou S, Chen X, Yang W 2017 Carbon 120 397Google Scholar

    [20]

    Deiss E, Wokaun A, Barras J L, Daul C, Dufek P 1997 J. Electrochem. Soc. 144 3877Google Scholar

    [21]

    Ullah A, Majid A, Rani N 2018 J. Energy Chem. 27 219

    [22]

    闫小童, 侯育花, 郑寿红, 黄有林, 陶小马 2019 物理学报 68 187101Google Scholar

    Yan X Tong, Hou Y H, Zheng S H, Huang Y L, Tao X M 2019 Acta Phys. Sin. 68 187101Google Scholar

    [23]

    张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉 2020 化学进展 32 454

    Zhang W, Qing X P, Fang S, Zhang J H, Shi B M, Yang J Y 2020 Prog. Chem. 32 454

    [24]

    Li G C, Yang Z W, Yin Z L, Guo H J, Wang Z X, Yan G C, Liu Y, Li L J, Wang J X 2019 J. Mater. Chem. A 26 15541

    [25]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [28]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [30]

    Gao H, Jian Z, Lu M, Wei F, Chen Y 2010 J. Appl. Phys. 107 666

    [31]

    Aktuerk E, Ataca C, Ciraci S 2010 Appl. Phys. Lett. 96 123112Google Scholar

    [32]

    Stockmeier M, Müller R, Sakwe S A, Wellmann P J, Magerl A 2009 J. Appl. Phys. 105 033511Google Scholar

    [33]

    Tsirelson V, Stash A 2002 Chem. Phys. Lett. 351 142Google Scholar

    [34]

    Zhang S, Wang Q, Kawazoe Y, Jena P 2013 J. Am. Chem. Soc. 135 18216Google Scholar

  • [1] 郑钦仁, 詹涪至, 折俊艺, 王建宇, 石若立, 孟国栋. 石墨烯的形貌特征对其场发射性能的影响. 物理学报, 2024, 73(8): 086101. doi: 10.7498/aps.73.20231784
    [2] 张改, 谢海妹, 宋海滨, 李晓菲, 张茜, 亢一澜. 不同充放电模式影响还原氧化石墨烯电极储锂性能的实验分析. 物理学报, 2022, 71(6): 066501. doi: 10.7498/aps.71.20211405
    [3] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [4] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化. 物理学报, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [5] 张源, 陈晨, 李美亚, 罗山梦黛. 石墨烯与复合纳米结构SiO2@Au对染料敏化太阳能电池性能的协同优化. 物理学报, 2020, 69(16): 160201. doi: 10.7498/aps.69.20191722
    [6] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响. 物理学报, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [7] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [8] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [9] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [10] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算. 物理学报, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [11] 黄乐, 张志勇, 彭练矛. 高性能石墨烯霍尔传感器. 物理学报, 2017, 66(21): 218501. doi: 10.7498/aps.66.218501
    [12] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究. 物理学报, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [13] 娄利飞, 潘青彪, 吴志华. 基于石墨烯用于微弱能量获取的柔性微结构研究. 物理学报, 2014, 63(15): 158501. doi: 10.7498/aps.63.158501
    [14] 刘本琼, 谢雷, 段晓溪, 孙光爱, 陈波, 宋建明, 刘耀光, 汪小琳. 铀的结构相变及力学性能的第一性原理计算. 物理学报, 2013, 62(17): 176104. doi: 10.7498/aps.62.176104
    [15] 吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军. 硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究. 物理学报, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [16] 康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 不同极性6H-SiC表面石墨烯的制备及其电子结构的研究. 物理学报, 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
    [17] 王益军, 王六定, 杨敏, 严诚, 王小冬, 席彩萍, 李昭宁. 锥顶碳纳米管的结构稳定性与场致发射性能. 物理学报, 2011, 60(7): 077303. doi: 10.7498/aps.60.077303
    [18] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [19] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [20] 王晓春, 林秋宝, 李仁全, 朱梓忠. 二维全同Nb4团簇在Cu(100)表面的结构稳定性和电子性质. 物理学报, 2007, 56(5): 2813-2820. doi: 10.7498/aps.56.2813
计量
  • 文章访问数:  5051
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-18
  • 修回日期:  2021-05-30
  • 上网日期:  2021-09-18
  • 刊出日期:  2021-10-05

/

返回文章
返回