搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯的形貌特征对其场发射性能的影响

郑钦仁 詹涪至 折俊艺 王建宇 石若立 孟国栋

引用本文:
Citation:

石墨烯的形貌特征对其场发射性能的影响

郑钦仁, 詹涪至, 折俊艺, 王建宇, 石若立, 孟国栋

Influence of morphological characteristics of graphene on its field emission properties

Zheng Qin-Ren, Zhan Fu-Zhi, She Jun-Yi, Wang Jian-Yu, Shi Ruo-Li, Meng Guo-Dong
PDF
HTML
导出引用
  • 石墨烯具有优异的电学、热学和力学特性以及丰富的电子隧穿边缘, 是场发射阴极的良好材料. 本文通过调控化学气相沉积法制备石墨烯的生长参数, 分别制备了单层石墨烯薄膜、石墨烯岛、有缓冲层石墨烯等3种形貌石墨烯, 探究了石墨烯的形貌特征对其场发射性能的影响, 并结合COMSOL多物理场仿真分析了石墨烯的形貌特征对其场发射性能的影响机制. 实验结果表明, 相比于单层石墨烯薄膜, 石墨烯岛和有缓冲层石墨烯的开启场强分别降低至5.55 V/μm和5.83 V/μm, 最大场发射电流密度也分别提升至40.3 μA/cm2和26.4 μA/cm2. 另一方面, 在基底上连续分布的单层石墨烯薄膜和有缓冲层石墨烯场发射电流更稳定, 在5 h的测试中, 电流密度分别仅下降2%和4%. 结合仿真结果可知, 石墨烯的形貌特征对其场发射过程中的电场分布特性和散热能力具有重要的影响. 石墨烯岛和有缓冲层石墨烯存在边界结构, 使得场发射过程中局部电场集中, 进而提升了场发射性能. 石墨烯岛在基底上离散分布, 未形成连续石墨烯薄膜, 缺乏焦耳热横向散热通道, 热量的积累将导致石墨烯岛发射体受到损伤, 并影响其场发射电流稳定性. 本文探究了石墨烯的形貌特征对其场发射性能的影响, 并分析了相关影响机制, 对石墨烯材料场发射性能的提高具有重要的意义.
    Graphene is one of the most potential field emission cathode materials due to its excellent electrical, thermal, and mechanical properties, as well as rich edge structures. In this paper, we study the growth parameters of graphene prepared by chemical vapor deposition, and prepare three kinds of morphologies of graphene: single-layer graphene, graphene islands, and graphene with buffer layers, and then we explore the influence of the morphological characteristics of graphene on its field emission properties, and analyze the mechanism of influence of the morphological characteristics of graphene on its field emission properties through COMSOL. Comparing with single-layer graphene, the turn-on field of graphene islands and that of graphene with buffer layers decrease to 5.55 V/μm and 5.85 V/μm, respectively. The current densities also increase to 40.3 μA/cm2 and 26.4 μA/cm2, respectively. On the other hand, the field emission currents of single-layer graphene and graphene with buffer layers are more stable. In a 5-hour test, the current densities only decrease by 2% and 4%, respectively. COMSOL simulation shows that the morphological characteristics of graphene have significant influences on the electric field distribution characteristics and heat dissipation capacity. Graphene islands and graphene with buffer layers have exposed edges, leading to local electric field concentration, and thus improving field emission properties. The graphene islands are distributed discretely on the substrate, forming no continuous graphene film and lacking transverse heat dissipation channels, so the accumulation of heat will cause damage to the graphene emitter, and affect the stability of its field emission current. This study will be of great benefit to the understanding of the influence of the morphological characteristics of graphene on its field emission properties, and improving the field emission properties of graphene materials.
      通信作者: 孟国栋, gdmengxjtu@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51977169)、中央高校基本科研业务费(批准号: xzy012023152, xtr062023001)和电工材料电气绝缘全国重点实验室中青年基础研究创新基金(批准号: EIPE22315)资助的课题.
      Corresponding author: Meng Guo-Dong, gdmengxjtu@xjtu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 51977169), the Fundamental Research Funds for the Central Universities, China (Grant Nos. xzy012023152, xtr062023001), and the State Key Laboratory of Elec-trical Insulation and Power Equipment, China (Grant No. EIPE22315).
    [1]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [2]

    Prasher R 2010 Science 328 185Google Scholar

    [3]

    Lee C G, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [4]

    Novoselov K S, Fal′ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [5]

    Chen Y C, Chen J, Li Z B 2023 Nanomaterials 13 2437Google Scholar

    [6]

    Patra A, More M A, Late D J, Rout C S 2021 J. Mater. Chem. C 9 11059Google Scholar

    [7]

    Shao X Y, Srinivasan A, Ang W K, Khursheed A 2018 Nat. Commun. 9 1288Google Scholar

    [8]

    Yamaguchi H, Murakami K, Eda G, Fujita T, Guan P, Wang W H, Gong C, Boisse J, Miller S, Acik M, Cho K, Chabal Y J, Chen M W, Wakaya F, Takai M, Chhowalla M 2011 ACS Nano 5 4945Google Scholar

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [10]

    陈浩, 彭同江, 刘波, 孙红娟, 雷德会 2017 物理学报 66 080701Google Scholar

    Chen H, Peng T J, Liu B, Sun H J, Lie D H 2017 Acta Phys. Sin. 66 080701Google Scholar

    [11]

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, Heer W A D 2006 Science 312 1191Google Scholar

    [12]

    Li X, Cai W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268Google Scholar

    [13]

    Meng G D, Zhan F Z, She J Y, Xie J A, Zheng Q R, Cheng Y H, Yin Z Y 2023 Nanoscale 15 15994Google Scholar

    [14]

    Xie J A, Meng G D, Chen B Y, Li Z, Yin Z Y, Cheng Y H 2022 ACS Appl. Mater. Interfaces 14 45716Google Scholar

    [15]

    Regmi M, Chisholm M F, Eres G 2012 Carbon 50 134Google Scholar

    [16]

    Liu W, Li H, Xu C, Khatami Y, Banerjee K 2011 Carbon 49 4122Google Scholar

    [17]

    Deokar G, Avila J, Razado-Colambo I, Codron J L, Boyaval C, Galopin E, Asensio M C, Vignaud D 2015 Carbon 89 82Google Scholar

    [18]

    Kleshch V I, Bandurin D A, Orekhov A S, Purcell S T, Obraztsov A N 2015 Appl. Surf. Sci. 357 1967Google Scholar

    [19]

    成桂霖, 杨健君, 全盛, 钟健, 于军胜 2022 真空科学与技术学报 42 290

    Cheng G L, Yang J J, Quan S, Zhong J, Yu J S 2022 Vacuum Sci. Tech. 42 290

    [20]

    Li Z B 2015 Ultramicroscopy 159 162Google Scholar

    [21]

    张晓波, 青芳竹, 李雪松 2019 物理学报 68 096801Google Scholar

    Zhang X B, Qing F Z, Li X S 2019 Acta Phys. Sin. 68 096801Google Scholar

    [22]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238Google Scholar

    [23]

    Wang Y Y, Ni Z H, Yu T, Shen Z X, Wang H M, Wu Y H, Chen W, Shen Wee A T 2008 J. Phys. Chem. C 112 10637Google Scholar

    [24]

    Fowler R H, Nordheim L 1928 Proc. R. Soc. Lond. A 119 173Google Scholar

    [25]

    Zhang X, Wang L, Xin J, Yakobson B I, Ding F 2014 J. Am. Chem. Soc. 136 3040Google Scholar

    [26]

    Lee S W, Lee S S, Yang E H 2009 Nanoscale Res. Lett. 4 1218Google Scholar

    [27]

    Qian M, Feng T, Ding H, Lin L, Li H, Chen Y, Sun Z 2009 Nanotechnology 20 425702Google Scholar

    [28]

    Liu J, Zeng B, Wu Z, Zhu J, Liu X 2010 Appl. Phys. Lett. 97 033109Google Scholar

    [29]

    Xiao Z M, She J C, Deng S Z, Tang Z K, Li Z B, Lu J M, Xu N S 2010 ACS Nano 4 6332Google Scholar

    [30]

    Tang S, Zhang Y, Zhao P, Zhan R, Chen J, Deng S 2021 Nanoscale 13 5234Google Scholar

  • 图 1  (a)石墨烯生长实验装置示意图; (b)场发射测试系统示意图; (c)场发射测试系统实物图

    Fig. 1.  (a) Schematic diagram of the experimental setup for graphene growth; (b) schematic diagram of the testing system for field emission; (c) physical diagram of the testing system for field emission.

    图 2  转移前的石墨烯. 光镜图 (a)单层石墨烯薄膜; (b)石墨烯岛; (c)有缓冲层石墨烯. 电镜图 (d)单层石墨烯薄膜; (e)石墨烯岛; (f)有缓冲层石墨烯

    Fig. 2.  Graphene before transferring. Optical microscope images of (a) single-layer grapheme, (b) graphene islands, (c) graphene with buffer layers. Scanning electron microscope images of (d) single-layer grapheme, (e) graphene islands, (f) graphene with buffer layers.

    图 3  转移后的石墨烯. 光镜图 (a)单层石墨烯薄膜; (b)石墨烯岛; (c)有缓冲层石墨烯. 电镜图 (d)单层石墨烯薄膜; (e)石墨烯岛; (f)有缓冲层石墨烯. 拉曼光谱图 (g)单层石墨烯薄膜; (h)石墨烯岛; (i)有缓冲层石墨烯

    Fig. 3.  Graphene after transferring. Optical microscope images of (a) single-layer grapheme, (b) graphene islands, (c) graphene with buffer layers. Scanning electron microscope images of (d) single-layer grapheme, (e) graphene islands, (f) graphene with buffer layers. Raman spectra images of (g) single-layer grapheme, (h) graphene islands, (i) graphene with buffer layers.

    图 4  不同形貌石墨烯宏观形貌电镜表征结果及结构示意图 (a)单层石墨烯薄膜; (b)石墨烯岛; (c)有缓冲层石墨烯

    Fig. 4.  Scanning electron microscope images and schematic diagrams of graphene with different macroscopic morphologies: (a) Single-layer graphene; (b) graphene islands; (c) graphene with buffer layers.

    图 5  不同形貌石墨烯场发射性能 (a)J-E曲线; (b) F-N曲线

    Fig. 5.  Field emission properties of graphene with different morphologies: (a) J-E curves; (b) F-N curves.

    图 6  不同形貌石墨烯场发射电流稳定性 (a)单层石墨烯薄膜; (b)有缓冲层石墨烯; (c)石墨烯岛

    Fig. 6.  Field emission current stability of graphene with different morphologies: (a) Single-layer graphene; (b) graphene with buffer layers; (c) graphene islands.

    图 7  石墨烯电场分布云图 (a)连续薄膜; (b)边界结构

    Fig. 7.  Electric field distribution map of graphene: (a) Contimuous layer; (b) edge.

    图 8  场发射后石墨烯的电镜图 (a)单层石墨烯薄膜; (b)有缓冲层石墨烯; (c)石墨烯岛

    Fig. 8.  Scanning electron microscope images of graphene after field emission: (a) Single-layer graphene; (b) graphene with buffer layers; (c) graphene islands.

    图 9  石墨烯场发射温度分布情况 (a)单层石墨烯薄膜; (b)有缓冲层石墨烯; (c)石墨烯岛

    Fig. 9.  Temperature distribution of graphene after field emission: (a) Single-layer graphene; (b) graphene with buffer layers; (c) graphene islands.

    表 1  不同形貌石墨烯的CVD生长参数

    Table 1.  CVD growth parameters of graphene with different morphologies.

    石墨烯形貌类型生长温度/
    甲烷浓度/
    sccm
    氢气浓度/
    sccm
    生长时间/
    min
    单层石墨烯薄膜10302205
    石墨烯岛10302305
    有缓冲层石墨烯10305205
    下载: 导出CSV
  • [1]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [2]

    Prasher R 2010 Science 328 185Google Scholar

    [3]

    Lee C G, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [4]

    Novoselov K S, Fal′ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [5]

    Chen Y C, Chen J, Li Z B 2023 Nanomaterials 13 2437Google Scholar

    [6]

    Patra A, More M A, Late D J, Rout C S 2021 J. Mater. Chem. C 9 11059Google Scholar

    [7]

    Shao X Y, Srinivasan A, Ang W K, Khursheed A 2018 Nat. Commun. 9 1288Google Scholar

    [8]

    Yamaguchi H, Murakami K, Eda G, Fujita T, Guan P, Wang W H, Gong C, Boisse J, Miller S, Acik M, Cho K, Chabal Y J, Chen M W, Wakaya F, Takai M, Chhowalla M 2011 ACS Nano 5 4945Google Scholar

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [10]

    陈浩, 彭同江, 刘波, 孙红娟, 雷德会 2017 物理学报 66 080701Google Scholar

    Chen H, Peng T J, Liu B, Sun H J, Lie D H 2017 Acta Phys. Sin. 66 080701Google Scholar

    [11]

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, Heer W A D 2006 Science 312 1191Google Scholar

    [12]

    Li X, Cai W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268Google Scholar

    [13]

    Meng G D, Zhan F Z, She J Y, Xie J A, Zheng Q R, Cheng Y H, Yin Z Y 2023 Nanoscale 15 15994Google Scholar

    [14]

    Xie J A, Meng G D, Chen B Y, Li Z, Yin Z Y, Cheng Y H 2022 ACS Appl. Mater. Interfaces 14 45716Google Scholar

    [15]

    Regmi M, Chisholm M F, Eres G 2012 Carbon 50 134Google Scholar

    [16]

    Liu W, Li H, Xu C, Khatami Y, Banerjee K 2011 Carbon 49 4122Google Scholar

    [17]

    Deokar G, Avila J, Razado-Colambo I, Codron J L, Boyaval C, Galopin E, Asensio M C, Vignaud D 2015 Carbon 89 82Google Scholar

    [18]

    Kleshch V I, Bandurin D A, Orekhov A S, Purcell S T, Obraztsov A N 2015 Appl. Surf. Sci. 357 1967Google Scholar

    [19]

    成桂霖, 杨健君, 全盛, 钟健, 于军胜 2022 真空科学与技术学报 42 290

    Cheng G L, Yang J J, Quan S, Zhong J, Yu J S 2022 Vacuum Sci. Tech. 42 290

    [20]

    Li Z B 2015 Ultramicroscopy 159 162Google Scholar

    [21]

    张晓波, 青芳竹, 李雪松 2019 物理学报 68 096801Google Scholar

    Zhang X B, Qing F Z, Li X S 2019 Acta Phys. Sin. 68 096801Google Scholar

    [22]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238Google Scholar

    [23]

    Wang Y Y, Ni Z H, Yu T, Shen Z X, Wang H M, Wu Y H, Chen W, Shen Wee A T 2008 J. Phys. Chem. C 112 10637Google Scholar

    [24]

    Fowler R H, Nordheim L 1928 Proc. R. Soc. Lond. A 119 173Google Scholar

    [25]

    Zhang X, Wang L, Xin J, Yakobson B I, Ding F 2014 J. Am. Chem. Soc. 136 3040Google Scholar

    [26]

    Lee S W, Lee S S, Yang E H 2009 Nanoscale Res. Lett. 4 1218Google Scholar

    [27]

    Qian M, Feng T, Ding H, Lin L, Li H, Chen Y, Sun Z 2009 Nanotechnology 20 425702Google Scholar

    [28]

    Liu J, Zeng B, Wu Z, Zhu J, Liu X 2010 Appl. Phys. Lett. 97 033109Google Scholar

    [29]

    Xiao Z M, She J C, Deng S Z, Tang Z K, Li Z B, Lu J M, Xu N S 2010 ACS Nano 4 6332Google Scholar

    [30]

    Tang S, Zhang Y, Zhao P, Zhan R, Chen J, Deng S 2021 Nanoscale 13 5234Google Scholar

  • [1] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化. 物理学报, 2024, 73(24): 248101. doi: 10.7498/aps.73.20241368
    [2] 杨孟骐, 姬宇航, 梁琦, 王长昊, 张跃飞, 张铭, 王波, 王如志. 四方结构GaN纳米线制备、掺杂调控及其场发射性能研究. 物理学报, 2020, 69(16): 167805. doi: 10.7498/aps.69.20200445
    [3] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [4] 叶芸, 陈填源, 郭太良, 蒋亚东. 磁场辅助热处理金属化碳纳米管场发射性能. 物理学报, 2014, 63(8): 086802. doi: 10.7498/aps.63.086802
    [5] 陈程程, 刘立英, 王如志, 宋雪梅, 王波, 严辉. 不同基底的GaN纳米薄膜制备及其场发射增强研究. 物理学报, 2013, 62(17): 177701. doi: 10.7498/aps.62.177701
    [6] 吕文辉, 张帅. 接触电阻对碳纳米管场发射的影响. 物理学报, 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [7] 吴志国, 张鹏举, 徐亮, 李拴魁, 王君, 李旭东, 闫鹏勋. 新型氧化铝模板自组装制备非晶碳纳米点阵列膜及其场发射性能研究. 物理学报, 2010, 59(1): 438-442. doi: 10.7498/aps.59.438
    [8] 杨延宁, 张志勇, 张富春, 张威虎, 闫军锋, 翟春雪. 纳米金刚石的变温场发射. 物理学报, 2010, 59(4): 2666-2671. doi: 10.7498/aps.59.2666
    [9] 秦玉香, 胡 明. 钛碳化物改性碳纳米管的场发射性能. 物理学报, 2008, 57(6): 3698-3702. doi: 10.7498/aps.57.3698
    [10] 郑新亮, 李广山, 钟寿仙, 田进寿, 李振红, 任兆玉. 激光烧蚀对碳纳米管薄膜场发射性能的影响. 物理学报, 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [11] 王新庆, 李 良, 褚宁杰, 金红晓, 葛洪良. 纳米碳管阵列场发射电流密度的理论数值优化. 物理学报, 2008, 57(11): 7173-7177. doi: 10.7498/aps.57.7173
    [12] 元 光, 郭大勃, 顾长志, 窦 艳, 宋 航. 单颗粒CVD金刚石的场发射. 物理学报, 2007, 56(1): 143-146. doi: 10.7498/aps.56.143
    [13] 罗 敏, 王新庆, 葛洪良, 王 淼, 徐亚伯, 陈 强, 李利培, 陈 磊, 管高飞, 夏 娟, 江 丰. 排列形状及阵列数目对纳米导线阵列场发射性能的影响. 物理学报, 2006, 55(11): 6061-6067. doi: 10.7498/aps.55.6061
    [14] 胡利勤, 林志贤, 郭太良, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 取向和非取向In2O3纳米线的场发射研究. 物理学报, 2006, 55(11): 6136-6140. doi: 10.7498/aps.55.6136
    [15] 李 强, 梁二军. 碳、碳氮和硼碳氮纳米管场发射性能的比较研究. 物理学报, 2005, 54(12): 5931-5936. doi: 10.7498/aps.54.5931
    [16] 王新庆, 王 淼, 李振华, 杨 兵, 王凤飞, 何丕模, 徐亚伯. 单根纳米导线场发射增强因子的计算. 物理学报, 2005, 54(3): 1347-1351. doi: 10.7498/aps.54.1347
    [17] 李海钧, 顾长志, 窦 艳, 李俊杰. 单根准直碳纳米纤维的场发射特性. 物理学报, 2004, 53(7): 2258-2262. doi: 10.7498/aps.53.2258
    [18] 宋教花, 张耿民, 张兆祥, 孙明岩, 薛增泉. 多壁碳纳米管阵列场发射研究. 物理学报, 2004, 53(12): 4392-4397. doi: 10.7498/aps.53.4392
    [19] 张兆祥, 张耿民, 侯士敏, 张 浩, 顾镇南, 刘惟敏, 赵兴钰, 薛增泉. 利用场发射显微镜研究O2对单壁碳纳米管场发射的影响. 物理学报, 2003, 52(5): 1282-1286. doi: 10.7498/aps.52.1282
    [20] 孙建平, 张兆祥, 侯士敏, 赵兴钰, 施祖进, 顾镇南, 刘惟敏, 薛增泉. 用场发射显微镜研究单壁碳纳米管场发射. 物理学报, 2001, 50(9): 1805-1809. doi: 10.7498/aps.50.1805
计量
  • 文章访问数:  2387
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-11
  • 修回日期:  2024-01-27
  • 上网日期:  2024-02-19
  • 刊出日期:  2024-04-20

/

返回文章
返回