-
三维(3D)石墨烯材料具有优异的电子发射性能与机械稳定性,在高电流密度场发射器件领域展现出显著优势。本文通过飞秒激光一步法原位制备氧化铜修饰三维石墨烯复合材料(LIG/CuO),实现了软木碳化与铜氧化的同步调控。利用铜盐浸润与抗坏血酸还原构建浅层富铜前驱体,经激光辐照同步诱导纤维素碳化为少层石墨烯和Cu向CuO转变,形成CuO纳米颗粒(30-80 nm)包覆的微晶石墨烯三维纤维网络。该结构展现出卓越场发射性能:制备的纯LIG阈值电场值为~2.12 V/μm,场增强因子~8223;优化的CuO负载量后,LIG/CuO-5阈值电场值缩减至1.57 V/μm,场增强因子达~8823,并在2.89 V/μm下实现了22.71 mA/cm2超高电流密度的电子发射。密度泛函理论(DFT)计算揭示异质结界面电子从CuO向石墨烯转移,使石墨烯功函数从4.833 eV降至4.677 eV,同时CuO表面能带弯曲协同降低隧穿势垒。此外,CuO纳米颗粒的局域电场增强效应与优化分布密度协同使有效发射点密度提升。Three-dimensional (3D) graphene materials have excellent electronic emission performance and mechanical stability, showing significant advantages in the field of high current density field emitters. In this study, copper oxide modified three-dimensional graphene composites (LIG/CuO) were prepared in situ by a femtosecond laser one-step method, which realized the simultaneous regulation of cork carbonization and copper oxidation. Shallow copper-rich precursors were constructed by copper salt infiltration and ascorbic acid reduction. Laser irradiation was used to synchronously induce the carbonization of cellulose into few-layer graphene and the transformation of Cu to CuO, forming a three-dimensional fiber network of microcrystalline graphene coated with CuO nanoparticles (30-80 nm). The structure exhibits excellent field emission performance: the prepared pure LIG threshold field is ~ 2.12 V/μm, the field enhancement factor is ~ 8223. Optimized CuO loading, the threshold field of LIG/CuO-5 is reduced to 1.57V/μm, the field enhancement factor is up to ~ 8823, and the ultra-high current density of 22.71 mA/cm2 is achieved at 2.89 V/μm. DFT calculations reveal that the electrons at the heterojunction interface transfer from CuO to graphene, which reduces the work function of graphene from 4.833 eV to 4.677 eV, and the band bending of CuO surface synergistically reduces the tunneling barrier. In addition, the local electric field enhancement effect of CuO nanoparticles and the optimized distribution density synergistically increase the effective emission point density. The performance improvement is mainly attributed to three synergistic effects: (Ⅰ) the three-dimensional porous graphene network provides rich tip emission sites; (Ⅱ) the introduction of CuO nanoparticles reduces the work function of the composite material from 4.833 eV to 4.667 eV, effectively decreasing the electron escape barrier; (Ⅲ) the heterojunction interface forms a directional electron migration channel under a positive bias electric field, combined with the excellent conductivity of LIG, which significantly improves the electron tunneling efficiency.
-
Keywords:
- laser-induced graphene /
- cuo nanoparticles /
- composite cathode /
- field emission
-
[1] Zhang H, Tang J, Yuan J, Yamauchi Y, Suzuki T T, Shinya N, Nakajima K, Qin L C 2016Nat. Nanotechnol. 11273.
[2] Deka N, Subramanian V 2020IEEE Trans. Electron Devices 67 3753.
[3] Xing Y, Zhang Y, Xu N S, Huang H J, Ke Y L, Li B H, Chen J, She J C, Deng S Z 2018IEEE Trans. Electron Devices 65 1146.
[4] Cao G, Lee Y Z, Peng R, Liu Z, Rajaram R, Calderon-Colon X, An L, Wang P, Phan T, Sultana S, Lalush D S, Lu J P, Zhou O 2009Phys. Med. Biol. 54 2323.
[5] Heer W, Châtelain A, Ugarte D 1995Science 2701179.
[6] Zheng Q R, Zhan B Z, Zhe J Y, Wang J Y, Shi R L, Meng G D 2024Acta Phys. Sin. 73 086101(in Chinese) [郑钦仁詹涪至折俊艺王建宇石若立孟国栋2024物理学报73 086101].
[7] Bhopale S R, Jagtap K K, Phatangare A, Kamble S, Dhole S D, Mathe VL, More M A 2023Appl. Surf. Sci. 619 156752.
[8] Guo X, Li Y L, Ding Y Q, Chen Q, Li J S 2019Mater. Des. 162293.
[9] Deng J H, Liu R N, Zhang Y, Zhu W X, Han A L, Cheng G A 2017 J. Alloys Compd. 72375.
[10] Huang Y X, Zhao H, Li Z L, Hu L L, Wu Y L, Sun F, Meng S, Zhao J M 2023Adv. Mater. 35 2208362
[11] Huang Y X, Zhao J M 2024The Journal of Light Scattering. 36 52. (in Chinese) [黄逸轩赵继民2024光散射学报36 52].
[12] Hasaien J, Wu Y L, Shi M Z, Zhai Y N, Wu Q, Liu Z, Zhou Y, Chen X.H, Zhao J M 2025PNAS 122e2406464122.
[13] Jiang L T, Jiang C Y, Tian Y C, Zhao H, Zhang J, Tian Z Y, Fu S H, Liang E J, Wang X C, Jin C Q, Zhao J M 2024Chinese Phys. Lett. 41 047802.
[14] Wu L M, Dong Y Z, Zhao J L, Ma D T, Huang W C, Zhang Y, Wang Y Z, Jiang X T, Xiang Y J, Li J Q, Feng Y Q, Xu J L, Zhang H 2019Adv. Mater. 31 1807981.
[15] You Z H, Qiu Q M, Chen H Y, Feng Y Y, Wang X, Wang Y X, Ying Y B 2020Biosens. Bioelectron. 150 111896.
[16] Zhang J B, Ren M Q, Li Y L, Tour J M 2018ACS Energy Lett. 3677.
[17] Yoon H, Nah J, Kim H, Ko S, Sharifuzzaman M, Barman S C, Xuan X, Kim J Y, Park J Y 2020Sens. Actuators, B 311127866.
[18] Lin J, Peng Z W, Liu Y Y, Zepeda F R, Ye R Q, Samuel E L, Yacaman M J, Yakobson B I, Tour J M 2014Nat. Commun. 55714.
[19] Chyan Y, Ye R Q, Li Y L, Singh S P, Arnusch C J, Tour J M 2018ACS Nano 122176.
[20] Le T S D, Park S B, An J N, Lee P S, Kim Y J 2019Adv. Funct. Mater. 29 1902771.
[21] Wu W B, Liang R X, Lu L S, Wang W T, Ran X, Yue D D 2020Surf. Coat. Technol. 393 125744.
[22] Cheng J F, Lin Z X, Wu D, Liu C L, Cao Z 2022J. Hazard. Mater. 436 129150.
[23] Ryu C, Do H M, In J B. 2024Appl. Surf. Sci. 643 158696.
[24] Rodrigues J, Zanoni J, Gaspar G, Fernandes A J S, Carvalho A F, Santos N F, Monteiro T, Costa F M 2019Nanoscale Adv. 1 3252.
[25] Lal A, Porat H, Hirsch L O, Cahan R, Borenstein A 2024Appl. Surf. Sci. 643 158660.
[26] Ma L A, Chen Y B, Ye XY, Sun L, Wei Z H, Huang L, Chen H X, Wang Q T, Chen E G 2021Ceram. Int. 4727487.
[27] Huang X, Chen S, Pan J, Wei Z H, Ye X Y, Wang Q T, Ma L A 2024Ceram. Int. 5024205.
[28] Perdew J P, Burke K, Wang Y 1996Phys. Rev. B: Condens. Matter 5416533.
[29] Sun Z L, Shao Z G, Wang C L, Yang L 2016 Carbon 110 313.
[30] Zhang H W, Sun Y S, Li Q W, Wan C X 2022ACS Sustainable Chem. Eng. 10 11501.
[31] Raveendran K, Ganesh A, Khilar K C. 1996Fuel 75987.
[32] Babinszki B, Sebestyén Z, Jakab E, Kőhalmi L, Bozi J, Várhegyi G, Wang L, Skreiberg Ø, Czégéy Z 2021Bioresour. Technol. 338125567.
[33] Sugioka K, Cheng Y 2014 Light Sci. Appl. 3 e149.
[34] Chen L F, Yu H, Zhong J S, Wu J, Su W T 2018J. Alloys Compd. 749 60.
[35] Keiluweit M, Nico P S, Johnson M G, Kleber M 2010Environ. Sci. Technol. 441247.
[36] Yu S J, Wang L Z, Li Q H, Zhang Y G, Zhou H 2022Mater. Today Sustain. 19 100209.
[37] Miao M, Zuo S L, Zhao Y Y, Wang Y F, Xia H A, Tan C, Gao H 2018Carbon, 140504.
[38] Wu J B, Lin M L, Cong X, Liu H N, Tan P H 2018Chem. Soc. Rev. 471822.
[39] Arulkumar E, Shree S S, Thanikaikarasan S 2024J. Mater Sci. Mater. EL 35198.
[40] Yang M Q, Ji Y H, Liang Q, Wang C H, Zhang Y F, Zhang M, Wang B, Wang R Z 2020 Acta Phys. Sin. 69 167805. (in Chinese) [杨孟骐姬宇航梁琦王长昊张跃飞张铭王波王如志2020物理学报69 167805].
[41] Zhang Y H, Ding H, Liu C X, Zhang J C, Wang C B, Guo W H, Ji Q Y, Zhao J Y, Zi Y Y 2024Diamond Relat. Mater. 144110972.
[42] Chu Y L, Young S J, Cai D Y, Chu T T 2021IEEE J. Electron. Devi. 91076.
[43] Meng G D, Zhan F Z, She J Y, Xie J N, Zheng Q R, Cheng Y H, Yin Z Y 2023Nanoscale 15 15994.
[44] Fan L N, Chen W, Zhou K, Zheng H, Zheng P, Zheng L, Zhang Y 2023ACS Appl. Electron. Mater. 5 123.
计量
- 文章访问数: 24
- PDF下载量: 2
- 被引次数: 0