搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光辐照含铜软木制备LIG/CuO复合材料及场发射性能

马立安 黄旭 陈松 魏朝晖 孙磊 叶晓云

引用本文:
Citation:

激光辐照含铜软木制备LIG/CuO复合材料及场发射性能

马立安, 黄旭, 陈松, 魏朝晖, 孙磊, 叶晓云

Reparation and Field Emission Properties of LIG/CuO Composites by Laser Irradiation of Copper-containing Cork

MA Li-An, HUANG Xu, CHEN Song, WEI Zhaohui, SUN Lei, YE Xiaoyun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 三维(3D)石墨烯材料具有优异的电子发射性能与机械稳定性,在高电流密度场发射器件领域展现出显著优势。本文通过飞秒激光一步法原位制备氧化铜修饰三维石墨烯复合材料(LIG/CuO),实现了软木碳化与铜氧化的同步调控。利用铜盐浸润与抗坏血酸还原构建浅层富铜前驱体,经激光辐照同步诱导纤维素碳化为少层石墨烯和Cu向CuO转变,形成CuO纳米颗粒(30-80 nm)包覆的微晶石墨烯三维纤维网络。该结构展现出卓越场发射性能:制备的纯LIG阈值电场值为~2.12 V/μm,场增强因子~8223;优化的CuO负载量后,LIG/CuO-5阈值电场值缩减至1.57 V/μm,场增强因子达~8823,并在2.89 V/μm下实现了22.71 mA/cm2超高电流密度的电子发射。密度泛函理论(DFT)计算揭示异质结界面电子从CuO向石墨烯转移,使石墨烯功函数从4.833 eV降至4.677 eV,同时CuO表面能带弯曲协同降低隧穿势垒。此外,CuO纳米颗粒的局域电场增强效应与优化分布密度协同使有效发射点密度提升。
    Three-dimensional (3D) graphene materials have excellent electronic emission performance and mechanical stability, showing significant advantages in the field of high current density field emitters. In this study, copper oxide modified three-dimensional graphene composites (LIG/CuO) were prepared in situ by a femtosecond laser one-step method, which realized the simultaneous regulation of cork carbonization and copper oxidation. Shallow copper-rich precursors were constructed by copper salt infiltration and ascorbic acid reduction. Laser irradiation was used to synchronously induce the carbonization of cellulose into few-layer graphene and the transformation of Cu to CuO, forming a three-dimensional fiber network of microcrystalline graphene coated with CuO nanoparticles (30-80 nm). The structure exhibits excellent field emission performance: the prepared pure LIG threshold field is ~ 2.12 V/μm, the field enhancement factor is ~ 8223. Optimized CuO loading, the threshold field of LIG/CuO-5 is reduced to 1.57V/μm, the field enhancement factor is up to ~ 8823, and the ultra-high current density of 22.71 mA/cm2 is achieved at 2.89 V/μm. DFT calculations reveal that the electrons at the heterojunction interface transfer from CuO to graphene, which reduces the work function of graphene from 4.833 eV to 4.677 eV, and the band bending of CuO surface synergistically reduces the tunneling barrier. In addition, the local electric field enhancement effect of CuO nanoparticles and the optimized distribution density synergistically increase the effective emission point density. The performance improvement is mainly attributed to three synergistic effects: (Ⅰ) the three-dimensional porous graphene network provides rich tip emission sites; (Ⅱ) the introduction of CuO nanoparticles reduces the work function of the composite material from 4.833 eV to 4.667 eV, effectively decreasing the electron escape barrier; (Ⅲ) the heterojunction interface forms a directional electron migration channel under a positive bias electric field, combined with the excellent conductivity of LIG, which significantly improves the electron tunneling efficiency.
  • [1]

    Zhang H, Tang J, Yuan J, Yamauchi Y, Suzuki T T, Shinya N, Nakajima K, Qin L C 2016Nat. Nanotechnol. 11273.

    [2]

    Deka N, Subramanian V 2020IEEE Trans. Electron Devices 67 3753.

    [3]

    Xing Y, Zhang Y, Xu N S, Huang H J, Ke Y L, Li B H, Chen J, She J C, Deng S Z 2018IEEE Trans. Electron Devices 65 1146.

    [4]

    Cao G, Lee Y Z, Peng R, Liu Z, Rajaram R, Calderon-Colon X, An L, Wang P, Phan T, Sultana S, Lalush D S, Lu J P, Zhou O 2009Phys. Med. Biol. 54 2323.

    [5]

    Heer W, Châtelain A, Ugarte D 1995Science 2701179.

    [6]

    Zheng Q R, Zhan B Z, Zhe J Y, Wang J Y, Shi R L, Meng G D 2024Acta Phys. Sin. 73 086101(in Chinese) [郑钦仁詹涪至折俊艺王建宇石若立孟国栋2024物理学报73 086101].

    [7]

    Bhopale S R, Jagtap K K, Phatangare A, Kamble S, Dhole S D, Mathe VL, More M A 2023Appl. Surf. Sci. 619 156752.

    [8]

    Guo X, Li Y L, Ding Y Q, Chen Q, Li J S 2019Mater. Des. 162293.

    [9]

    Deng J H, Liu R N, Zhang Y, Zhu W X, Han A L, Cheng G A 2017 J. Alloys Compd. 72375.

    [10]

    Huang Y X, Zhao H, Li Z L, Hu L L, Wu Y L, Sun F, Meng S, Zhao J M 2023Adv. Mater. 35 2208362

    [11]

    Huang Y X, Zhao J M 2024The Journal of Light Scattering. 36 52. (in Chinese) [黄逸轩赵继民2024光散射学报36 52].

    [12]

    Hasaien J, Wu Y L, Shi M Z, Zhai Y N, Wu Q, Liu Z, Zhou Y, Chen X.H, Zhao J M 2025PNAS 122e2406464122.

    [13]

    Jiang L T, Jiang C Y, Tian Y C, Zhao H, Zhang J, Tian Z Y, Fu S H, Liang E J, Wang X C, Jin C Q, Zhao J M 2024Chinese Phys. Lett. 41 047802.

    [14]

    Wu L M, Dong Y Z, Zhao J L, Ma D T, Huang W C, Zhang Y, Wang Y Z, Jiang X T, Xiang Y J, Li J Q, Feng Y Q, Xu J L, Zhang H 2019Adv. Mater. 31 1807981.

    [15]

    You Z H, Qiu Q M, Chen H Y, Feng Y Y, Wang X, Wang Y X, Ying Y B 2020Biosens. Bioelectron. 150 111896.

    [16]

    Zhang J B, Ren M Q, Li Y L, Tour J M 2018ACS Energy Lett. 3677.

    [17]

    Yoon H, Nah J, Kim H, Ko S, Sharifuzzaman M, Barman S C, Xuan X, Kim J Y, Park J Y 2020Sens. Actuators, B 311127866.

    [18]

    Lin J, Peng Z W, Liu Y Y, Zepeda F R, Ye R Q, Samuel E L, Yacaman M J, Yakobson B I, Tour J M 2014Nat. Commun. 55714.

    [19]

    Chyan Y, Ye R Q, Li Y L, Singh S P, Arnusch C J, Tour J M 2018ACS Nano 122176.

    [20]

    Le T S D, Park S B, An J N, Lee P S, Kim Y J 2019Adv. Funct. Mater. 29 1902771.

    [21]

    Wu W B, Liang R X, Lu L S, Wang W T, Ran X, Yue D D 2020Surf. Coat. Technol. 393 125744.

    [22]

    Cheng J F, Lin Z X, Wu D, Liu C L, Cao Z 2022J. Hazard. Mater. 436 129150.

    [23]

    Ryu C, Do H M, In J B. 2024Appl. Surf. Sci. 643 158696.

    [24]

    Rodrigues J, Zanoni J, Gaspar G, Fernandes A J S, Carvalho A F, Santos N F, Monteiro T, Costa F M 2019Nanoscale Adv. 1 3252.

    [25]

    Lal A, Porat H, Hirsch L O, Cahan R, Borenstein A 2024Appl. Surf. Sci. 643 158660.

    [26]

    Ma L A, Chen Y B, Ye XY, Sun L, Wei Z H, Huang L, Chen H X, Wang Q T, Chen E G 2021Ceram. Int. 4727487.

    [27]

    Huang X, Chen S, Pan J, Wei Z H, Ye X Y, Wang Q T, Ma L A 2024Ceram. Int. 5024205.

    [28]

    Perdew J P, Burke K, Wang Y 1996Phys. Rev. B: Condens. Matter 5416533.

    [29]

    Sun Z L, Shao Z G, Wang C L, Yang L 2016 Carbon 110 313.

    [30]

    Zhang H W, Sun Y S, Li Q W, Wan C X 2022ACS Sustainable Chem. Eng. 10 11501.

    [31]

    Raveendran K, Ganesh A, Khilar K C. 1996Fuel 75987.

    [32]

    Babinszki B, Sebestyén Z, Jakab E, Kőhalmi L, Bozi J, Várhegyi G, Wang L, Skreiberg Ø, Czégéy Z 2021Bioresour. Technol. 338125567.

    [33]

    Sugioka K, Cheng Y 2014 Light Sci. Appl. 3 e149.

    [34]

    Chen L F, Yu H, Zhong J S, Wu J, Su W T 2018J. Alloys Compd. 749 60.

    [35]

    Keiluweit M, Nico P S, Johnson M G, Kleber M 2010Environ. Sci. Technol. 441247.

    [36]

    Yu S J, Wang L Z, Li Q H, Zhang Y G, Zhou H 2022Mater. Today Sustain. 19 100209.

    [37]

    Miao M, Zuo S L, Zhao Y Y, Wang Y F, Xia H A, Tan C, Gao H 2018Carbon, 140504.

    [38]

    Wu J B, Lin M L, Cong X, Liu H N, Tan P H 2018Chem. Soc. Rev. 471822.

    [39]

    Arulkumar E, Shree S S, Thanikaikarasan S 2024J. Mater Sci. Mater. EL 35198.

    [40]

    Yang M Q, Ji Y H, Liang Q, Wang C H, Zhang Y F, Zhang M, Wang B, Wang R Z 2020 Acta Phys. Sin. 69 167805. (in Chinese) [杨孟骐姬宇航梁琦王长昊张跃飞张铭王波王如志2020物理学报69 167805].

    [41]

    Zhang Y H, Ding H, Liu C X, Zhang J C, Wang C B, Guo W H, Ji Q Y, Zhao J Y, Zi Y Y 2024Diamond Relat. Mater. 144110972.

    [42]

    Chu Y L, Young S J, Cai D Y, Chu T T 2021IEEE J. Electron. Devi. 91076.

    [43]

    Meng G D, Zhan F Z, She J Y, Xie J N, Zheng Q R, Cheng Y H, Yin Z Y 2023Nanoscale 15 15994.

    [44]

    Fan L N, Chen W, Zhou K, Zheng H, Zheng P, Zheng L, Zhang Y 2023ACS Appl. Electron. Mater. 5 123.

  • [1] 郑钦仁, 詹涪至, 折俊艺, 王建宇, 石若立, 孟国栋. 石墨烯的形貌特征对其场发射性能的影响. 物理学报, doi: 10.7498/aps.73.20231784
    [2] 陈程程, 刘立英, 王如志, 宋雪梅, 王波, 严辉. 不同基底的GaN纳米薄膜制备及其场发射增强研究. 物理学报, doi: 10.7498/aps.62.177701
    [3] 胡小颖, 王淑敏, 裴艳慧, 田宏伟, 朱品文. 碳纳米片-碳纳米管复合材料的一步合成及其场 发射性质研究. 物理学报, doi: 10.7498/aps.62.038101
    [4] 吕文辉, 张帅. 接触电阻对碳纳米管场发射的影响. 物理学报, doi: 10.7498/aps.61.018801
    [5] 张培增, 李瑞山, 谢二庆, 杨华, 王璇, 王涛, 冯有才. 电化学方法制备ZnO纳米颗粒掺杂类金刚石薄膜及其场发射性能研究. 物理学报, doi: 10.7498/aps.61.088101
    [6] 杨延宁, 张志勇, 张富春, 张威虎, 闫军锋, 翟春雪. 纳米金刚石的变温场发射. 物理学报, doi: 10.7498/aps.59.2666
    [7] 秦玉香, 胡 明. 钛碳化物改性碳纳米管的场发射性能. 物理学报, doi: 10.7498/aps.57.3698
    [8] 王新庆, 李 良, 褚宁杰, 金红晓, 葛洪良. 纳米碳管阵列场发射电流密度的理论数值优化. 物理学报, doi: 10.7498/aps.57.7173
    [9] 周 江, 韦德远, 徐 骏, 李 伟, 宋凤麒, 万建国, 徐 岭, 马忠元. 激光晶化形成纳米硅材料的场电子发射性质研究. 物理学报, doi: 10.7498/aps.57.3674
    [10] 郑新亮, 李广山, 钟寿仙, 田进寿, 李振红, 任兆玉. 激光烧蚀对碳纳米管薄膜场发射性能的影响. 物理学报, doi: 10.7498/aps.57.7912
    [11] 元 光, 郭大勃, 顾长志, 窦 艳, 宋 航. 单颗粒CVD金刚石的场发射. 物理学报, doi: 10.7498/aps.56.143
    [12] 雷 达, 曾乐勇, 夏玉学, 陈 松, 梁静秋, 王维彪. 带栅极纳米线冷阴极的场增强因子研究. 物理学报, doi: 10.7498/aps.56.6616
    [13] 胡利勤, 林志贤, 郭太良, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 取向和非取向In2O3纳米线的场发射研究. 物理学报, doi: 10.7498/aps.55.6136
    [14] 罗 敏, 王新庆, 葛洪良, 王 淼, 徐亚伯, 陈 强, 李利培, 陈 磊, 管高飞, 夏 娟, 江 丰. 排列形状及阵列数目对纳米导线阵列场发射性能的影响. 物理学报, doi: 10.7498/aps.55.6061
    [15] 李 强, 梁二军. 碳、碳氮和硼碳氮纳米管场发射性能的比较研究. 物理学报, doi: 10.7498/aps.54.5931
    [16] 王新庆, 王 淼, 李振华, 杨 兵, 王凤飞, 何丕模, 徐亚伯. 单根纳米导线场发射增强因子的计算. 物理学报, doi: 10.7498/aps.54.1347
    [17] 李海钧, 顾长志, 窦 艳, 李俊杰. 单根准直碳纳米纤维的场发射特性. 物理学报, doi: 10.7498/aps.53.2258
    [18] 宋教花, 张耿民, 张兆祥, 孙明岩, 薛增泉. 多壁碳纳米管阵列场发射研究. 物理学报, doi: 10.7498/aps.53.4392
    [19] 张兆祥, 张耿民, 侯士敏, 张 浩, 顾镇南, 刘惟敏, 赵兴钰, 薛增泉. 利用场发射显微镜研究O2对单壁碳纳米管场发射的影响. 物理学报, doi: 10.7498/aps.52.1282
    [20] 孙建平, 张兆祥, 侯士敏, 赵兴钰, 施祖进, 顾镇南, 刘惟敏, 薛增泉. 用场发射显微镜研究单壁碳纳米管场发射. 物理学报, doi: 10.7498/aps.50.1805
计量
  • 文章访问数:  24
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-10

/

返回文章
返回