搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

远场来流对深胞晶界面形态稳定性的影响

陈凯 蒋晗

引用本文:
Citation:

远场来流对深胞晶界面形态稳定性的影响

陈凯, 蒋晗

Effect of far field flow on the interface morphological stability of deep cellular crystal

Chen Kai, Jiang Han
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文通过构建一个包含温度场、浓度场和远场来流的数学模型,运用多重变量展开法与匹配渐近展开法,推导出胞晶界面扰动振幅变化率的色散关系及界面形态量子化条件,分析了远场来流作用下定向凝固中深胞晶生长的稳定性,并揭示了远场来流对不稳定区域大小的影响.研究结果表明,在考虑了远场来流的定向凝固中,深胞晶生长界面形态有两种整体不稳定性机制:整体振荡(GTW)不稳定性,其中性模式产生强振荡的枝晶结构;低频(LF)不稳定性,其中性模式产生弱振荡的胞晶结构.通过稳定性分析发现,在远场来流的影响下,深胞晶的界面稳定性取决于临界稳定性参数,而该参数随着流动强度的增强而减小,整体振荡不稳定性的稳定区域逐渐扩大.
    Directional solidification technology artificially controls the propagation rate at the solid-liquid interface to promote the development of the metal microstructure in the expected direction. In the process, the solid-liquid interface will produce complex and diverse microstructures, of which cellular crystal and dendritic structure are typical microstructures in the interface formation process, which have a direct impact on the quality and properties of the final material. Based on the fact that the far field flow is not strongly affected by local perturbations and has the characteristics of relative stability and homogeneity, this paper constructs a mathematical model including the temperature field, the concentration field and the far field flow. Based on the interfacial wave theory, the constant solution of cellular crystal growth is taken as the ground state, the finger coordinate system is constructed, and the multivariate expansion method and the matched asymptotic expansion method are adopted with the introduction of fast variables for variable substitution. The eigenvalue problem of linear perturbation dynamics in the case of far field flow is solved, and the dispersion relation of the rate of change of the perturbation amplitude at the interface of the cellular crystal and the quantization condition of the interface morphology are derived, and the stability of the growth of deep cellular crystal in directional solidification under the action of far field flow is analyzed, and the basis for judging the critical stability of the deep cellular crystal growth is established, and the effect of far field flow on the size of the unstable region is revealed.
    The results show that, in the directional solidification considering the far field flow, there are two overall instability mechanisms for the interfacial morphology of the growth of deep cellular crystal: the global oscillatory instability (GTW-mode) and the low-frequency instability (IF-mode), and the system allows the symmetric S-mode and the antisymmetric A-mode. The stability analysis reveals that the interfacial stability of deep cellular crystal depends on the critical stability parameter, if the interfacial stability parameter of deep cellular crystal is larger than the critical stability parameter, the growth of deep cellular crystal is stable, and if it is smaller than the critical stability parameter, the growth of deep cellular crystal is unstable, whereas the critical stability parameter decreases with the enhancement of the flow intensity. Under the influence of far field flow, for the same index n, the growth rate of the GTW-S mode is much greater than that of the GTW-A mode, which is said to be more dangerous than the GTW-A mode, and the n=0 case in the GTW-S mode is the most dangerous oscillation mode with the largest unstable region. In addition, as the flow intensity Gu increases, the stable region of the overall oscillatory instability of the dendritic structure, where the neutral mode generates strong oscillations, also becomes larger.
  • [1]

    Mullins W W, Sekerka R F 1963J. Appl. Phys. 34 323

    [2]

    Mullins W W, Sekerka R F 1964J. Appl. Phys. 35 444

    [3]

    Wang Z D, Hu H Q 1997Science in China(Series E) 27 102(in Chinese) [王自东, 胡汉起1997中国科学: E辑27 102]

    [4]

    Wang Z D, Zhou Y L, Chang G W, Hu H Q 1999Science in China(Series E) 29 1(in Chinese) [王自东, 周永利, 常国威, 胡汉起1999中国科学: E辑29 1]

    [5]

    Pelcé P, Pumir A 1985J. Cryst. Growth 73 337

    [6]

    Pocheau A, Georgelin M 2003J. Cryst. Growth 250 100

    [7]

    Pocheau A, Georgelin M 2004J. Cryst. Growth 268 272

    [8]

    Pocheau A, Georgelin M 2006Phys. Rev. E 73 011604

    [9]

    Georgelin M, Bodea S, Pocheau A 2007Europhys. Lett 77 46001

    [10]

    Xu J J 1991Phys. Rev. A 43 930

    [11]

    Xu J J 1991Eur. J. Appl. Math. 2 105

    [12]

    Xu J J 1997Nonlinear Anal-Theor. 30 2775

    [13]

    Chen Y Q, Xu J J 2011J. Cryst. Growth 318 32

    [14]

    Xu J J, Chen Y Q 2011Phys. Rev. E 83 061605

    [15]

    Saffman P G, Taylor G I 1958Proc. R. Soc. London A 245 312

    [16]

    Jiang H, Chen M W, Shi G D, Wang T, Wang Z D 2016Acta Phys. Sin. 65 288(in Chinese) [蒋晗, 陈明文, 史国栋, 王涛, 王自东2016物理学报65 288]

    [17]

    Sun S J, Jiang H 2024Acta Phys. Sin. 73 331(in Chinese) [孙思杰, 蒋晗2024物理学报73 331]

    [18]

    Fan H L, Chen M W, Shan Y Y 2020Surf. Rev. Lett. 27 1950170

    [19]

    Cao B, Lin X, Huang W D 2011Acta Phys. Sin. 60 536(in Chinese) [曹斌, 林鑫, 黄卫东2011物理学报60 536]

    [20]

    Li X M, Chen M W, Wang Z D 2008J. Univ. Sci. Technol. Beijing. 30 652(in Chinese) [李向明, 陈明文, 王自东2008北京科技大学学报30 652]

    [21]

    Wang J Y, Zhai W, Jin K X, Chen C L 2011Acta Phys. Sin. 60 702(in Chinese) [王建元, 翟薇, 金克新, 陈长乐2011物理学报60 702]

    [22]

    Wang X B, Lin X, Wang L L, Yu H L, Wang M, Huang W D 2013Acta Phys. Sin. 62 450(in Chinese) [王贤斌, 林鑫, 王理林, 宇红雷, 王猛, 黄卫东2013物理学报62 450]

    [23]

    Pandit K, Upadhyay S R, Tewari S N 2018J. Cryst. Growth 502 19

    [24]

    Trivedi R, Miyahara H, Mazumder P, Simsek E, Tewari S N 2001J. Cryst. Growth 222 365

    [25]

    Zeng H B, Ai X G, Chen M, Wang M, Jiang J X 2023J. Eng. Sci. 45 541(in Chinese) [曾红波, 艾新港, 陈明, 王敏, 蒋加旋2023工程科学学报45 541]

    [26]

    Zheng G J, Chen M W 2021 J. Eng. Math. 130 12

    [27]

    Chen M W, Jiang J X, Li L Y, Wang Z D 2022Metals 12 1487

    [28]

    Liu J, Chen M W 2012J. Ningxia Univ. 33 167(in Chinese) [刘竞, 陈明文2012宁夏大学学报33 167]

    [29]

    Liu H Z 2024M. S. Thesis (Guilin: Guilin University Of Electronic Technology) (in Chinese) [刘焕珍2024硕士学位论文(桂林: 桂林电子科技大学)]

  • [1] 刘睿, 黄晨阳, 武耀蓉, 胡静, 莫润阳, 王成会. 声空化场中球状泡团的结构稳定性分析. 物理学报, doi: 10.7498/aps.73.20232008
    [2] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, doi: 10.7498/aps.73.20231956
    [3] 孙思杰, 蒋晗. 各向异性界面动力学对深胞晶生长形态稳定性的影响. 物理学报, doi: 10.7498/aps.73.20240362
    [4] 钮迪, 蒋晗. 界面动力学参数对深胞晶界面形态整体波动不稳定性的影响. 物理学报, doi: 10.7498/aps.71.20220322
    [5] 冯吴亮, 王飞, 周星, 吉晓, 韩福东, 王春生. 固态电解质与电极界面的稳定性. 物理学报, doi: 10.7498/aps.69.20201554
    [6] 李晓亮, 陈宪章, 刘郴荣, 黄亮. 复杂势场量子弹球中疤痕态的量子化条件. 物理学报, doi: 10.7498/aps.69.20200360
    [7] 蒋晗, 陈明文, 王涛, 王自东. 各向异性界面动力学与各向异性表面张力的相互作用对定向凝固过程中深胞晶生长的影响. 物理学报, doi: 10.7498/aps.66.106801
    [8] 蒋晗, 陈明文, 史国栋, 王涛, 王自东. 各向异性表面张力对深胞晶界面形态稳定性的影响. 物理学报, doi: 10.7498/aps.65.096803
    [9] 张章, 熊贤仲, 乙姣姣, 李金富. Al-Ni-RE非晶合金的晶化行为和热稳定性. 物理学报, doi: 10.7498/aps.62.136401
    [10] 刘望, 邬琦琦, 陈顺礼, 朱敬军, 安竹, 汪渊. 氦对铜钨纳米多层膜界面稳定性的影响. 物理学报, doi: 10.7498/aps.61.176802
    [11] 曹斌, 林鑫, 黄卫东. 远场来流条件下过冷熔体球晶生长的稳定性. 物理学报, doi: 10.7498/aps.60.066403
    [12] 李 鹤, 李学东, 李 娟, 吴春亚, 孟志国, 熊绍珍, 张丽珠. 表面修饰改善溶液法金属诱导晶化薄膜稳定性与均匀性研究. 物理学报, doi: 10.7498/aps.57.2476
    [13] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析. 物理学报, doi: 10.7498/aps.57.1246
    [14] 陈明文, 王自东, 孙仁济. 远场来流对过冷熔体中球状晶体生长的影响. 物理学报, doi: 10.7498/aps.56.1819
    [15] 马中骐, 许伯威. 精确的量子化条件和不变量. 物理学报, doi: 10.7498/aps.55.1571
    [16] 林 鑫, 李 涛, 王琳琳, 苏云鹏, 黄卫东. 单相合金凝固过程时间相关的界面稳定性(I)理论分析. 物理学报, doi: 10.7498/aps.53.3971
    [17] 黄卫东, 林 鑫, 李 涛, 王琳琳, Y. Inatomi. 单相合金凝固过程时间相关的界面稳定性(Ⅱ)实验对比. 物理学报, doi: 10.7498/aps.53.3978
    [18] 霍崇儒, 朱振和, 葛培文, 陈冬. 微重力下溶液法晶体生长模型中晶体生长界面稳定性的研究. 物理学报, doi: 10.7498/aps.50.377
    [19] 殷鹏程. 非线型场量子化展开的推广. 物理学报, doi: 10.7498/aps.26.477
    [20] 贾惟义, 张鹏翔. 磁晶各向异性场引起的YIG单晶微波器件温度不稳定性的最佳补偿. 物理学报, doi: 10.7498/aps.25.254
计量
  • 文章访问数:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-10

/

返回文章
返回