搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电化学方法制备ZnO纳米颗粒掺杂类金刚石薄膜及其场发射性能研究

张培增 李瑞山 谢二庆 杨华 王璇 王涛 冯有才

引用本文:
Citation:

电化学方法制备ZnO纳米颗粒掺杂类金刚石薄膜及其场发射性能研究

张培增, 李瑞山, 谢二庆, 杨华, 王璇, 王涛, 冯有才

The fabrication and field emission properties of ZnO nanoparticles-doped diamond-like carbon films by electrochemical deposition

Zhang Pei-Zeng, Li Rui-Shan, Xie Er-Qing, Yang Hua, Wang Xuan, Wang Tao, Feng You-Cai
PDF
导出引用
  • 采用液相电化学沉积技术制备了ZnO纳米颗粒掺杂的类金刚石(DLC)薄膜, 研究了ZnO纳米颗粒掺杂对DLC薄膜场发射性能的影响. 利用X射线光电子能谱、透射电子显微镜、Raman光谱以及原子力显微镜分别对薄膜的化学组成、微观结构和表面形貌进行了表征. 结果表明: 薄膜中的ZnO纳米颗粒具有纤锌矿结构, 其含量随着电解液中Zn源的增加而增加. ZnO纳米颗粒掺杂增强了DLC薄膜的石墨化和表面粗糙度. 场发射测试表明, ZnO纳米颗粒掺杂能提高DLC薄膜的场发射性能, 其中Zn与Zn+C的原子比为10.3%的样品在外加电场强度为20.7 V/m时电流密度达到了1 mA/cm2. 薄膜场发射性能的提高归因于ZnO掺杂引起的表面粗糙度和DLC薄膜石墨化程度的增加.
    The formation of ZnO nanoparticles embedded in diamond-like carbon (DLC) thin film, deposited by electrochemical technique without post-processing, is observed. The effect of ZnO doping on the field emission (FE) property of DLC film is investigated. The chemical composition, the microstructure, and the surface morphologies of the sample are characterized by X-ray photoelectron microscopy, transmission electron microscopy, Raman spectrum, and atomic force microscope (AFM). It is shown that the ZnO nanoparticles are of a wurtzite structure and the content of ZnO increases with Zn source increasing in electrolyte. The ZnO doping enhances both the graphitization and the surface roughness of the DLC film, which is verified by Raman spectrum and AFM. By the ZnO doping, the FE properties of the DLC film are improved. An emission current density of 1 mA/cm2 is obtained at an electric field of 20.7 V/m for the film with a Zn/(Zn+C) ratio of 10.3at%. The improvement on the FE properties of the ZnO-doped DLC film is analyzed in the context of microstructure and chemical composition.
    • 基金项目: 兰州理工大学博士科研基金(批准号: BS10200904)和教育部科学技术研究计划重点项目(批准号: 211188)资助的课题.
    • Funds: Project supported by the Doctoral Scientific Research Foundation of Lanzhou University of Technology, China (Grant No. BS10200904) and the Key Program of Science and Technology Research of Ministry of Education, China (Grant No. 211188).
    [1]

    Ilie A, Ferrari A C, Yagi T, Robertson J 2000 Appl. Phys. Lett. 76 2627

    [2]
    [3]
    [4]

    Ma H Z, Zhang L, Yao N, Zhang B L, Hu H L, Wen G L 2000 Diam. Relat. Mater. 9 1608

    [5]
    [6]

    Silva S R P, Carey J D, Guo X, Tsang W M, Poa C H P 2005 Thin Solid Films 79 482

    [7]
    [8]

    Wu Y H, Hsu C M, Chia C T, Lin L N, Cheng C L 2002 Diam. Relat. Mater. 11 804

    [9]
    [10]

    Ahmed S F, Mitra M K, Chattopadhyay K K 2007 Appl. Surf. Sci. 253 5480

    [11]

    Liang H F, Liang Z H, Liu C L, Meng L G 2010 Appl. Surf. Sci. 256 1951

    [12]
    [13]

    Paul R, Dalui S, Pal A K 2010 Surf. Coat. Technol. 204 4025

    [14]
    [15]

    Wang L, Giles N C 2003 J. Appl. Phys. 94 973

    [16]
    [17]
    [18]

    Yang P, Yan H, Mao S 2002 Adv. Funct. Mater. 12 323

    [19]
    [20]

    Lan W, Tang G M, Cao W L, Liu X Q, Wang Y Y 2009 Acta Phys. Sin. 58 8501 (in Chinese) [兰伟, 唐国梅, 曹文磊, 刘雪芹, 王印月 2009 物理学报 58 8501]

    [21]
    [22]

    Lee C J, Lee T J, Lyu S C, Zhang Y, Ruh H, Lee H J 2002 Appl. Phys. Lett. 81 3648

    [23]

    Tseng Y K, Huang C J, Cheng H M, Lin I N, Liu K S, Chen I C 2003 Adv. Funct. Mater. 13 811

    [24]
    [25]
    [26]

    Hsieh J, Chua D H C, Tay B K, Teo E H T, Tanemura M 2008 Diam. Relat. Mater. 17 167

    [27]
    [28]

    Namba Y 1992 J. Vac. Technol. A 10 3368

    [29]
    [30]

    Li R S, Xie E Q, Zhou M, Zhang Z X, Wang T, Lu B A 2008 Appl. Surf. Sci. 255 2787

    [31]

    Wan S H, Wang L P, Xun Q J 2010 Electrochem. Commun. 12 61

    [32]
    [33]

    Kundoo S, Saha P, Chattopadhyay K K 2004 Mater. Lett. 58 3920

    [34]
    [35]
    [36]

    Xia Y N 2010 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese) [夏娅娜 2010 博士学位论文 (北京:中国科学院研究生院)]

    [37]
    [38]

    Jung D R, Son D, Kim J, Kim C, Park B 2008 Appl. Phys. Lett. 93 163118

    [39]

    Irmer G, Dorner-Reisel A 2005 Adv. Eng. Mater. 7 694

    [40]
    [41]
    [42]

    Rajalakshmi M, Arora A K, Bendre B S, Mahamuni S 2000 J. Appl. Phys. 87 2445

    [43]

    Cusc R, Alarcn-Llad E, Ibez J, Arts L, Jimnez J, Wang B G, Callahan M J 2007 Phys. Rev. B 75 165202

    [44]
    [45]

    Fowler R H, Nordheim L W 1928 Proc. Roy. Soc. A 119 173

  • [1]

    Ilie A, Ferrari A C, Yagi T, Robertson J 2000 Appl. Phys. Lett. 76 2627

    [2]
    [3]
    [4]

    Ma H Z, Zhang L, Yao N, Zhang B L, Hu H L, Wen G L 2000 Diam. Relat. Mater. 9 1608

    [5]
    [6]

    Silva S R P, Carey J D, Guo X, Tsang W M, Poa C H P 2005 Thin Solid Films 79 482

    [7]
    [8]

    Wu Y H, Hsu C M, Chia C T, Lin L N, Cheng C L 2002 Diam. Relat. Mater. 11 804

    [9]
    [10]

    Ahmed S F, Mitra M K, Chattopadhyay K K 2007 Appl. Surf. Sci. 253 5480

    [11]

    Liang H F, Liang Z H, Liu C L, Meng L G 2010 Appl. Surf. Sci. 256 1951

    [12]
    [13]

    Paul R, Dalui S, Pal A K 2010 Surf. Coat. Technol. 204 4025

    [14]
    [15]

    Wang L, Giles N C 2003 J. Appl. Phys. 94 973

    [16]
    [17]
    [18]

    Yang P, Yan H, Mao S 2002 Adv. Funct. Mater. 12 323

    [19]
    [20]

    Lan W, Tang G M, Cao W L, Liu X Q, Wang Y Y 2009 Acta Phys. Sin. 58 8501 (in Chinese) [兰伟, 唐国梅, 曹文磊, 刘雪芹, 王印月 2009 物理学报 58 8501]

    [21]
    [22]

    Lee C J, Lee T J, Lyu S C, Zhang Y, Ruh H, Lee H J 2002 Appl. Phys. Lett. 81 3648

    [23]

    Tseng Y K, Huang C J, Cheng H M, Lin I N, Liu K S, Chen I C 2003 Adv. Funct. Mater. 13 811

    [24]
    [25]
    [26]

    Hsieh J, Chua D H C, Tay B K, Teo E H T, Tanemura M 2008 Diam. Relat. Mater. 17 167

    [27]
    [28]

    Namba Y 1992 J. Vac. Technol. A 10 3368

    [29]
    [30]

    Li R S, Xie E Q, Zhou M, Zhang Z X, Wang T, Lu B A 2008 Appl. Surf. Sci. 255 2787

    [31]

    Wan S H, Wang L P, Xun Q J 2010 Electrochem. Commun. 12 61

    [32]
    [33]

    Kundoo S, Saha P, Chattopadhyay K K 2004 Mater. Lett. 58 3920

    [34]
    [35]
    [36]

    Xia Y N 2010 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese) [夏娅娜 2010 博士学位论文 (北京:中国科学院研究生院)]

    [37]
    [38]

    Jung D R, Son D, Kim J, Kim C, Park B 2008 Appl. Phys. Lett. 93 163118

    [39]

    Irmer G, Dorner-Reisel A 2005 Adv. Eng. Mater. 7 694

    [40]
    [41]
    [42]

    Rajalakshmi M, Arora A K, Bendre B S, Mahamuni S 2000 J. Appl. Phys. 87 2445

    [43]

    Cusc R, Alarcn-Llad E, Ibez J, Arts L, Jimnez J, Wang B G, Callahan M J 2007 Phys. Rev. B 75 165202

    [44]
    [45]

    Fowler R H, Nordheim L W 1928 Proc. Roy. Soc. A 119 173

  • [1] 艾立强, 张相雄, 陈民, 熊大曦. 类金刚石薄膜在硅基底上的沉积及其热导率. 物理学报, 2016, 65(9): 096501. doi: 10.7498/aps.65.096501
    [2] 姜金龙, 黄浩, 王琼, 王善民, 魏智强, 杨华, 郝俊英. 沉积温度对钛硅共掺杂类金刚石薄膜生长、结构和力学性能的影响. 物理学报, 2014, 63(2): 028104. doi: 10.7498/aps.63.028104
    [3] 高松, 赵谡玲, 徐征, 杨一帆, 刘志民, 谢小漪. 氧化锌纳米颗粒薄膜的近紫外电致发光特性研究. 物理学报, 2014, 63(15): 157702. doi: 10.7498/aps.63.157702
    [4] 陈程程, 刘立英, 王如志, 宋雪梅, 王波, 严辉. 不同基底的GaN纳米薄膜制备及其场发射增强研究. 物理学报, 2013, 62(17): 177701. doi: 10.7498/aps.62.177701
    [5] 杨延宁, 张志勇, 张富春, 张威虎, 闫军锋, 翟春雪. 纳米金刚石的变温场发射. 物理学报, 2010, 59(4): 2666-2671. doi: 10.7498/aps.59.2666
    [6] 开花, 李运超, 郭德成, 李双, 李之杰. 斜入射离子束辅助沉积对类金刚石薄膜结构影响的分子动力学模拟. 物理学报, 2009, 58(7): 4888-4894. doi: 10.7498/aps.58.4888
    [7] 郑新亮, 李广山, 钟寿仙, 田进寿, 李振红, 任兆玉. 激光烧蚀对碳纳米管薄膜场发射性能的影响. 物理学报, 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [8] 元 光, 郭大勃, 顾长志, 窦 艳, 宋 航. 单颗粒CVD金刚石的场发射. 物理学报, 2007, 56(1): 143-146. doi: 10.7498/aps.56.143
    [9] 罗 敏, 王新庆, 葛洪良, 王 淼, 徐亚伯, 陈 强, 李利培, 陈 磊, 管高飞, 夏 娟, 江 丰. 排列形状及阵列数目对纳米导线阵列场发射性能的影响. 物理学报, 2006, 55(11): 6061-6067. doi: 10.7498/aps.55.6061
    [10] 李 强, 梁二军. 碳、碳氮和硼碳氮纳米管场发射性能的比较研究. 物理学报, 2005, 54(12): 5931-5936. doi: 10.7498/aps.54.5931
    [11] 王新庆, 王 淼, 李振华, 杨 兵, 王凤飞, 何丕模, 徐亚伯. 单根纳米导线场发射增强因子的计算. 物理学报, 2005, 54(3): 1347-1351. doi: 10.7498/aps.54.1347
    [12] 胡海宁, 陈京兰, 吴光恒, 陈丽婕, 刘何燕, 李养贤, 曲静萍. 电化学沉积Fe与FePd纳米线阵列的磁性. 物理学报, 2005, 54(9): 4370-4373. doi: 10.7498/aps.54.4370
    [13] 胡海宁, 陈京兰, 吴光恒. 电化学沉积Fe单晶纳米线生长中的取向控制. 物理学报, 2005, 54(1): 389-392. doi: 10.7498/aps.54.389
    [14] 叶 凡, 谢二庆, 李瑞山, 林洪峰, 张 军, 贺德衍. 类金刚石和碳氮薄膜的电化学沉积及其场发射性能研究. 物理学报, 2005, 54(8): 3935-3939. doi: 10.7498/aps.54.3935
    [15] 李海钧, 顾长志, 窦 艳, 李俊杰. 单根准直碳纳米纤维的场发射特性. 物理学报, 2004, 53(7): 2258-2262. doi: 10.7498/aps.53.2258
    [16] 宋教花, 张耿民, 张兆祥, 孙明岩, 薛增泉. 多壁碳纳米管阵列场发射研究. 物理学报, 2004, 53(12): 4392-4397. doi: 10.7498/aps.53.4392
    [17] 杨武保, 王久丽, 张谷令, 范松华, 刘赤子, 杨思泽. 丙酮环境下ECR微波等离子体辅助化学气相沉积类金刚石薄膜研究. 物理学报, 2004, 53(9): 3099-3103. doi: 10.7498/aps.53.3099
    [18] 张兆祥, 张耿民, 侯士敏, 张 浩, 顾镇南, 刘惟敏, 赵兴钰, 薛增泉. 利用场发射显微镜研究O2对单壁碳纳米管场发射的影响. 物理学报, 2003, 52(5): 1282-1286. doi: 10.7498/aps.52.1282
    [19] 梅显秀, 徐军, 马腾才. 利用强流脉冲离子束技术在室温下沉积类金刚石薄膜研究. 物理学报, 2002, 51(8): 1875-1880. doi: 10.7498/aps.51.1875
    [20] 孙建平, 张兆祥, 侯士敏, 赵兴钰, 施祖进, 顾镇南, 刘惟敏, 薛增泉. 用场发射显微镜研究单壁碳纳米管场发射. 物理学报, 2001, 50(9): 1805-1809. doi: 10.7498/aps.50.1805
计量
  • 文章访问数:  4503
  • PDF下载量:  728
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-01
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

电化学方法制备ZnO纳米颗粒掺杂类金刚石薄膜及其场发射性能研究

  • 1. 兰州大学磁学与磁性材料教育部重点实验室, 兰州 730000;
  • 2. 兰州理工大学理学院, 兰州 730050;
  • 3. 兰州理工大学甘肃省有色金属新材料重点实验室, 兰州 730050;
  • 4. 西北师范大学物理与电子工程学院, 兰州 730070
    基金项目: 兰州理工大学博士科研基金(批准号: BS10200904)和教育部科学技术研究计划重点项目(批准号: 211188)资助的课题.

摘要: 采用液相电化学沉积技术制备了ZnO纳米颗粒掺杂的类金刚石(DLC)薄膜, 研究了ZnO纳米颗粒掺杂对DLC薄膜场发射性能的影响. 利用X射线光电子能谱、透射电子显微镜、Raman光谱以及原子力显微镜分别对薄膜的化学组成、微观结构和表面形貌进行了表征. 结果表明: 薄膜中的ZnO纳米颗粒具有纤锌矿结构, 其含量随着电解液中Zn源的增加而增加. ZnO纳米颗粒掺杂增强了DLC薄膜的石墨化和表面粗糙度. 场发射测试表明, ZnO纳米颗粒掺杂能提高DLC薄膜的场发射性能, 其中Zn与Zn+C的原子比为10.3%的样品在外加电场强度为20.7 V/m时电流密度达到了1 mA/cm2. 薄膜场发射性能的提高归因于ZnO掺杂引起的表面粗糙度和DLC薄膜石墨化程度的增加.

English Abstract

参考文献 (45)

目录

    /

    返回文章
    返回