搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四方结构GaN纳米线制备、掺杂调控及其场发射性能研究

杨孟骐 姬宇航 梁琦 王长昊 张跃飞 张铭 王波 王如志

引用本文:
Citation:

四方结构GaN纳米线制备、掺杂调控及其场发射性能研究

杨孟骐, 姬宇航, 梁琦, 王长昊, 张跃飞, 张铭, 王波, 王如志

Preparation, doping modulation and field emission properties of square-shaped GaN nanowires

Yang Meng-Qi, Ji Yu-Hang, Liang Qi, Wang Chang-Hao, Zhang Yue-fei, Zhang Ming, Wang Bo, Wang Ru-Zhi
PDF
HTML
导出引用
  • 作为最重要的第三代半导体材料之一, 纳米氮化镓(GaN)也引起了人们的广泛关注与重视. 本文采用微波等离子体化学气相沉积(microwave plasma chemical vapor deposition, MPCVD)系统, 成功地制备出了四方截面的GaN纳米线, 其纳米线半径为300—500 nm, 长度为15—20 μm. 研究发现, 通过调控掺杂Mg的比例, 可以实现其截面结构从三方向四方转变. 通过进一步地研究Mg掺杂调控其截面结构的物理机制, 提出其三方-四方截面结构的转变应该来源于其纳米线的气-液-固(VLS)生长向自催化气-固(VS)生长模式的转变. 对所制备的纳米线进行了光致发光(photoluminescence, PL)光谱分析, 结果表明四方结构Mg掺杂GaN纳米线发光峰红移至386 nm. 采用所制备的纳米线进行了场发射性能研究, 结果表明四方结构Mg掺杂GaN纳米线开启电场为5.2 V/μm, 并能保持较高电流密度, 相较于三方结构未掺杂GaN纳米线场发射性能有一定提高, 进而分析掺杂以及形貌结构对GaN纳米线场发射的影响机制. 研究结果不仅给出了一种四方结构GaN纳米线的制备方法, 同时也为纳米线结构调控提出了新的思路与方法, 将为新型纳米线器件设计与制作提供了新的技术手段.
    GaN nanomaterials, as one of the most important third-generation semiconductor materials, have attracted wide attention. In this study, GaN nanowires with square cross section were successfully prepared by microwave plasma chemical vapor deposition system. The diameters of nanowires are from 300 to 500 nm and the lengths from 15 to 20 μm. The results show that the cross section of nanowires could be transformed from triangle into square by adjusting the ratio of Mg to Ga in source materials. X-ray diffraction(XRD)result indicate that the structure of GaN nanowires are agree with the hexagonal wurtzite. X-ray photoelectron spectroscopy (XPS) rusult show that a certain amount of Mg and O impurities incoporated in the square-shaped GaN nanowires. Transmission electron microscopy (TEM) result suggested that square-shaped GaN nanowires had high crystallinity with a growth direction of [$0\bar 110$]. The ratio of source materials- and time-depented growth mechanism was also studied. It was suggested that the transformation of the cross section from triangle to square structure should be derived from the growth mechanism change from vapor-liquid-solid(VLS)process to vapor-solid(VS)process. The doped Mg increased the growth rate of the nanowires sidewalls, which led to a symmetrically growth of GaN nanowires along the twin boundaries. GaN nanowires gradually transformed to square structure by auto-catalytic growth. Moreover, the property of field emission were further investigated. The results showed that the turn-on electric field of square-shaped GaN nanowires was 5.2 V/m and a stable field emission property at high electric field. This research provides a new method for the preparation of square-shaped GaN nanowires and a prospective way for the design and fabrication of novel nano-scale devices.
      通信作者: 王如志, wrz@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774017, 51761135129)资助的课题
      Corresponding author: Wang Ru-Zhi, wrz@bjut.edu.cn
    • Funds: National Natural Science Foundation of China (Grant Nos. 11774017, 51761135129)
    [1]

    Han S, Choi I, Lee C R, Jeong K U, Lee S K, Kim J S 2020 ACS Appl. Mater. Inter. 12 970Google Scholar

    [2]

    Guo D X, Wang X F, Wang H, Song W D, Chen H, Qi M Y, Luo X J, Luo X, Li G, Qin G G, Li S T 2018 ACS Photonics 5 4810Google Scholar

    [3]

    Ko S M, Hur J, Lee C, Isnaeni, Gong S H, Kim M, Cho Y H 2020 Sci. Rep. 10 358Google Scholar

    [4]

    邓长发, 燕少安, 王冬, 彭金峰, 郑学军 2019 物理学报 68 237304Google Scholar

    Deng C F, Yan S A, Wang D, Peng J F, Zheng X J 2019 Acta Phys. Sin. 68 237304Google Scholar

    [5]

    Liu B, Hu T, Wang Z, Liu L, Qin F, Huang N, Jiang X 2012 Cryst. Res. Technol. 47 207Google Scholar

    [6]

    Sahoo P, Dhara S, Amirthapandian S, Kamruddin M 2013 J Mater. Chem. C 1 7237Google Scholar

    [7]

    Johar M A, Song H G, Waseem A, Hassan M A, Bagal I V, Cho Y H, Ryu S W 2020 Appl. Mater. Today 19 100541Google Scholar

    [8]

    Liao H, Wei T T, Zong H, Jiang S X, Li J C, Yang Y, Yu G, Wen P J, Lang R, Wang W J, Hu X D 2019 Appl. Surf. Sci. 489 346Google Scholar

    [9]

    Morassi M, Guan N, Dubrovskii V G, Berdnikov Y, Barbier C, Mancini L, Largeau L, Babichev A V, Kumaresan V, Julien F H, Travers L, Gogneau N, Harmand J C, Tchernycheva M 2019 Cryst. Growth Des. 20 552

    [10]

    Treeck D v, Garrido S F, Geelhaar L 2020 Phys. Rev. Mater. 4 013404Google Scholar

    [11]

    Sun J M, Han M M, Gu Y, Yang Z X, Zeng H B 2018 Adv. Optical Mater. 6 1800256Google Scholar

    [12]

    赵军伟, 张跃飞, 宋雪梅, 严辉, 王如志 2014 物理学报 63 117702Google Scholar

    Zhao J W, Zhang Y F, Song X M, Yan H, Wang R Z 2014 Acta Phys. Sin. 63 117702Google Scholar

    [13]

    Ji Y H, Wang R Z, Feng X Y, Zhang Y F, Yan H 2017 J. Phys. Chem. C 121 24804Google Scholar

    [14]

    Feng X Y, Wang R Z, Liang Q, Ji Y H, Yang M Q 2019 Cryst. Growth Des. 19 2687Google Scholar

    [15]

    Zhao J W, Zhang Y F, Li Y H, Su C H, Song X M, Yan H, Wang R Z 2015 Sci. Rep. 5 17692Google Scholar

    [16]

    Bernal R A, Agrawal R, Peng B, Bertness K A, Sanford N A 2011 Nano Lett. 11 548Google Scholar

    [17]

    Pozina G, Gubaydullin A R, Mitrofanov M I, Kaliteevski M A, Levitskii I V, Voznyuk G V, Tatarinov E E 2018 Sci. Rep. 8 7218Google Scholar

    [18]

    Ross F M, Tersoff J, Reuter M C 2005 Phys. Rev. Lett. 95 146104Google Scholar

    [19]

    Gholampour M, Abdollah-zadeh A, Poursalehi R, Shekari L 2014 Mater. Lett. 120 136Google Scholar

    [20]

    Srivastava P, Kumar A, Jaiswal N K, Sharma V 2016 Proceeding of International Conference on Condensed Matter and Applied Physics Bikaner, INDIA, OCT 30–31, 2015 p020071

    [21]

    Srivastava P, Kumar A, Jaiswal N K, Sharma V 2016 Phys. Status Solidi B 253 2185Google Scholar

    [22]

    Wang Y Q, Wang R Z, Zhu M K, Wang B B, Yan H 2013 Appl. Surf. Sci. 285 115Google Scholar

    [23]

    Liu B D, Bando Y, Tang C C, Xu F F 2005 J. Phys. Chem. B 109 21521Google Scholar

    [24]

    Li E L, Wu B, Lv S T, Cui Z, Ma D M, Shi W 2016 J. Alloy. Compd. 681 324Google Scholar

    [25]

    Xia S H, Liu L, Diao Y, Feng S 2017 J. Appl. Phys. 122 135102Google Scholar

    [26]

    Pan C J, Chi G C 1999 Solid State Electron. 43 621Google Scholar

    [27]

    Jaud A, Auvray L, Kahouli A, Abi-Tannous T, Cauwet F, Ferro G, Brylinski C 2017 Phys. Status Solidi A 214 1600428Google Scholar

    [28]

    Bae S Y, Lekhal K, Lee H J, Min J W, Lee D S, Honda Y, Amano H 2017 Phy. Status Solidi B 254 1600722Google Scholar

    [29]

    Kamimura J, Bogdanoff P, Ramsteiner M, Corfdir P, Feix F, Geelhaar L, Riechert H 2017 Nano Lett. 17 1529Google Scholar

    [30]

    Siladie A M, Amichi L, Mollard N, Mouton I, Bonef B, Bougerol C, Grenier A, Robin E, Jouneau P H, Garro N, Cros A, Daudin B 2018 Nanotechnology 29 255706Google Scholar

    [31]

    Miceli G, Pasquarello A 2016 Phys.l Rev. B 93 165207Google Scholar

    [32]

    Wang Y Q, Wang R Z, Li Y J, Zhang Y F, Zhu M K, Wang B B, Yan H 2013 CrystEngComm 15 1626Google Scholar

    [33]

    Lymperakis L, Neugebauer J 2009 Phys. Rev. B 79 241308Google Scholar

    [34]

    Limbach F, Caterino R, Gotschke T, Stoica T, Calarco R, Geelhaar L, Riechert H 2012 AIP Advances 2 012157Google Scholar

    [35]

    Nayak S, Kumar R, Pandey N, Nagaraja K K, Gupta M, Shivaprasad S M 2018 J. Appl. Phys. 123 135303Google Scholar

    [36]

    Park J B, Kim N J, Kim Y J, Lee S H, Yi G C 2014 Curr. Appl. Phys. 14 1437Google Scholar

    [37]

    Ji Y H, Wang R Z, Yang M Q, Feng X Y, Zhang Y F, Huang A P, Yang L X, Liu Y Q, Yan Y Z, Yan H 2020 J. Phys. Chem. C 124 6725Google Scholar

    [38]

    Li Z J, Li W D, Wang X L, Zhang M 2014 Phys. Status Solidi A 211 1550Google Scholar

    [39]

    Consonni V, Knelangen M, Geelhaar L, Trampert A, Riechert H 2010 Phys. Rev. B 81 085310Google Scholar

    [40]

    Zhang D D, Xue C S, Zhuang H Z, Sun H B, Cao Y P, Huang Y L, Wang Z P, Wang Y 2009 Chemphyschem 10 571Google Scholar

    [41]

    Shi F, Huang Y L, Xue C S 2011 J. Exp. Nanosci. 6 174Google Scholar

    [42]

    Rackauskas S, Jiang H, Wagner J B, Shandakov S D, Hansen T W, Kauppinen E I, Nasibulin A G 2014 Nano Lett. 14 5810Google Scholar

    [43]

    Gamalski A D, Voorhees P W, Ducati C, Sharma R, Hofmann S 2014 Nano Lett. 14 1288Google Scholar

    [44]

    Boukhicha R, Gardès C, Vincent L, Renard C, Yam V, Fossard F, Patriarche G, Jabeen F, Bouchier D 2011 EPL 95 18004Google Scholar

    [45]

    Ngo T H, Gil B, Shubina T V, Damilano B, Vezian S, Valvin P, Massies J 2018 Sci. Rep. 8 15767Google Scholar

    [46]

    Reshchikov M A, Morkoç H 2005 J. Appl. Phys. 97 061301Google Scholar

    [47]

    Kaufmann U, Kunzer M, Maier M, Obloh H, Ramakrishnan A, Santic B, Schlotter P 1998 Appl. Phys. Lett. 72 1326Google Scholar

    [48]

    Stoica T, Calarco R 2011 IEEE J. Sel. Top. Quant. 17 859Google Scholar

    [49]

    Das S N, Patra S, Kar J P, Lee M J, Hwang S H, Lee T I, Myoung J M 2013 Mater. Lett. 106 352Google Scholar

    [50]

    Bayel M W, Brandt M S, Glaser E R, Wickenden A E, D. K D, Henry R L, Stutzmann M 1999 Phys. Ptat. Pol. B 216 547

    [51]

    Glaser E R, Carlos W E, Braga G C B 2002 Phys. Rev. B 65 085312Google Scholar

    [52]

    Wang R Z, Zhao W, Yan H 2017 Sci. Rep. 7 43625Google Scholar

    [53]

    Li W D, Zhang M, Li Y, Liu G X, Li Z J 2019 CrystEngComm 21 3993Google Scholar

    [54]

    Zhao W, Wang R Z, Song Z W, Wang H, Yan H, Chu P K 2013 J. Physl. Chem. C 117 1518Google Scholar

    [55]

    Vayssieres L, Graetzel M 2004 Angew. Chem. Int. Ed. Engl. 43 3666Google Scholar

    [56]

    Diao Y, Liu L, Xia S H, Feng S, Lu F F 2018 Superlattice Microst. 115 140Google Scholar

    [57]

    Wang Z, Chen Y H, Ye X L 2004 13th International Conference on Semiconducting and Insulating Materials Beijing, China, Sep. 20–25, 2004 pp57–60

  • 图 1  不同原料配比制备Mg掺杂GaN纳米线的FESEM图 (a)样品A-a; (b)样品A-b; (c)样品A-c; (d)样品A-d; (e)样品A-e

    Fig. 1.  FESEM images Mg doped GaN nanowires prepared at different source materials ratio. (a) Sample A-a; (b) sample A-b; (c) sample A-c; (d) sample A-d; (e) sample A-e.

    图 2  不同生长时间制备Mg掺杂GaN纳米线的FESEM图 (a)样品B-a; (b)样品B-b; (c)样品B-c; (d)样品B-d

    Fig. 2.  FESEM images Mg doped GaN nanowires prepared at different growth times. (a) Sample B-a; (b) sample B-b; (c) sample B-c; (d) sample B-d.

    图 3  样品A-e的XRD图谱

    Fig. 3.  XRD spectra of sample A-e.

    图 4  样品A-e的XPS图谱

    Fig. 4.  XPS spectra of sample A-e.

    图 5  样品A-e的(a) TEM图; (b) HRTEM图插图为样品A-e的SAED图

    Fig. 5.  (a) TEM image; (b) HRTEM image and SAED pattern (inset) of sample A-e.

    图 6  四方结构GaN纳米线的成核和生长过程示意图

    Fig. 6.  Schematic diagram of nucleation and growth for square-shaped GaN nanowires.

    图 7  (a)样品A-a及样品A-e的PL图谱;(b)样品A-e的带隙分析图

    Fig. 7.  (a) PL spectra of sample A-a and sample A-e; (b) band gap analysis spectra of sample A-e.

    图 8  样品A-a及样品A-e的(a) J-E曲线; (b) F-N曲线

    Fig. 8.  (a) J-E curves; (b) F-N curves of sample A-a and sample A-e.

    表 1  不同原料配比制备Mg掺杂GaN纳米线的实验参数

    Table 1.  The experimental parameter of preparing Mg doped GaN nanowiresat different source materials ratio.

    编号N2/sccm气压/TorrT/℃t/min微波功率/WC∶Ga2O3∶MgO
    A-a13108703030012∶1∶0
    A-b13108703030012:1:0.2
    A-c13108703030012∶1∶0.5
    A-d13108703030012∶1∶1
    A-e13108703030012∶1∶1.5
    下载: 导出CSV

    表 2  不同生长时间制备Mg掺杂GaN纳米线的实验参数

    Table 2.  The experimental parameter of preparing Mg doped GaN nanowiresat different growth time.

    编号N2/sccm气压/TorrT/℃t/min微波功率/WC∶Ga2O3∶MgO
    B-a13108701030012∶1∶1.5
    B-b13108702030012∶1∶1.5
    B-c13108703030012∶1∶1.5
    B-d13108704030012∶1∶1.5
    下载: 导出CSV
  • [1]

    Han S, Choi I, Lee C R, Jeong K U, Lee S K, Kim J S 2020 ACS Appl. Mater. Inter. 12 970Google Scholar

    [2]

    Guo D X, Wang X F, Wang H, Song W D, Chen H, Qi M Y, Luo X J, Luo X, Li G, Qin G G, Li S T 2018 ACS Photonics 5 4810Google Scholar

    [3]

    Ko S M, Hur J, Lee C, Isnaeni, Gong S H, Kim M, Cho Y H 2020 Sci. Rep. 10 358Google Scholar

    [4]

    邓长发, 燕少安, 王冬, 彭金峰, 郑学军 2019 物理学报 68 237304Google Scholar

    Deng C F, Yan S A, Wang D, Peng J F, Zheng X J 2019 Acta Phys. Sin. 68 237304Google Scholar

    [5]

    Liu B, Hu T, Wang Z, Liu L, Qin F, Huang N, Jiang X 2012 Cryst. Res. Technol. 47 207Google Scholar

    [6]

    Sahoo P, Dhara S, Amirthapandian S, Kamruddin M 2013 J Mater. Chem. C 1 7237Google Scholar

    [7]

    Johar M A, Song H G, Waseem A, Hassan M A, Bagal I V, Cho Y H, Ryu S W 2020 Appl. Mater. Today 19 100541Google Scholar

    [8]

    Liao H, Wei T T, Zong H, Jiang S X, Li J C, Yang Y, Yu G, Wen P J, Lang R, Wang W J, Hu X D 2019 Appl. Surf. Sci. 489 346Google Scholar

    [9]

    Morassi M, Guan N, Dubrovskii V G, Berdnikov Y, Barbier C, Mancini L, Largeau L, Babichev A V, Kumaresan V, Julien F H, Travers L, Gogneau N, Harmand J C, Tchernycheva M 2019 Cryst. Growth Des. 20 552

    [10]

    Treeck D v, Garrido S F, Geelhaar L 2020 Phys. Rev. Mater. 4 013404Google Scholar

    [11]

    Sun J M, Han M M, Gu Y, Yang Z X, Zeng H B 2018 Adv. Optical Mater. 6 1800256Google Scholar

    [12]

    赵军伟, 张跃飞, 宋雪梅, 严辉, 王如志 2014 物理学报 63 117702Google Scholar

    Zhao J W, Zhang Y F, Song X M, Yan H, Wang R Z 2014 Acta Phys. Sin. 63 117702Google Scholar

    [13]

    Ji Y H, Wang R Z, Feng X Y, Zhang Y F, Yan H 2017 J. Phys. Chem. C 121 24804Google Scholar

    [14]

    Feng X Y, Wang R Z, Liang Q, Ji Y H, Yang M Q 2019 Cryst. Growth Des. 19 2687Google Scholar

    [15]

    Zhao J W, Zhang Y F, Li Y H, Su C H, Song X M, Yan H, Wang R Z 2015 Sci. Rep. 5 17692Google Scholar

    [16]

    Bernal R A, Agrawal R, Peng B, Bertness K A, Sanford N A 2011 Nano Lett. 11 548Google Scholar

    [17]

    Pozina G, Gubaydullin A R, Mitrofanov M I, Kaliteevski M A, Levitskii I V, Voznyuk G V, Tatarinov E E 2018 Sci. Rep. 8 7218Google Scholar

    [18]

    Ross F M, Tersoff J, Reuter M C 2005 Phys. Rev. Lett. 95 146104Google Scholar

    [19]

    Gholampour M, Abdollah-zadeh A, Poursalehi R, Shekari L 2014 Mater. Lett. 120 136Google Scholar

    [20]

    Srivastava P, Kumar A, Jaiswal N K, Sharma V 2016 Proceeding of International Conference on Condensed Matter and Applied Physics Bikaner, INDIA, OCT 30–31, 2015 p020071

    [21]

    Srivastava P, Kumar A, Jaiswal N K, Sharma V 2016 Phys. Status Solidi B 253 2185Google Scholar

    [22]

    Wang Y Q, Wang R Z, Zhu M K, Wang B B, Yan H 2013 Appl. Surf. Sci. 285 115Google Scholar

    [23]

    Liu B D, Bando Y, Tang C C, Xu F F 2005 J. Phys. Chem. B 109 21521Google Scholar

    [24]

    Li E L, Wu B, Lv S T, Cui Z, Ma D M, Shi W 2016 J. Alloy. Compd. 681 324Google Scholar

    [25]

    Xia S H, Liu L, Diao Y, Feng S 2017 J. Appl. Phys. 122 135102Google Scholar

    [26]

    Pan C J, Chi G C 1999 Solid State Electron. 43 621Google Scholar

    [27]

    Jaud A, Auvray L, Kahouli A, Abi-Tannous T, Cauwet F, Ferro G, Brylinski C 2017 Phys. Status Solidi A 214 1600428Google Scholar

    [28]

    Bae S Y, Lekhal K, Lee H J, Min J W, Lee D S, Honda Y, Amano H 2017 Phy. Status Solidi B 254 1600722Google Scholar

    [29]

    Kamimura J, Bogdanoff P, Ramsteiner M, Corfdir P, Feix F, Geelhaar L, Riechert H 2017 Nano Lett. 17 1529Google Scholar

    [30]

    Siladie A M, Amichi L, Mollard N, Mouton I, Bonef B, Bougerol C, Grenier A, Robin E, Jouneau P H, Garro N, Cros A, Daudin B 2018 Nanotechnology 29 255706Google Scholar

    [31]

    Miceli G, Pasquarello A 2016 Phys.l Rev. B 93 165207Google Scholar

    [32]

    Wang Y Q, Wang R Z, Li Y J, Zhang Y F, Zhu M K, Wang B B, Yan H 2013 CrystEngComm 15 1626Google Scholar

    [33]

    Lymperakis L, Neugebauer J 2009 Phys. Rev. B 79 241308Google Scholar

    [34]

    Limbach F, Caterino R, Gotschke T, Stoica T, Calarco R, Geelhaar L, Riechert H 2012 AIP Advances 2 012157Google Scholar

    [35]

    Nayak S, Kumar R, Pandey N, Nagaraja K K, Gupta M, Shivaprasad S M 2018 J. Appl. Phys. 123 135303Google Scholar

    [36]

    Park J B, Kim N J, Kim Y J, Lee S H, Yi G C 2014 Curr. Appl. Phys. 14 1437Google Scholar

    [37]

    Ji Y H, Wang R Z, Yang M Q, Feng X Y, Zhang Y F, Huang A P, Yang L X, Liu Y Q, Yan Y Z, Yan H 2020 J. Phys. Chem. C 124 6725Google Scholar

    [38]

    Li Z J, Li W D, Wang X L, Zhang M 2014 Phys. Status Solidi A 211 1550Google Scholar

    [39]

    Consonni V, Knelangen M, Geelhaar L, Trampert A, Riechert H 2010 Phys. Rev. B 81 085310Google Scholar

    [40]

    Zhang D D, Xue C S, Zhuang H Z, Sun H B, Cao Y P, Huang Y L, Wang Z P, Wang Y 2009 Chemphyschem 10 571Google Scholar

    [41]

    Shi F, Huang Y L, Xue C S 2011 J. Exp. Nanosci. 6 174Google Scholar

    [42]

    Rackauskas S, Jiang H, Wagner J B, Shandakov S D, Hansen T W, Kauppinen E I, Nasibulin A G 2014 Nano Lett. 14 5810Google Scholar

    [43]

    Gamalski A D, Voorhees P W, Ducati C, Sharma R, Hofmann S 2014 Nano Lett. 14 1288Google Scholar

    [44]

    Boukhicha R, Gardès C, Vincent L, Renard C, Yam V, Fossard F, Patriarche G, Jabeen F, Bouchier D 2011 EPL 95 18004Google Scholar

    [45]

    Ngo T H, Gil B, Shubina T V, Damilano B, Vezian S, Valvin P, Massies J 2018 Sci. Rep. 8 15767Google Scholar

    [46]

    Reshchikov M A, Morkoç H 2005 J. Appl. Phys. 97 061301Google Scholar

    [47]

    Kaufmann U, Kunzer M, Maier M, Obloh H, Ramakrishnan A, Santic B, Schlotter P 1998 Appl. Phys. Lett. 72 1326Google Scholar

    [48]

    Stoica T, Calarco R 2011 IEEE J. Sel. Top. Quant. 17 859Google Scholar

    [49]

    Das S N, Patra S, Kar J P, Lee M J, Hwang S H, Lee T I, Myoung J M 2013 Mater. Lett. 106 352Google Scholar

    [50]

    Bayel M W, Brandt M S, Glaser E R, Wickenden A E, D. K D, Henry R L, Stutzmann M 1999 Phys. Ptat. Pol. B 216 547

    [51]

    Glaser E R, Carlos W E, Braga G C B 2002 Phys. Rev. B 65 085312Google Scholar

    [52]

    Wang R Z, Zhao W, Yan H 2017 Sci. Rep. 7 43625Google Scholar

    [53]

    Li W D, Zhang M, Li Y, Liu G X, Li Z J 2019 CrystEngComm 21 3993Google Scholar

    [54]

    Zhao W, Wang R Z, Song Z W, Wang H, Yan H, Chu P K 2013 J. Physl. Chem. C 117 1518Google Scholar

    [55]

    Vayssieres L, Graetzel M 2004 Angew. Chem. Int. Ed. Engl. 43 3666Google Scholar

    [56]

    Diao Y, Liu L, Xia S H, Feng S, Lu F F 2018 Superlattice Microst. 115 140Google Scholar

    [57]

    Wang Z, Chen Y H, Ye X L 2004 13th International Conference on Semiconducting and Insulating Materials Beijing, China, Sep. 20–25, 2004 pp57–60

  • [1] 叶芸, 陈填源, 郭太良, 蒋亚东. 磁场辅助热处理金属化碳纳米管场发射性能. 物理学报, 2014, 63(8): 086802. doi: 10.7498/aps.63.086802
    [2] 胡小颖, 王淑敏, 裴艳慧, 田宏伟, 朱品文. 碳纳米片-碳纳米管复合材料的一步合成及其场 发射性质研究. 物理学报, 2013, 62(3): 038101. doi: 10.7498/aps.62.038101
    [3] 王京, 王如志, 赵维, 陈建, 王波, 严辉. 硅掺杂铝镓氮薄膜场发射性能研究. 物理学报, 2013, 62(1): 017702. doi: 10.7498/aps.62.017702
    [4] 王欣, 王发展, 雷哲锋, 王博, 马姗, 王哲, 吴振. N-M(Cd, Mg)共掺闭口氧化锌纳米管场发射第一性原理研究. 物理学报, 2013, 62(12): 123101. doi: 10.7498/aps.62.123101
    [5] 陈程程, 刘立英, 王如志, 宋雪梅, 王波, 严辉. 不同基底的GaN纳米薄膜制备及其场发射增强研究. 物理学报, 2013, 62(17): 177701. doi: 10.7498/aps.62.177701
    [6] 吕文辉, 张帅. 接触电阻对碳纳米管场发射的影响. 物理学报, 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [7] 张培增, 李瑞山, 谢二庆, 杨华, 王璇, 王涛, 冯有才. 电化学方法制备ZnO纳米颗粒掺杂类金刚石薄膜及其场发射性能研究. 物理学报, 2012, 61(8): 088101. doi: 10.7498/aps.61.088101
    [8] 吴志国, 张鹏举, 徐亮, 李拴魁, 王君, 李旭东, 闫鹏勋. 新型氧化铝模板自组装制备非晶碳纳米点阵列膜及其场发射性能研究. 物理学报, 2010, 59(1): 438-442. doi: 10.7498/aps.59.438
    [9] 杨延宁, 张志勇, 张富春, 张威虎, 闫军锋, 翟春雪. 纳米金刚石的变温场发射. 物理学报, 2010, 59(4): 2666-2671. doi: 10.7498/aps.59.2666
    [10] 秦玉香, 胡 明. 钛碳化物改性碳纳米管的场发射性能. 物理学报, 2008, 57(6): 3698-3702. doi: 10.7498/aps.57.3698
    [11] 王新庆, 李 良, 褚宁杰, 金红晓, 葛洪良. 纳米碳管阵列场发射电流密度的理论数值优化. 物理学报, 2008, 57(11): 7173-7177. doi: 10.7498/aps.57.7173
    [12] 郑新亮, 李广山, 钟寿仙, 田进寿, 李振红, 任兆玉. 激光烧蚀对碳纳米管薄膜场发射性能的影响. 物理学报, 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [13] 罗 敏, 王新庆, 葛洪良, 王 淼, 徐亚伯, 陈 强, 李利培, 陈 磊, 管高飞, 夏 娟, 江 丰. 排列形状及阵列数目对纳米导线阵列场发射性能的影响. 物理学报, 2006, 55(11): 6061-6067. doi: 10.7498/aps.55.6061
    [14] 胡利勤, 林志贤, 郭太良, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 取向和非取向In2O3纳米线的场发射研究. 物理学报, 2006, 55(11): 6136-6140. doi: 10.7498/aps.55.6136
    [15] 李 强, 梁二军. 碳、碳氮和硼碳氮纳米管场发射性能的比较研究. 物理学报, 2005, 54(12): 5931-5936. doi: 10.7498/aps.54.5931
    [16] 王新庆, 王 淼, 李振华, 杨 兵, 王凤飞, 何丕模, 徐亚伯. 单根纳米导线场发射增强因子的计算. 物理学报, 2005, 54(3): 1347-1351. doi: 10.7498/aps.54.1347
    [17] 李海钧, 顾长志, 窦 艳, 李俊杰. 单根准直碳纳米纤维的场发射特性. 物理学报, 2004, 53(7): 2258-2262. doi: 10.7498/aps.53.2258
    [18] 宋教花, 张耿民, 张兆祥, 孙明岩, 薛增泉. 多壁碳纳米管阵列场发射研究. 物理学报, 2004, 53(12): 4392-4397. doi: 10.7498/aps.53.4392
    [19] 张兆祥, 张耿民, 侯士敏, 张 浩, 顾镇南, 刘惟敏, 赵兴钰, 薛增泉. 利用场发射显微镜研究O2对单壁碳纳米管场发射的影响. 物理学报, 2003, 52(5): 1282-1286. doi: 10.7498/aps.52.1282
    [20] 孙建平, 张兆祥, 侯士敏, 赵兴钰, 施祖进, 顾镇南, 刘惟敏, 薛增泉. 用场发射显微镜研究单壁碳纳米管场发射. 物理学报, 2001, 50(9): 1805-1809. doi: 10.7498/aps.50.1805
计量
  • 文章访问数:  8544
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-25
  • 修回日期:  2020-05-07
  • 上网日期:  2020-05-15
  • 刊出日期:  2020-08-20

/

返回文章
返回