搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同衬底条件下石墨烯结构形核过程的晶体相场法研究

谷季唯 王锦程 王志军 李俊杰 郭灿 唐赛

引用本文:
Citation:

不同衬底条件下石墨烯结构形核过程的晶体相场法研究

谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛

Phase-field crystal modelling the nucleation processes of graphene structures on different substrates

Gu Ji-Wei, Wang Jin-Cheng, Wang Zhi-Jun, Li Jun-Jie, Guo Can, Tang Sai
PDF
导出引用
  • 利用可描述气-固转变的三模晶体相场模型,在原子尺度上研究了不同衬底条件下石墨烯结构的形核过程.结果表明:无论衬底存在与否,气态原子均是先聚集为无定形过渡态团簇,随着气态原子的不断堆积和固相团簇中原子位置的不断调整,过渡态团簇逐渐转变为有序的石墨烯晶核,在此过程中,五元环结构具有重要的过渡作用;石墨烯在结构匹配较好的衬底(如面心立方(face-centered cubic,FCC)结构(111)和(110))上生长时,可形成几乎没有结构缺陷单晶石墨烯岛;在无衬底或结构匹配性较差的衬底(如FCC结构(100)面)上生长时,形成的石墨烯岛结构缺陷和晶界较多,不利于高质量石墨烯的制备.
    Two-dimensional materials with unique and excellent physical and chemical properties have attracted much attention in recent years. Among the two-dimensional materials, graphene or grapheme-like materials with honeycomb structure can be mainly prepared by the chemical vapor deposition (CVD) method. The key of this method is to select the substrates and control the nucleation and growth process of honeycomb structures. Graphene prepared by CVD contains many structure defects and grain boundaries, which mainly arise from nucleation process. However, the nucleation mechanism of graphene prepared by CVD method is not very clear. In addition, more than ten kinds of metal substrates can be used as substrate materials in CVD methods, such as Cu and Ni, which have nearly always face-centered cubic (FCC) structures and similar functions in the preparation process. In order to better describe the nucleation of graphene and understand the influences of metal substrates, we introduce the structural order parameter into the three-mode phase-field crystal model to distinguish the low-density gas phase from condensed phases. Nucleation processes of graphene on substrates with different symmetries are studied at an atomic scale by using the three-mode phase-field crystal model, which can simulate transitions between highly correlated condensed phases and low-density vapor phases. Simulation results indicate that no matter whether there is a substrate in the nucleation process, firstly gaseous atoms gather to form amorphous transitional clusters, and then amorphous transitional clusters gradually transform into ordered graphene crystals, with continuous accumulation of new gaseous atoms and position adjustment of atoms. In the nucleation process, five membered ring structures act as a transitional function. When grown on the substrate with a good geometric match with the honeycomb lattice, such as (111) plane of FCC metals, the graphene island has small structural defects. However, when grown without a substrate or on the substrate with a bad geometric match, such as (100) plane of FCC metals, the graphene island contains many structural defects and grain boundaries, which are not conducive to the preparation of high quality graphene. Compared with the (100) crystal plane of the tetragonal cell, the (110) crystal plane of the rectangular cell is favorable for the preparation of graphene single crystals with less defects. Therefore, the appropriate metal substrate can promote the nucleation process of graphene and reduce the formation of distortions and defects during the nucleation and growth of graphene.
      通信作者: 王锦程, jchwang@nwpu.edu.cn;s.tang@mpie.de ; 唐赛, jchwang@nwpu.edu.cn;s.tang@mpie.de
    • 基金项目: 国家自然科学基金(批准号:51571165,51371151)资助的课题.
      Corresponding author: Wang Jin-Cheng, jchwang@nwpu.edu.cn;s.tang@mpie.de ; Tang Sai, jchwang@nwpu.edu.cn;s.tang@mpie.de
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51571165, 51371151).
    [1]

    Somani P R, Somani S P, Umeno M 2006 Chem. Phys. Lett. 430 56

    [2]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [3]

    Chen H, Zhu W, Zhang Z 2010 Phys. Rev. Lett. 104 186101

    [4]

    Wu P, Zhang W, Li Z, Yang J, Hou J G 2010 J. Chem. Phys. 133 183

    [5]

    Loginova E, Bartelt N C, Feibelman P J, McCarty K F 2008 New J. Phys. 10 093026

    [6]

    Loginova E, Bartelt N C, Feibelman P J, Mccarty K F 2009 New J. Phys. 11 063046

    [7]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701

    [8]

    Elder K R, Grant M 2004 Phys. Rev. E 70 051605

    [9]

    Backofen R, Rtz A, Voigt A 2007 Philos. Mag. Lett. 87 813

    [10]

    Tegze G, Tth G I, Grnsy L 2011 Phys. Rev. Lett. 106 195502

    [11]

    Guo Y L, Wang J C, Wang Z J, Tang S, Zhou Y L 2012 Acta Phys. Sin. 61 146401 (in Chinese) [郭耀麟, 王锦程, 王志军, 唐赛, 周尧和 2012 物理学报 61 146401]

    [12]

    Greenwood M, Provatas N, Rottler J 2010 Phys. Rev. Lett. 105 045702

    [13]

    Greenwood M, Oforiopoku N, Rottler J, Provatas N 2011 Phys. Rev. B 84 064104

    [14]

    Guo C, Wang J C, Li J J, Wang Z J, Tang S 2016 J. Phys. Chem. Lett. 7 5008

    [15]

    Guo C, Wang J C, Wang Z J, Li J J, Guo Y L, Huang Y H 2016 Soft Matter 12 4666

    [16]

    Schwalbach E J, Warren J A, Wu K A, Voorhees P W 2013 Phys. Rev. E 88 023306

    [17]

    Mkhonta S K, Elder K R, Huang Z F 2013 Phys. Rev. Lett. 111 035501

    [18]

    Tang S, Bakofen R, Voigt A https://tu-dresden de/mn/ math/wir/forschung/forschungsprojekte/cosima_ simulation_von_rt_cvd_text [2017-5-25]

    [19]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [20]

    ten Wolde P R, Ruizmontero M J, Frenkel D 1995 Phys. Rev. Lett. 75 2714

    [21]

    Luo Z, Kim S, Kawamoto N, Rappe A M, Johnson A T 2011 ACS Nano 5 9154

    [22]

    Yu Q, Jauregui L A, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung T F, Peng P, Guisinger N P, Stach E A, Bao J, Pei S S, Chen Y P 2011 Nat. Mater. 10 443

    [23]

    Gao J, Yuan Q, Hu H, Zhao J, Ding F 2011 J. Phys. Chem. C 115 17695

    [24]

    Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009

    [25]

    Wang Y, Page A J, Nishimoto Y, Qian H J, Morokuma K, Irle S 2011 J. Am. Chem. Soc. 133 18837

    [26]

    Rasool H I, Song E B, Mecklenburg M, Regan B C, Wang K L, Weiller B H, Gimzewski J K 2011 J. Am. Chem. Soc. 133 12536

  • [1]

    Somani P R, Somani S P, Umeno M 2006 Chem. Phys. Lett. 430 56

    [2]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [3]

    Chen H, Zhu W, Zhang Z 2010 Phys. Rev. Lett. 104 186101

    [4]

    Wu P, Zhang W, Li Z, Yang J, Hou J G 2010 J. Chem. Phys. 133 183

    [5]

    Loginova E, Bartelt N C, Feibelman P J, McCarty K F 2008 New J. Phys. 10 093026

    [6]

    Loginova E, Bartelt N C, Feibelman P J, Mccarty K F 2009 New J. Phys. 11 063046

    [7]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701

    [8]

    Elder K R, Grant M 2004 Phys. Rev. E 70 051605

    [9]

    Backofen R, Rtz A, Voigt A 2007 Philos. Mag. Lett. 87 813

    [10]

    Tegze G, Tth G I, Grnsy L 2011 Phys. Rev. Lett. 106 195502

    [11]

    Guo Y L, Wang J C, Wang Z J, Tang S, Zhou Y L 2012 Acta Phys. Sin. 61 146401 (in Chinese) [郭耀麟, 王锦程, 王志军, 唐赛, 周尧和 2012 物理学报 61 146401]

    [12]

    Greenwood M, Provatas N, Rottler J 2010 Phys. Rev. Lett. 105 045702

    [13]

    Greenwood M, Oforiopoku N, Rottler J, Provatas N 2011 Phys. Rev. B 84 064104

    [14]

    Guo C, Wang J C, Li J J, Wang Z J, Tang S 2016 J. Phys. Chem. Lett. 7 5008

    [15]

    Guo C, Wang J C, Wang Z J, Li J J, Guo Y L, Huang Y H 2016 Soft Matter 12 4666

    [16]

    Schwalbach E J, Warren J A, Wu K A, Voorhees P W 2013 Phys. Rev. E 88 023306

    [17]

    Mkhonta S K, Elder K R, Huang Z F 2013 Phys. Rev. Lett. 111 035501

    [18]

    Tang S, Bakofen R, Voigt A https://tu-dresden de/mn/ math/wir/forschung/forschungsprojekte/cosima_ simulation_von_rt_cvd_text [2017-5-25]

    [19]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [20]

    ten Wolde P R, Ruizmontero M J, Frenkel D 1995 Phys. Rev. Lett. 75 2714

    [21]

    Luo Z, Kim S, Kawamoto N, Rappe A M, Johnson A T 2011 ACS Nano 5 9154

    [22]

    Yu Q, Jauregui L A, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung T F, Peng P, Guisinger N P, Stach E A, Bao J, Pei S S, Chen Y P 2011 Nat. Mater. 10 443

    [23]

    Gao J, Yuan Q, Hu H, Zhao J, Ding F 2011 J. Phys. Chem. C 115 17695

    [24]

    Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009

    [25]

    Wang Y, Page A J, Nishimoto Y, Qian H J, Morokuma K, Irle S 2011 J. Am. Chem. Soc. 133 18837

    [26]

    Rasool H I, Song E B, Mecklenburg M, Regan B C, Wang K L, Weiller B H, Gimzewski J K 2011 J. Am. Chem. Soc. 133 12536

  • [1] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] 郑钦仁, 詹涪至, 折俊艺, 王建宇, 石若立, 孟国栋. 石墨烯的形貌特征对其场发射性能的影响. 物理学报, 2024, 73(8): 086101. doi: 10.7498/aps.73.20231784
    [3] 詹真, 张亚磊, 袁声军. 石墨烯莫尔超晶格的晶格弛豫与衬底效应. 物理学报, 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [4] 郭灿, 康晨瑞, 高莹, 张一弛, 邓英远, 马超, 徐春杰, 梁淑华. 金属基复合材料原位反应相场模型. 物理学报, 2022, 71(9): 096401. doi: 10.7498/aps.71.20211737
    [5] 郭晓蒙, 青芳竹, 李雪松. 石墨烯在金属表面防腐中的应用. 物理学报, 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [6] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [7] 江孝伟, 武华, 袁寿财. 基于金属光栅实现石墨烯三通道光吸收增强. 物理学报, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [8] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究. 物理学报, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [9] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [10] 高健, 桑田, 李俊浪, 王啦. 利用窄刻槽金属光栅实现石墨烯双通道吸收增强. 物理学报, 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848
    [11] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [12] 陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材. 扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度. 物理学报, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [13] 郭辉, 路红亮, 黄立, 王雪艳, 林晓, 王业亮, 杜世萱, 高鸿钧. 金属衬底上高质量大面积石墨烯的插层及其机制. 物理学报, 2017, 66(21): 216803. doi: 10.7498/aps.66.216803
    [14] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究. 物理学报, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [15] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [16] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [17] 于海玲, 朱嘉琦, 曹文鑫, 韩杰才. 金属催化制备石墨烯的研究进展. 物理学报, 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [18] 张宪刚, 宗亚平, 吴艳. 相场再结晶储能释放模型与显微组织演变的模拟研究. 物理学报, 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [19] 郭耀麟, 王锦程, 王志军, 唐赛, 周尧和. 噪声对均质形核过程影响的晶体相场法研究. 物理学报, 2012, 61(14): 146401. doi: 10.7498/aps.61.146401
    [20] 张华伟, 李言祥. 金属熔体中气泡形核的理论分析. 物理学报, 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
计量
  • 文章访问数:  5189
  • PDF下载量:  519
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-26
  • 修回日期:  2017-07-05
  • 刊出日期:  2017-11-05

/

返回文章
返回