搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯在金属表面防腐中的应用

郭晓蒙 青芳竹 李雪松

引用本文:
Citation:

石墨烯在金属表面防腐中的应用

郭晓蒙, 青芳竹, 李雪松

Applications of graphene in anti-corrosion of metal surface

Guo Xiao-Meng, Qing Fang-Zhu, Li Xue-Song
PDF
HTML
导出引用
  • 石墨烯作为一种新型材料, 因其出色的化学惰性和抗渗透性逐渐成为了防腐领域的研究热点. 本文结合最新的研究成果, 对包括石墨烯薄膜及石墨烯粉体在防腐领域的应用进行更加全面的讨论. 从石墨烯防腐作用机理(主要包括阻隔、屏蔽、缓蚀、加固、阴极保护和自修复)和其相应的涂层制备方法(化学气相沉积法制备的石墨烯薄膜及石墨烯粉体制备的复合涂料)开始, 进而探讨不同影响因素(缺陷、导电性、氧化程度、片层大小及含量等)对石墨烯防腐效果的影响, 最后对各种方法进行综合比较, 并对未来的发展进行展望. 本文通过对已有工作的回顾, 为今后制备防腐性能更加优良的石墨烯材料提供重要的参考.
    As an emerging material, graphene has become a research hotspot in the field of anti-corrosion because of its excellent chemical inertia and permeability resistance. In this paper, combined with the latest research results, the applications of graphene film and graphene powders in the field of anti-corrosion are discussed more comprehensively. First, the anti-corrosion mechanisms of graphene (mainly including barrier effect, shielding effect, corrosion inhibition synergy, enhancement of coating adhesion, cathodic protection, and self-healing effect) and its corresponding coating preparation methods (graphene film prepared by chemical vapor deposition method and composite coatings prepared with graphene powders) are introduced. Then, the influences of different factors such as defects, conductivity, oxidation degree, flake size, and content of graphene on the anti-corrosion performance are discussed. Finally, various methods are comprehensively compared with each other, and future development is prospected. This paper not only reviews the existing work, but also has a certain reference value for preparing graphene materials with better corrosion resistance in the future.
      通信作者: 青芳竹, qingfz@uestc.edu.cn ; 李雪松, lxs@uestc.edu.cn
      作者简介:
      青芳竹, 电子科技大学副教授, 四川大学材料学专业博士. 研究领域为石墨烯等二维材料的制备与应用, 已发表SCI论文20余篇. 现作为第一负责人主持国家自然科学基金、四川省应用基础研究项目两项
      李雪松, 电子科技大学教授, 化学气相沉积甲烷在铜箔上合成大面积石墨烯薄膜方法的发明人. 清华大学机械工程专业学士、材料加工工程专业硕士, 美国伦斯勒理工材料工程专业博士. 研究领域为石墨烯等二维材料的制备与应用. 已发表包括Science等顶级期刊SCI文章70余篇, SCI统计引用次数27000多次. 2009年发表在Science的Large-area synthesis of high-quality and uniform graphene films on copper foils论文被Science选为2009年度重大突破之一, SCI引用8000余次. 该发明已在石墨烯薄膜制备研究与生产中得到了广泛的应用
    • 基金项目: 国家自然科学基金(批准号: 51802036, 51772043)资助的课题
      Corresponding author: Qing Fang-Zhu, qingfz@uestc.edu.cn ; Li Xue-Song, lxs@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51802036, 51772043)
    [1]

    Pan H 2018 MATEC Web. Conf. 207 03010Google Scholar

    [2]

    Ma L W, Ren C H, Wang J K, Liu T, Yang H, Wang Y J, Huang Y, Zhang D W 2020 Chem. Eng. J. DOI: 10.1016/j.cej.2020.127854Google Scholar

    [3]

    Sadawy M, Saad S, Abdel-Karim R 2020 Trans. Nonferrous Met. Soc. China 30 2067Google Scholar

    [4]

    Glover C F, Cain T W, Scully J R 2019 Corros. Sci. 149 195Google Scholar

    [5]

    Tasic Z Z, Mihajlovic M B P, Radovanovic M B, Simonovic A T, Antonijevic M M 2018 J. Mol. Struct. 1159 46Google Scholar

    [6]

    Qiang Y J, Zhang S T, Xu S Y, Li W P 2016 J. Colloid Interface Sci. 472 52Google Scholar

    [7]

    Peng T Y, Xiao R H, Rong Z Y, Liu H B, Hu Q Y, Wang S H, Li X, Zhang J M 2020 Chem. Asian J. 15 3915Google Scholar

    [8]

    Tang H Y, Qu Z P, Wang L, Ye H Y, Fan X J, Zhang G Q 2019 Phys. Chem. Chem. Phys. 21 18179Google Scholar

    [9]

    Suleiman R K 2019 J. Adhes. Sci. Technol. 34 1Google Scholar

    [10]

    Huang H W, Sheng X X, Tian Y Q, Zhang L, Chen Y, Zhang X Y 2020 Ind. Eng. Chem. Res. 59 15424Google Scholar

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [12]

    Kyhl L, Nielsen S F, Cabo A G, Cassidy A, Miwa J A, Hornekaer L 2015 Faraday Discuss. 180 495Google Scholar

    [13]

    Wang M, Tang M, Chen S, Ci H, Wang K, Shi L, Lin L, Ren H, Shan J, Gao P 2017 Adv. Mater. 29 1703882Google Scholar

    [14]

    Ding R, Li W H, Wang X, Gui T J, Li B J, Han P, Tian H W, Liu A, Wang X, Liu X J, Gao X, Wang W, Song L Y 2018 J. Alloys Compd. 764 1039Google Scholar

    [15]

    Krishnan M A, Aneja K S, Shaikh A, Bohm S, Raja V S 2018 RSC Adv. 8 499Google Scholar

    [16]

    Chauhan D S, Quraishi M A, Ansari K R, Saleh T A 2020 Prog. Org. Coat. 147 105741Google Scholar

    [17]

    Ollik K, Lieder M 2020 Coatings 10 883Google Scholar

    [18]

    Lin Y T, Don T M, Wong C J, Meng F C, Lin Y J, Lee S Y, Lee C F, Chiu W Y 2019 Surf. Coat. Technol. 374 1128Google Scholar

    [19]

    Parhizkar N, Shahrabi T, Ramezanzadeh B 2017 Corros. Sci. 123 55Google Scholar

    [20]

    Ding R, Wang X, Jiang J, Gui T, Li W 2017 J. Mater. Eng. Perform. 764 3319Google Scholar

    [21]

    Xiong L, Liu J, Li Y, Li S, Yu M 2019 Prog. Org. Coat. 135 228Google Scholar

    [22]

    Qing F, Shen C, Jia R, Zhan L, Li X 2017 MRS Bull. 42 819Google Scholar

    [23]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [24]

    Chen S S, Brown L, Levendorf M, Cai W W, Ju S Y, Edgeworth J, Li X S, Magnuson C W, Velamakanni A, Piner R D, Kang J Y, Park J, Ruoff R S 2011 ACS Nano 5 1321Google Scholar

    [25]

    Kirkland N T, Schiller T, Medhekar N, Birbilis N 2012 Corros. Sci. 56 1Google Scholar

    [26]

    Pu N W, Shi G N, Liu Y M, Sun X, Chang J K, Sun C L, Ger M D, Chen C Y, Wang P C, Peng Y Y 2015 J. Power Sources 282 248Google Scholar

    [27]

    Zhu M, Du Z, Yin Z, Zhou W, Liu Z 2016 ACS Appl. Mater. Interfaces 8 502Google Scholar

    [28]

    张晓波, 青芳竹, 李雪松 2019 物理学报 68 096801Google Scholar

    Zhang X B, Qing F Z, Li X S 2019 Acta Phys. Sin. 68 096801Google Scholar

    [29]

    Zheng Z, Liu Y, Bai Y, Zhang J, Han Z, Ren L 2016 Colloids Surf., A 500 64Google Scholar

    [30]

    Yang S, Zhu S, Hong R 2020 Coatings 10 1215Google Scholar

    [31]

    Xu H, Zang J, Yuan Y, Tian P, Wang Y 2019 Appl. Surf. Sci. 492 199Google Scholar

    [32]

    Xiao F, Qian C, Guo M, Wang J, Yan X, Li H, Yue L 2018 Prog. Org. Coat. 125 79Google Scholar

    [33]

    He W T, Zhu L Q, Chen H N, Nan H Y, Li W P, Liu H C, Wang Y 2013 Appl. Surf. Sci. 279 416Google Scholar

    [34]

    Szeptycka B, Gajewska-Midzialek A, Babul T 2016 J. Mater. Eng. Perform. 25 3134Google Scholar

    [35]

    Feng L, Zhang S T, Qiang Y J, Xu Y, Guo L, Madkour L H, Chen S J 2018 Materials 11 1042Google Scholar

    [36]

    Bokati K S, Dehghanian C 2018 J. Environ. Chem. Eng. 6 1613Google Scholar

    [37]

    Guo L, Obot I B, Zheng X W, Shen X, Qiang Y J, Kaya S, Kaya C 2017 Appl. Surf. Sci. 406 301Google Scholar

    [38]

    Hippolyte C N, Serge B Y, Didier D G, Juan C, Albert T 2018 Int. J. Biol. Chem. Sci. 12 1008Google Scholar

    [39]

    Cen H, Chen Z 2021 Colloids Surf., A. 615 126216Google Scholar

    [40]

    Baig N, Chauhan D S, Saleh T A, Quraishi M A 2019 New J. Chem. 43 2328Google Scholar

    [41]

    Zhao D, Wang M, Xu Y, Zhang Z, Ge X 2014 Surf. Coat. Technol. 238 15Google Scholar

    [42]

    Ye Y, Chen H, Zou Y, Ye Y, Zhao H 2020 Corros. Sci. 174 108825Google Scholar

    [43]

    Kasaeian M, Ghasemi E, Ramezanzadeh B, Mahdavian M, Bahlakeh G 2018 Corros. Sci. 145 119Google Scholar

    [44]

    Cui G, Bi Z, Zhang R, Liu J, Yu X, Li Z 2019 Chem. Eng. J. 373 104Google Scholar

    [45]

    Banhart F, Kotakoski J, Krasheninnikov A V 2011 ACS Nano 5 26Google Scholar

    [46]

    Rhodes D, Chae S H, Ribeiro-Palau R, Hone J 2019 Nat. Mater. 18 541Google Scholar

    [47]

    Hong J, Lee J B, Lee S, Seo J, Lee H, Park J Y, Ahn J H, Il Seo T, Lee T, Lee H B R 2016 NPG Asia Mater. 8 e262Google Scholar

    [48]

    Ji D, Wen X, Foller T, You Y, Joshi R 2020 Nanomaterials 10 2511Google Scholar

    [49]

    Prasai D, Tuberquia J C, Harl R R, Jennings G K, Bolotin K I 2012 ACS Nano 6 1102Google Scholar

    [50]

    Zhou F, Li Z T, Shenoy G J, Li L, Liu H T 2013 ACS Nano 7 6939Google Scholar

    [51]

    Hsieh Y P, Hofmann M, Chang K W, Jhu J G, Li Y Y, Chen K Y, Yang C C, Chang W S, Chen L C 2014 ACS Nano 8 443Google Scholar

    [52]

    Zhao Z, Hou T, Wu N, Jiao S, Zhou K, Yin J, Suk J, Cui X, Zhang M, Li S, Qu Y, Xie W, Li X B, Zhao C, Fu Y, Hong R D, Guo S, Lin D, Cai W, Mai W, Luo Z, Tian Y, Lai Y, Liu Y, Colombo L, Hao Y 2021 Nano Lett. 21 1161Google Scholar

    [53]

    Liu T, Zhao H C, Mao F X, Li J Y 2019 Mater. Res. Express 6 125619Google Scholar

    [54]

    Jun Y S, Sy S, Ahn W, Zarrin H, Rasen L, Tjandra R, Amoli B M, Zhao B X, Chiu G, Yu A P 2015 Carbon 95 653Google Scholar

    [55]

    Guerrero-Contreras J, Caballero-Briones F 2015 Mater. Chem. Phys. 153 209Google Scholar

    [56]

    Krishnamoorthy K, Veerapandian M, Yun K, Kim S J 2013 Carbon 53 38Google Scholar

    [57]

    Sato J, Higurashi K, Fukuda K, Sugimoto W 2011 Electrochemistry 79 337Google Scholar

    [58]

    Ramezanzadeh B, Bahlakeh G, Moghadam M H M, Miraftab R 2018 Chem. Eng. J. 335 737Google Scholar

    [59]

    Um J G, Jun Y S, Alhumade H, Krithivasan H, Lui G, Yu A P 2018 RSC Adv. 8 17091Google Scholar

    [60]

    Liao Z J, Zhang T C, Qiao S, Zhang L Y H 2017 Environ. Mater. Sci. 94 012072Google Scholar

    [61]

    Cai K W, Zuo S X, Luo S P, Yao C, Liu W J, Ma J F, Mao H H, Li Z Y 2016 RSC Adv. 6 95965Google Scholar

    [62]

    Kumar C S, Sumitesh D 2017 J. Nanosci. Nanotechnol. 17 2130Google Scholar

    [63]

    Gupta R K, Malviya M, Ansari K R, Lgaz H, Quraishi M A 2019 Mater. Chem. Phys. 236 121727Google Scholar

    [64]

    Haruna K, Saleh T A, Obot I B, Umoren S A 2019 Prog. Org. Coat. 128 157Google Scholar

    [65]

    Du P, Wang J, Zhao H, Liu G, Wang L 2019 Dalton Trans. 48 13064Google Scholar

    [66]

    Zhang Z, Qi J, Zhao M, Shang N, Cheng Y, Qiao R, Zhang Z, Ding M, Li X, Liu K, Xu X, Liu K, Liu C, Wu M 2020 Chin. Phys. Lett. 37 108101Google Scholar

    [67]

    Wang Y, Qing F, Jia Y, Duan Y, Shen C, Hou Y, Niu Y, Shi H, Li X 2021 Chem. Eng. J. 405 127014Google Scholar

    [68]

    孙垚垚, 宋家乐, 郑斌, 曾煜, 胡颖, 李炜光 2021 无机盐工业 https://kns.cnki.net/kcms/detail/12.1069.TQ.20210129.1525.006.html

    Sun Y Y, Sun J L, Zheng B, Zeng Y, Hu Y, Li W G 2021 Inorg. Chem. Ind.

    [69]

    Yang X B, Cui D W, Qu Y 2017 Electron. Compon. Mater. 36 83Google Scholar

  • 图 1  石墨烯防腐作用机理 (a) 阻隔作用[13]; (b) 屏蔽作用[17]; (c) 缓蚀作用[18]; (d) 加固作用[19]; (e) 阴极保护作用[20]; (f) 自修复作用[21]

    Fig. 1.  Anticorrosion mechanism of graphene: (a) Barrier effect[13]; (b) shielding effect[17]; (c) corrosion inhibition synergy[18]; (d) enhancement of coating adhesion[19]; (e) cathodic protection[20]; (f) self-healing effect[21].

    图 2  CVD石墨烯防腐性能[24] (a) 石墨烯作为化学惰性扩散阻挡层示意图; (b) 硬币经过H2O2浸泡(30%, 2 min)后的照片; (c) 带有和不带有石墨烯涂层的铜和铜镍合金在空气中退火(200 °C, 4 h)的照片

    Fig. 2.  Performance of CVD graphene as an anticorrosion layer[24]: (a) Schematics of graphene as a chemically inert diffusion barrier; (b) photograph showing graphene coated (upper) and uncoated (lower) penny after H2O2 treatment (30%, 2 min); (c) photographs of Cu and Cu/Ni foils with and without graphene coating taken before and after annealing in air (200 °C, 4 h).

    图 3  不锈钢球包覆石墨烯涂层制备过程示意图[31]

    Fig. 3.  Schematics of the preparation of graphene coated stainless steel balls[31].

    图 4  溶液中FGO对碳钢表面的缓蚀机理示意图[39]

    Fig. 4.  Schematics of inhibition mechanism on carbon steel surface for FGO in solution[39].

    图 5  DETA, GO 和DETA-GO的HOMO和LUMO分布图[40] (a) HOMO图; (b) LUMO图

    Fig. 5.  HOMO and LUMO distribution maps of DETA, GO and DETA-GO[40]: (a) LUMO; (b) HOMO.

    图 6  装有BTA的覆盆子状空心聚合物微球的制备示意图[41]

    Fig. 6.  Schematics of the preparation of raspberry-like hollow polymeric microspheres loaded with BTA[41].

    图 7  石墨烯基纳米容器的制备工艺[42]

    Fig. 7.  Preparation process of graphene-based nanocontainer[42].

    图 8  8-PG-BTA/EP涂层的防腐蚀机理[42] (a) 完整涂层; (b) 缺陷; (c) 腐蚀反应; (d) 自愈行为

    Fig. 8.  Corrosion protection mechanism of 8-PG-BTA/EP coating[42]: (a) Intact coating; (b) defect; (c) corrosion reaction; (d) self-healing behavior.

    图 9  石墨烯薄膜的缺陷促进金属腐蚀[14]

    Fig. 9.  Defects of graphene films promote the corrosion of metals[14].

    图 10  在单层石墨烯(SLG)和多层石墨烯(FLG)中进行分子扩散的原子尺度模拟示意图[52] (a) 水分子在有缺陷的SLG中扩散需要的能量和示意图; (b) 氧气和水分子等物质易在SLG中扩散并使Cu表面氧化的情况示意图; (c) 水分子在有缺陷的双层石墨烯(BLG)中扩散需要的能量和示意图; (d) 示意图显示即使三层石墨烯包含多个晶界(GB)缺陷, 氧气和水分子也难以穿过多晶三层石墨烯并与下面的Cu表面接触

    Fig. 10.  Atomic-scale simulations of molecular diffusion through SLG and FLG[52]: (a) Schematics and the calculated energy barrier for a water molecule to diffuse through a defective SLG; (b) schematic showing the easiness of reactive species such as oxygen and water molecules to diffuse through SLG and oxidize the Cu surface; (c) schematics and the calculated energy barrier for a water molecule to diffuse through a defective BLG; (d) schematic showing the difficulties for oxygen and water molecules to diffuse through polycrystalline trilayer graphene and contact with the underlying Cu surface, even when the trilayer graphene contains multiple GB defects.

    图 11  (a)−(c) 在含有0.1 mol/L KCl溶液的5 mmol/L K3[Fe(CN)6]溶液中通过循环伏安法修饰玻碳电极(GCE)上的GO样品(S-1至S-6); (d) 具有不同氧化水平的样品的Ipc[56]

    Fig. 11.  (a)−(c) Cyclic voltammetry of GO samples (S-1 to S-6) modified on GCE in 5 mmol/L K3[Fe(CN)6] containing 0.1 mol/L KCl solution; (d) Ipc of the samples with different oxidation levels[56].

    图 12  PU/GnP复合材料的横截面SEM图像(质量分数为1%的GnP, 其中(a)−(d)为低倍率; (e)−(f)为高倍率) (a), (e) PU/H100; (b), (f) PU/M25; (c), (g) PU/M5; (d), (h) PU/C750[59]

    Fig. 12.  Cross-sectional SEM images for the PU/GnP composites (GnP with weight fraction of 1%, (a)−(d) low magnification, (e)−(f) high magnification): (a), (e) PU/H100; (b), (f) PU/M25; (c), (g) PU/M5; (d), (h) PU/C750[59].

    图 13  腐蚀介质在含有质量分数为1% GnP的PU复合材料层中的渗透示意图[59]

    Fig. 13.  Schematic model for the permeation of the corrosive agent passing through the coating layer of the PU composite containing GnP with weight fraction of 1%[59].

  • [1]

    Pan H 2018 MATEC Web. Conf. 207 03010Google Scholar

    [2]

    Ma L W, Ren C H, Wang J K, Liu T, Yang H, Wang Y J, Huang Y, Zhang D W 2020 Chem. Eng. J. DOI: 10.1016/j.cej.2020.127854Google Scholar

    [3]

    Sadawy M, Saad S, Abdel-Karim R 2020 Trans. Nonferrous Met. Soc. China 30 2067Google Scholar

    [4]

    Glover C F, Cain T W, Scully J R 2019 Corros. Sci. 149 195Google Scholar

    [5]

    Tasic Z Z, Mihajlovic M B P, Radovanovic M B, Simonovic A T, Antonijevic M M 2018 J. Mol. Struct. 1159 46Google Scholar

    [6]

    Qiang Y J, Zhang S T, Xu S Y, Li W P 2016 J. Colloid Interface Sci. 472 52Google Scholar

    [7]

    Peng T Y, Xiao R H, Rong Z Y, Liu H B, Hu Q Y, Wang S H, Li X, Zhang J M 2020 Chem. Asian J. 15 3915Google Scholar

    [8]

    Tang H Y, Qu Z P, Wang L, Ye H Y, Fan X J, Zhang G Q 2019 Phys. Chem. Chem. Phys. 21 18179Google Scholar

    [9]

    Suleiman R K 2019 J. Adhes. Sci. Technol. 34 1Google Scholar

    [10]

    Huang H W, Sheng X X, Tian Y Q, Zhang L, Chen Y, Zhang X Y 2020 Ind. Eng. Chem. Res. 59 15424Google Scholar

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [12]

    Kyhl L, Nielsen S F, Cabo A G, Cassidy A, Miwa J A, Hornekaer L 2015 Faraday Discuss. 180 495Google Scholar

    [13]

    Wang M, Tang M, Chen S, Ci H, Wang K, Shi L, Lin L, Ren H, Shan J, Gao P 2017 Adv. Mater. 29 1703882Google Scholar

    [14]

    Ding R, Li W H, Wang X, Gui T J, Li B J, Han P, Tian H W, Liu A, Wang X, Liu X J, Gao X, Wang W, Song L Y 2018 J. Alloys Compd. 764 1039Google Scholar

    [15]

    Krishnan M A, Aneja K S, Shaikh A, Bohm S, Raja V S 2018 RSC Adv. 8 499Google Scholar

    [16]

    Chauhan D S, Quraishi M A, Ansari K R, Saleh T A 2020 Prog. Org. Coat. 147 105741Google Scholar

    [17]

    Ollik K, Lieder M 2020 Coatings 10 883Google Scholar

    [18]

    Lin Y T, Don T M, Wong C J, Meng F C, Lin Y J, Lee S Y, Lee C F, Chiu W Y 2019 Surf. Coat. Technol. 374 1128Google Scholar

    [19]

    Parhizkar N, Shahrabi T, Ramezanzadeh B 2017 Corros. Sci. 123 55Google Scholar

    [20]

    Ding R, Wang X, Jiang J, Gui T, Li W 2017 J. Mater. Eng. Perform. 764 3319Google Scholar

    [21]

    Xiong L, Liu J, Li Y, Li S, Yu M 2019 Prog. Org. Coat. 135 228Google Scholar

    [22]

    Qing F, Shen C, Jia R, Zhan L, Li X 2017 MRS Bull. 42 819Google Scholar

    [23]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [24]

    Chen S S, Brown L, Levendorf M, Cai W W, Ju S Y, Edgeworth J, Li X S, Magnuson C W, Velamakanni A, Piner R D, Kang J Y, Park J, Ruoff R S 2011 ACS Nano 5 1321Google Scholar

    [25]

    Kirkland N T, Schiller T, Medhekar N, Birbilis N 2012 Corros. Sci. 56 1Google Scholar

    [26]

    Pu N W, Shi G N, Liu Y M, Sun X, Chang J K, Sun C L, Ger M D, Chen C Y, Wang P C, Peng Y Y 2015 J. Power Sources 282 248Google Scholar

    [27]

    Zhu M, Du Z, Yin Z, Zhou W, Liu Z 2016 ACS Appl. Mater. Interfaces 8 502Google Scholar

    [28]

    张晓波, 青芳竹, 李雪松 2019 物理学报 68 096801Google Scholar

    Zhang X B, Qing F Z, Li X S 2019 Acta Phys. Sin. 68 096801Google Scholar

    [29]

    Zheng Z, Liu Y, Bai Y, Zhang J, Han Z, Ren L 2016 Colloids Surf., A 500 64Google Scholar

    [30]

    Yang S, Zhu S, Hong R 2020 Coatings 10 1215Google Scholar

    [31]

    Xu H, Zang J, Yuan Y, Tian P, Wang Y 2019 Appl. Surf. Sci. 492 199Google Scholar

    [32]

    Xiao F, Qian C, Guo M, Wang J, Yan X, Li H, Yue L 2018 Prog. Org. Coat. 125 79Google Scholar

    [33]

    He W T, Zhu L Q, Chen H N, Nan H Y, Li W P, Liu H C, Wang Y 2013 Appl. Surf. Sci. 279 416Google Scholar

    [34]

    Szeptycka B, Gajewska-Midzialek A, Babul T 2016 J. Mater. Eng. Perform. 25 3134Google Scholar

    [35]

    Feng L, Zhang S T, Qiang Y J, Xu Y, Guo L, Madkour L H, Chen S J 2018 Materials 11 1042Google Scholar

    [36]

    Bokati K S, Dehghanian C 2018 J. Environ. Chem. Eng. 6 1613Google Scholar

    [37]

    Guo L, Obot I B, Zheng X W, Shen X, Qiang Y J, Kaya S, Kaya C 2017 Appl. Surf. Sci. 406 301Google Scholar

    [38]

    Hippolyte C N, Serge B Y, Didier D G, Juan C, Albert T 2018 Int. J. Biol. Chem. Sci. 12 1008Google Scholar

    [39]

    Cen H, Chen Z 2021 Colloids Surf., A. 615 126216Google Scholar

    [40]

    Baig N, Chauhan D S, Saleh T A, Quraishi M A 2019 New J. Chem. 43 2328Google Scholar

    [41]

    Zhao D, Wang M, Xu Y, Zhang Z, Ge X 2014 Surf. Coat. Technol. 238 15Google Scholar

    [42]

    Ye Y, Chen H, Zou Y, Ye Y, Zhao H 2020 Corros. Sci. 174 108825Google Scholar

    [43]

    Kasaeian M, Ghasemi E, Ramezanzadeh B, Mahdavian M, Bahlakeh G 2018 Corros. Sci. 145 119Google Scholar

    [44]

    Cui G, Bi Z, Zhang R, Liu J, Yu X, Li Z 2019 Chem. Eng. J. 373 104Google Scholar

    [45]

    Banhart F, Kotakoski J, Krasheninnikov A V 2011 ACS Nano 5 26Google Scholar

    [46]

    Rhodes D, Chae S H, Ribeiro-Palau R, Hone J 2019 Nat. Mater. 18 541Google Scholar

    [47]

    Hong J, Lee J B, Lee S, Seo J, Lee H, Park J Y, Ahn J H, Il Seo T, Lee T, Lee H B R 2016 NPG Asia Mater. 8 e262Google Scholar

    [48]

    Ji D, Wen X, Foller T, You Y, Joshi R 2020 Nanomaterials 10 2511Google Scholar

    [49]

    Prasai D, Tuberquia J C, Harl R R, Jennings G K, Bolotin K I 2012 ACS Nano 6 1102Google Scholar

    [50]

    Zhou F, Li Z T, Shenoy G J, Li L, Liu H T 2013 ACS Nano 7 6939Google Scholar

    [51]

    Hsieh Y P, Hofmann M, Chang K W, Jhu J G, Li Y Y, Chen K Y, Yang C C, Chang W S, Chen L C 2014 ACS Nano 8 443Google Scholar

    [52]

    Zhao Z, Hou T, Wu N, Jiao S, Zhou K, Yin J, Suk J, Cui X, Zhang M, Li S, Qu Y, Xie W, Li X B, Zhao C, Fu Y, Hong R D, Guo S, Lin D, Cai W, Mai W, Luo Z, Tian Y, Lai Y, Liu Y, Colombo L, Hao Y 2021 Nano Lett. 21 1161Google Scholar

    [53]

    Liu T, Zhao H C, Mao F X, Li J Y 2019 Mater. Res. Express 6 125619Google Scholar

    [54]

    Jun Y S, Sy S, Ahn W, Zarrin H, Rasen L, Tjandra R, Amoli B M, Zhao B X, Chiu G, Yu A P 2015 Carbon 95 653Google Scholar

    [55]

    Guerrero-Contreras J, Caballero-Briones F 2015 Mater. Chem. Phys. 153 209Google Scholar

    [56]

    Krishnamoorthy K, Veerapandian M, Yun K, Kim S J 2013 Carbon 53 38Google Scholar

    [57]

    Sato J, Higurashi K, Fukuda K, Sugimoto W 2011 Electrochemistry 79 337Google Scholar

    [58]

    Ramezanzadeh B, Bahlakeh G, Moghadam M H M, Miraftab R 2018 Chem. Eng. J. 335 737Google Scholar

    [59]

    Um J G, Jun Y S, Alhumade H, Krithivasan H, Lui G, Yu A P 2018 RSC Adv. 8 17091Google Scholar

    [60]

    Liao Z J, Zhang T C, Qiao S, Zhang L Y H 2017 Environ. Mater. Sci. 94 012072Google Scholar

    [61]

    Cai K W, Zuo S X, Luo S P, Yao C, Liu W J, Ma J F, Mao H H, Li Z Y 2016 RSC Adv. 6 95965Google Scholar

    [62]

    Kumar C S, Sumitesh D 2017 J. Nanosci. Nanotechnol. 17 2130Google Scholar

    [63]

    Gupta R K, Malviya M, Ansari K R, Lgaz H, Quraishi M A 2019 Mater. Chem. Phys. 236 121727Google Scholar

    [64]

    Haruna K, Saleh T A, Obot I B, Umoren S A 2019 Prog. Org. Coat. 128 157Google Scholar

    [65]

    Du P, Wang J, Zhao H, Liu G, Wang L 2019 Dalton Trans. 48 13064Google Scholar

    [66]

    Zhang Z, Qi J, Zhao M, Shang N, Cheng Y, Qiao R, Zhang Z, Ding M, Li X, Liu K, Xu X, Liu K, Liu C, Wu M 2020 Chin. Phys. Lett. 37 108101Google Scholar

    [67]

    Wang Y, Qing F, Jia Y, Duan Y, Shen C, Hou Y, Niu Y, Shi H, Li X 2021 Chem. Eng. J. 405 127014Google Scholar

    [68]

    孙垚垚, 宋家乐, 郑斌, 曾煜, 胡颖, 李炜光 2021 无机盐工业 https://kns.cnki.net/kcms/detail/12.1069.TQ.20210129.1525.006.html

    Sun Y Y, Sun J L, Zheng B, Zeng Y, Hu Y, Li W G 2021 Inorg. Chem. Ind.

    [69]

    Yang X B, Cui D W, Qu Y 2017 Electron. Compon. Mater. 36 83Google Scholar

  • [1] 胡笑钏, 刘样溪, 楚坤, 段潮锋. 非晶态碳薄膜对金属二次电子发射的影响. 物理学报, 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [2] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [3] 廖庆, 李炳生, 葛芳芳, 张宏鹏, 申铁龙, 毛雪丽, 王任大, 盛彦斌, 常海龙, 王志光, 徐帅, 陈黎明, 何晓珣. T91钢和SIMP钢表面AlOx涂层在600 ℃静态液态铅铋共晶中的稳定性和腐蚀行为. 物理学报, 2022, 71(15): 156103. doi: 10.7498/aps.71.20220356
    [4] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [5] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [6] 江孝伟, 武华, 袁寿财. 基于金属光栅实现石墨烯三通道光吸收增强. 物理学报, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [7] 陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材. 扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度. 物理学报, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [8] 蒲晓庆, 吴静, 郭强, 蔡建臻. 石墨烯与金属的欧姆接触理论研究. 物理学报, 2018, 67(21): 217301. doi: 10.7498/aps.67.20181479
    [9] 高健, 桑田, 李俊浪, 王啦. 利用窄刻槽金属光栅实现石墨烯双通道吸收增强. 物理学报, 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848
    [10] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [11] 郭辉, 路红亮, 黄立, 王雪艳, 林晓, 王业亮, 杜世萱, 高鸿钧. 金属衬底上高质量大面积石墨烯的插层及其机制. 物理学报, 2017, 66(21): 216803. doi: 10.7498/aps.66.216803
    [12] 叶凤霞, 陈燕, 余鹏, 罗强, 曲寿江, 沈军. 通过AC-HVAF方法制备铁基非晶合金涂层的结构分析. 物理学报, 2014, 63(7): 078101. doi: 10.7498/aps.63.078101
    [13] 李峰, 肖传云, 阚二军, 陆瑞锋, 邓开明. 钯和铂金属在石墨烯表面不同生长机理第一性原理研究. 物理学报, 2014, 63(17): 176802. doi: 10.7498/aps.63.176802
    [14] 于海玲, 朱嘉琦, 曹文鑫, 韩杰才. 金属催化制备石墨烯的研究进展. 物理学报, 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [15] 李文胜, 罗时军, 黄海铭, 张琴, 付艳华. 一种基于光子晶体结构的坦克涂层设计. 物理学报, 2012, 61(16): 164102. doi: 10.7498/aps.61.164102
    [16] 胡卫强, 刘宗德, 王永田, 夏兴祥. 快冷熔覆法原位合成大厚度铁基非晶复合涂层的研究. 物理学报, 2011, 60(2): 027103. doi: 10.7498/aps.60.027103
    [17] 杨光杰, 孔凡敏, 李 康, 梅良模. 金属介质在时域有限差分中的几种处理方法. 物理学报, 2007, 56(7): 4252-4255. doi: 10.7498/aps.56.4252
    [18] 张拴勤, 石云龙, 黄长庚, 连长春. 隐身涂层的光谱反射特性设计. 物理学报, 2007, 56(9): 5508-5512. doi: 10.7498/aps.56.5508
    [19] 张永康, 孔德军, 冯爱新, 鲁金忠, 葛 涛. 涂层界面结合强度检测研究(Ⅱ):涂层结合界面应力检测系统. 物理学报, 2006, 55(11): 6008-6012. doi: 10.7498/aps.55.6008
    [20] 刘晓东, 李曙光, 侯蓝田, 王慧田. 含金属散射体的中红外无序介质的光子定域化理论研究. 物理学报, 2002, 51(9): 2123-2127. doi: 10.7498/aps.51.2123
计量
  • 文章访问数:  13541
  • PDF下载量:  532
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-23
  • 修回日期:  2021-03-02
  • 上网日期:  2021-03-15
  • 刊出日期:  2021-05-05

/

返回文章
返回