搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钯和铂金属在石墨烯表面不同生长机理第一性原理研究

李峰 肖传云 阚二军 陆瑞锋 邓开明

引用本文:
Citation:

钯和铂金属在石墨烯表面不同生长机理第一性原理研究

李峰, 肖传云, 阚二军, 陆瑞锋, 邓开明

Density functional study on the different behaviors of Pd and Pt coating on graphene

Li Feng, Xiao Chuan-Yun, Kan Er-Jun, Lu Rui-Feng, Deng Kai-Ming
PDF
导出引用
  • 本文采用密度泛函计算方法,研究了钯和铂金属在石墨烯表面不同的生长机理. 几何结构和电子结构分析表明,钯金属的dz2轨道电子通过石墨烯的电子为中介,转移电子至钯金属的dxz+dyz轨道,并保持石墨烯的电子不变. 该电荷转移机理增强了钯金属与石墨烯衬底之间的相互作用,是钯在石墨烯表面生长的主要原因. 反之,铂金属不存在该生长机理,而铂原子的自发团聚是铂金属无法在石墨烯表面生长的另一主要原因.
    Density functional calculations are used to investigate the mechanism of the distinctly different behaviors of Pd and Pt coating on graphene. Geometric and electronic structural analysis indicates that the electrons on the dz2 orbital of Pd may transfer to the dxz+dyz orbital of Pd by the aid of the up electrons of the graphene. This charge-transfer mechanism enhances the interactions between the Pd coating and the graphene substrate, driving the Pd coating to grow on the graphene, while Pt does not have this behavior. Metal self-assembly hinders Pt atoms to cover the graphene.
    • 基金项目: 国家自然科学基金(批准号:10974096,11004107)和高等学校博士学科点专项科研基金(批准号:20103219110032,20113219110032)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50875132, 60573172), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20103219110032, 20113219110032).
    [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]
    [4]
    [5]

    Wallace P R 1947 Phys. Rev. 71 622

    [6]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [7]
    [8]
    [9]

    Bunch J S, Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490

    [10]
    [11]

    Trau M, Sankaran S, Saville D A, Aksay I S 1995 Nature 374 437

    [12]

    Murray C B, Kagan C R, Bawendi M G 1995 Science 270 1335

    [13]
    [14]
    [15]

    Bromann K, Flix C, Brune H, Harbich W, Monot R, Buttet J, Kern K 1996 Science 274 956

    [16]
    [17]

    Liu T D, Chen J R, Hong W P, Shao G F, Wang T N, Zheng J W, Wen Y H 2013 Acta Phys. Sin-Ch. Ed 62 193601

    [18]

    Yang J, Wang N Y, Zhu D J, Chen X, Deng K M, Xiao C Y 2009 Acta Phys. Sin-Ch. Ed 58 3112

    [19]
    [20]
    [21]

    Feng W, Zhao A D 2012 Acta Phys. Sin-Ch. Ed 61 173601

    [22]
    [23]

    Chen M S, Goodman D W 2004 Science 306 252

    [24]

    Planeix J M, Coustel N, Coq B, Brotons V, Kumbhar P S, Dutartre R, Geneste P, Bernier P, Ajayan P M 1994 J. Am. Chem. Soc. 116 7935

    [25]
    [26]
    [27]

    Zhu J, Jia Y, Li M S, Lu M H, Zhu J J 2013 Ind. Eng. Chem. Res. 52 1224

    [28]

    Fampiou I, Ramasubramaniam A 2013 J. Phys. Chem. C 117 19927

    [29]
    [30]

    Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R 2001 Nature 412 169

    [31]
    [32]

    Lee K J, Min S H, Jang J 2010 Small 6 2378

    [33]
    [34]
    [35]

    Ren X P, Zhou B, Li L T, Wang C L 2013 Chin. Phys. B 22 016801

    [36]

    Zhang Z H, He M, Duan X F 2009 Chin. Phys. Lett. 26 066104

    [37]
    [38]
    [39]

    Liao L Z, Liu Z H, Zhang Z H 2008 Chin. Phys. Lett. 25 2177

    [40]

    Liu N, Bai Y L, Xia M F, Ke F J 2005 Chin. Phys. Lett. 22 2012

    [41]
    [42]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [43]
    [44]
    [45]

    Li J-L, Kudin K N, McAllister M J, Prud'homme R K, Aksay I A, Car R 2006 Phys. Rev. Lett. 96 176101

    [46]
    [47]

    Li F, Kan E J, Lu R F, Xiao C Y, Deng K M, Su H B 2012 Nanoscale 4 1254

    [48]

    Che G, Lakshimi B B, Fisher E R, Martin C R 1998 Nature 393 346

    [49]
    [50]
    [51]

    Wang C, Waje M, Wang X, Tang J M, Haddon R C, Yan Y 2004 Nano Lett. 4 345

    [52]

    Javey A, Guo J, Paulsson M, Wang Q, Mann D, Lundstrom M, Dai H J 2004 Phys. Rev. Lett. 92 106804

    [53]
    [54]
    [55]

    Mann D, Javey A, Kong J, Wang Q, Dai H J 2003 Nano Lett. 3 1541

    [56]
    [57]

    Javey A, Guo J, Wang Q, Lundstrom M, Dai H J 2003 Nature 424 654

    [58]

    Wang Q J, Che J G 2009 Phys. Rev. Lett. 103 066802

    [59]
    [60]
    [61]

    Ding C G, Yang J L, Li Q X 2001 Acta Phys. Sin. 50 1907 (in Chinese)[丁长庚, 杨金龙, 李群祥 2001 物理学报 50 1907]

    [62]
    [63]

    Li Q X, Yang J L, Li Z Y, Hu J G, Zhu Q S 2001 Acta Phys. Sin. 50 1877 (in Chinese)[李群祥, 杨金龙, 李震宇, 侯建国, 朱清时 2001 物理学报 50 1877]

    [64]
    [65]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [66]
    [67]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [68]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [69]
    [70]
    [71]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15

    [72]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [73]
    [74]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [75]
  • [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]
    [4]
    [5]

    Wallace P R 1947 Phys. Rev. 71 622

    [6]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [7]
    [8]
    [9]

    Bunch J S, Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490

    [10]
    [11]

    Trau M, Sankaran S, Saville D A, Aksay I S 1995 Nature 374 437

    [12]

    Murray C B, Kagan C R, Bawendi M G 1995 Science 270 1335

    [13]
    [14]
    [15]

    Bromann K, Flix C, Brune H, Harbich W, Monot R, Buttet J, Kern K 1996 Science 274 956

    [16]
    [17]

    Liu T D, Chen J R, Hong W P, Shao G F, Wang T N, Zheng J W, Wen Y H 2013 Acta Phys. Sin-Ch. Ed 62 193601

    [18]

    Yang J, Wang N Y, Zhu D J, Chen X, Deng K M, Xiao C Y 2009 Acta Phys. Sin-Ch. Ed 58 3112

    [19]
    [20]
    [21]

    Feng W, Zhao A D 2012 Acta Phys. Sin-Ch. Ed 61 173601

    [22]
    [23]

    Chen M S, Goodman D W 2004 Science 306 252

    [24]

    Planeix J M, Coustel N, Coq B, Brotons V, Kumbhar P S, Dutartre R, Geneste P, Bernier P, Ajayan P M 1994 J. Am. Chem. Soc. 116 7935

    [25]
    [26]
    [27]

    Zhu J, Jia Y, Li M S, Lu M H, Zhu J J 2013 Ind. Eng. Chem. Res. 52 1224

    [28]

    Fampiou I, Ramasubramaniam A 2013 J. Phys. Chem. C 117 19927

    [29]
    [30]

    Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R 2001 Nature 412 169

    [31]
    [32]

    Lee K J, Min S H, Jang J 2010 Small 6 2378

    [33]
    [34]
    [35]

    Ren X P, Zhou B, Li L T, Wang C L 2013 Chin. Phys. B 22 016801

    [36]

    Zhang Z H, He M, Duan X F 2009 Chin. Phys. Lett. 26 066104

    [37]
    [38]
    [39]

    Liao L Z, Liu Z H, Zhang Z H 2008 Chin. Phys. Lett. 25 2177

    [40]

    Liu N, Bai Y L, Xia M F, Ke F J 2005 Chin. Phys. Lett. 22 2012

    [41]
    [42]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [43]
    [44]
    [45]

    Li J-L, Kudin K N, McAllister M J, Prud'homme R K, Aksay I A, Car R 2006 Phys. Rev. Lett. 96 176101

    [46]
    [47]

    Li F, Kan E J, Lu R F, Xiao C Y, Deng K M, Su H B 2012 Nanoscale 4 1254

    [48]

    Che G, Lakshimi B B, Fisher E R, Martin C R 1998 Nature 393 346

    [49]
    [50]
    [51]

    Wang C, Waje M, Wang X, Tang J M, Haddon R C, Yan Y 2004 Nano Lett. 4 345

    [52]

    Javey A, Guo J, Paulsson M, Wang Q, Mann D, Lundstrom M, Dai H J 2004 Phys. Rev. Lett. 92 106804

    [53]
    [54]
    [55]

    Mann D, Javey A, Kong J, Wang Q, Dai H J 2003 Nano Lett. 3 1541

    [56]
    [57]

    Javey A, Guo J, Wang Q, Lundstrom M, Dai H J 2003 Nature 424 654

    [58]

    Wang Q J, Che J G 2009 Phys. Rev. Lett. 103 066802

    [59]
    [60]
    [61]

    Ding C G, Yang J L, Li Q X 2001 Acta Phys. Sin. 50 1907 (in Chinese)[丁长庚, 杨金龙, 李群祥 2001 物理学报 50 1907]

    [62]
    [63]

    Li Q X, Yang J L, Li Z Y, Hu J G, Zhu Q S 2001 Acta Phys. Sin. 50 1877 (in Chinese)[李群祥, 杨金龙, 李震宇, 侯建国, 朱清时 2001 物理学报 50 1877]

    [64]
    [65]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [66]
    [67]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [68]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [69]
    [70]
    [71]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15

    [72]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [73]
    [74]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [75]
  • [1] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算. 物理学报, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [2] 张超江, 许洪光, 徐西玲, 郑卫军. \begin{document}${\bf Ta_4C}_{ n}^{\bf -/0}$\end{document} (n = 0—4)团簇的电子结构、成键性质及稳定性. 物理学报, 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [3] 沈丁, 刘耀汉, 唐树伟, 董伟, 孙闻, 王来贵, 杨绍斌. Sin团簇/石墨烯(n ≤ 6)结构稳定性和储锂性能的第一性原理计算. 物理学报, 2021, 70(19): 198101. doi: 10.7498/aps.70.20210521
    [4] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [5] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [6] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性. 物理学报, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [7] 蒋元祺, 彭平. 稳态Cu-Zr二十面体团簇电子结构的密度泛函研究. 物理学报, 2018, 67(13): 132101. doi: 10.7498/aps.67.20180296
    [8] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算. 物理学报, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [9] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究. 物理学报, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [10] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO . 物理学报, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [11] 吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军. 硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究. 物理学报, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [12] 张岩, 陈雪风, 齐凯天, 李兵, 杨传路, 盛勇. (SiO2)n-(n≤7)团簇的密度泛函研究. 物理学报, 2010, 59(7): 4598-4601. doi: 10.7498/aps.59.4598
    [13] 齐凯天, 杨传路, 李兵, 张岩, 盛勇. TinLa(n=1—7)的密度泛函研究. 物理学报, 2009, 58(10): 6956-6961. doi: 10.7498/aps.58.6956
    [14] 唐春梅, 陈宣, 邓开明, 胡凤兰, 黄德财, 夏海燕. 富勒烯衍生物C60(CF3)n(n=2,4,6,10)几何结构和电子性质变化规律的密度泛函研究. 物理学报, 2009, 58(4): 2675-2679. doi: 10.7498/aps.58.2675
    [15] 蒋岩玲, 付石友, 邓开明, 唐春梅, 谭伟石, 黄德财, 刘玉真, 吴海平. C60富勒烯-巴比妥酸及其二聚体几何结构和电子结构的密度泛函计算研究. 物理学报, 2008, 57(6): 3690-3697. doi: 10.7498/aps.57.3690
    [16] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构. 物理学报, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [17] 盛 勇, 毛华平, 涂铭旌. TinMg (n=1—10)掺杂团簇的密度泛函研究. 物理学报, 2008, 57(7): 4153-4158. doi: 10.7498/aps.57.4153
    [18] 方 芳, 蒋 刚, 王红艳. PdnPbm(n+m≤5)混合团簇的结构与光谱性质. 物理学报, 2006, 55(5): 2241-2248. doi: 10.7498/aps.55.2241
    [19] 郭建军, 杨继先, 迭 东, 于桂凤, 蒋 刚. Pd-Y微团簇的结构与性质研究. 物理学报, 2005, 54(8): 3571-3577. doi: 10.7498/aps.54.3571
    [20] 毛华平, 杨兰蓉, 王红艳, 朱正和, 唐永建. 钇小团簇的结构和电离势的计算. 物理学报, 2005, 54(11): 5126-5129. doi: 10.7498/aps.54.5126
计量
  • 文章访问数:  2777
  • PDF下载量:  1046
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-18
  • 修回日期:  2014-05-10
  • 刊出日期:  2014-09-05

钯和铂金属在石墨烯表面不同生长机理第一性原理研究

  • 1. 南京理工大学理学院应用物理系, 南京 210094
    基金项目: 国家自然科学基金(批准号:10974096,11004107)和高等学校博士学科点专项科研基金(批准号:20103219110032,20113219110032)资助的课题.

摘要: 本文采用密度泛函计算方法,研究了钯和铂金属在石墨烯表面不同的生长机理. 几何结构和电子结构分析表明,钯金属的dz2轨道电子通过石墨烯的电子为中介,转移电子至钯金属的dxz+dyz轨道,并保持石墨烯的电子不变. 该电荷转移机理增强了钯金属与石墨烯衬底之间的相互作用,是钯在石墨烯表面生长的主要原因. 反之,铂金属不存在该生长机理,而铂原子的自发团聚是铂金属无法在石墨烯表面生长的另一主要原因.

English Abstract

参考文献 (75)

目录

    /

    返回文章
    返回