搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤锌矿In0.19Ga0.81N/GaN量子阱中光学声子和内建电场对束缚极化子结合能的影响

赵凤岐 张敏 李志强 姬延明

引用本文:
Citation:

纤锌矿In0.19Ga0.81N/GaN量子阱中光学声子和内建电场对束缚极化子结合能的影响

赵凤岐, 张敏, 李志强, 姬延明

Effects of optical phonon and built-in electric field on the binding energy of bound polarons in a wurtzite In0.19Ga0.81N/GaN quantum well

Zhao Feng-Qi, Zhang Min, Li Zhi-Qiang, Ji Yan-Ming
PDF
导出引用
  • 用改进的Lee-Low-Pines变分方法研究纤锌矿In0.19Ga0.81N/GaN量子阱结构中束缚极化子能量和结合能等问题,给出基态结合能、不同支长波光学声子对能量和结合能的贡献随阱宽和杂质中心位置变化的数值结果. 在数值计算中包括了该体系中声子频率的各向异性和内建电场对能量和结合能的影响、以及电子和杂质中心与长波光学声子的相互作用. 研究结果表明,In0.19Ga0.81N/GaN量子阱材料中光学声子和内建电场对束缚极化子能量和结合能的贡献很大,它们都引起能量和结合能降低. 结合能随着阱宽的增大而单调减小,窄阱中减小的速度快,而宽阱中减小的速度慢. 不同支声子对能量和结合能的贡献随着阱宽的变化规律不同. 没有内建电场时,窄阱中,定域声子贡献小于界面和半空间声子贡献,而宽阱中,定域声子贡献大于界面和半空间声子贡献. 有内建电场时,定域声子贡献变小,而界面和半空间声子贡献变大,声子总贡献也有明显变化. 在In0.19Ga0.81N/GaN量子阱中,光学声子对束缚极化子能量和结合能的贡献比GaAs/Al0.19Ga0.81As量子阱中的相应贡献(约3.21.8和1.60.3 meV)约大一个数量级. 阱宽(d=8 nm)不变时,在In0.19Ga0.81N/GaN量子阱中结合能随着杂质中心位置Z0的变大而减小,并减小的速度变快. 随着Z0的增大,界面和半空间光学声子对结合能的贡献缓慢减小,而定域光学声子的贡献缓慢增大.
    The energies and binding energies of the bound polarons in a wurtzite In0.19Ga0.81N/GaN quantum well are investigated by means of a modified Lee-Low-Pines variational method. Contributions of ground state binding energies and different branches of a longwave optical phonon mode to the energies and binding energies of the bound polarons as a function of the well width and impurity center position are given. Effects of the anisotropy of phonon frequency and built-in electric field in the system on the energies and binding energies, and the electron and impurity center-optical phonon interaction, are included in the calculations. Results show that the contributions of optical phonons and built-in electric field to the ground state energy and binding energy of the bound polarons in a wurtzite In0.19Ga0.81N/GaN quantum well are very large, and result in the reduction of energy and binding energy. The binding energy decreases monotonically with increasing well width, and the speed of decrease is fast in the narrower well while the speed of decrease is slow in the wider well. Contributions of different branches of phonons to the energies and binding energies as a function of well width are different. In the narrower well, contributions of the confined phonon (withoud built-in electric field) are smaller than those of the interface and half-space phonons, while in the wider well, contributions of the confined phonons are larger than those of the interface and half-space phonons. Contributions of the confined phonon (with built-in electric field) become larger, whereas those of the interface and half-space phonons become smaller, and the total contribution of phonons also have obvious change. Contributions of these optical phonons to the ground state energies and binding energies of the bound polarons in In0.19Ga0.81N/GaN quantum wells are larger than the corresponding values (about 3.11.6 meV and 1.50.3 meV) of those in GaAs/Al0.19Ga0.81As quantum wells. The binding energies in In0.19Ga0.81N/GaN quantum wells decrease monotonically with increasing location Z0 of the impurity center for a constant well width d =8 nm, and the decrease of speed becomes faster. As the position of the impurity center is increasing, the contributions of the the interface and half-space phonons decrease slowly, and those of the confined phonons increase slowly as well.
    • 基金项目: 国家自然科学基金(批准号:10964007,11264027)、内蒙古草原英才工程 和内蒙古师范大学十百千人才培养工程基金(批准号:RCPY-2-2012-K-039)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10964007, 11264027), the Project of Prairie Excellent Specialist of Inner Mongolia, and the Thousand, Hundred and Ten Talent Cultivation Project Fund of Inner Mongolia Normal University, China (Grant No. RCPY-2-2012-K-039).
    [1]

    Perkins J D, Mascarenhas A, Zhang Y, Geisz J F, Friedman D J, Olson J M, Kurtz S R 1999 Phys. Rev. Lett. 82 3312

    [2]
    [3]

    Shan W, Walukiewicz W, Yu K M, Ager J W, Haller E E, Geisz J F, Friedman D J, Olson J M, Kurtz S R, Nauka C 2000 Phys. Rev. B 62 4211

    [4]

    Karch K, Wagner J M, Bechstedt F 1998 Phys. Rev. B 57 7043

    [5]
    [6]
    [7]

    Akasaki I, Amano H Jan. J. Appl. Phys. Part I 36 (9A) 5393

    [8]

    Nakamura S 1997 Solid. State. Commun. 102 237

    [9]
    [10]

    Lee B C, Kim K V, StroscioM A, Dutta M 1997 Phys. Rev. B 56 997

    [11]
    [12]

    Malyutenko V K, Bolgov S S, Podoltsrv A D 2010 Appl. Phys. Lett. 97 251110

    [13]
    [14]

    Lee W, Kim M H, Zhu D 2010 J. Appl. Phys. 107 063102

    [15]
    [16]
    [17]

    Nykanen H, Mattila P, Suihkonen S, Riikonen J, Quillet E, Honeyer E, Bellessa J, Sopanen M 2011 J. Appl. Phys. 109 08310

    [18]
    [19]

    Liu Z Q 2012 Appl. Phys. Lett. 101 261106

    [20]
    [21]

    Belabbes A, de Carvalho L C, Schleife A, Bechstedt F 2011 Phys. Rev. B 84 125108

    [22]

    Lee C W, Peter A J 2011 Chin. Phys. B 20 077104

    [23]
    [24]
    [25]

    Wang F, Ji Z W, Wang Q, Wang, X S, Qu S, Xu X G, Lv Y J, Feng Z H 2013 J. Appl. Phys. 114 163525

    [26]
    [27]

    Ryu H Y, Choi W J 2013 J. Appl. Phys. 114 173101

    [28]
    [29]

    Cai J X, Sun H Q, Zheng H, Zhang P J, Guo Z Y 2014 Chin. Phys. B 23 058502

    [30]
    [31]

    Wang H, Farias G A, Freire V N 1999 Phys. Rev. B 60 5705

    [32]

    Zhang J F, Wang C, Zhang J C 2006 Chin. Phys. 15 1060

    [33]
    [34]

    Hylton N P, Dawson P, Kappers M J, Aleese C M, Humphreys C J 2007 Phys. Rev. B 76 205403

    [35]
    [36]
    [37]

    Zhang L 2006 Superlattice. Microst. 40 144

    [38]

    Graham D M, Dawson P, Godfrey M J 2006 Appl. Phys. Lett. 89 211901

    [39]
    [40]
    [41]

    Chen D, Guo Y, Wang L 2007 J. Appl. Phys. 101 053712

    [42]

    Zhu L H, Cai J F, Li X Y, Deng B, Liu B L 2010 Acta Phys. Sin. 59 4996 (in Chinese)[朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林 2010 物理学报 59 4996]

    [43]
    [44]
    [45]

    Huang W D, Chen J D, Ren Y J 2012 J. Appl. Phys. 112 053704

    [46]
    [47]

    Funato M, Matsuda K, Banal R G, Ishii R, Kawakami Y 2013 Phys. Rev. B 87 041306

    [48]

    Xia H, Feng Y, Patterson R, Jia X, Shrestha S, Conibeer G 2013 J. Appl. Phys. 113 164304

    [49]
    [50]
    [51]

    Chen S J, Wang G H 2013 J. Appl. Phys. 113 023515

    [52]

    Pozina G, Hemmingsson C, Amano H, Monear B 2013 Appl. Phys. Lett. 102 082110

    [53]
    [54]
    [55]

    Dong L, Mantese J V, Avrutin V, zgr U, Morko H, Alpay S P 2013 J. Appl. Phys. 114 043715

    [56]
    [57]

    Li T, Wei Q Y, Fischer A M, Huang J Y, Huang Y U, Ponce F A, Liu J P, Lochner Z, Ryou J H, Dupuis R D 2013 Appl. Phys. Lett. 102 041115

    [58]
    [59]

    Park S H, Moon Y T 2013 J. Appl. Phys. 114 083107

    [60]

    Liang M M, Weng G E, Zhang J Y, Cai X M, L X Q, Ying L Y, Zhang B P 2014 Chin. Phys. B 23 054211

    [61]
    [62]

    Lee B C, Kim K W, Stroscio M A, Dutta M 1998 Phys. Rev. B 58 4860

    [63]
    [64]

    Komirenko S M, Kim K W, Stroscio M A, Dutta M 1999 Phys. Rev. B 59 5013

    [65]
    [66]

    Shi J J 2003 Phys. Rev. B 68 165335

    [67]
    [68]

    Shi J J, Chu X L, Goldys E M 2004 Phys. Rev. B 70 115318

    [69]
    [70]
    [71]

    Li L, Liu D, Shi J J 2005 Eur. Phys. J. B 44 401

    [72]

    Bernardini F, Fiorentini V 1999 Phys. Stat. Sol. B 216 391

    [73]
    [74]

    Cingolani R, Botchkarev A, Tang H, Morkoc H, Traetta G, Coli G, Lomascolo M, Di Carlo A, Sala F D, Lugli P 2000 Phys. Rev. B 61 2711

    [75]
    [76]
    [77]

    Shi J J, Gan Z Z 2003 J. Appl. Phys. 94 407

    [78]
    [79]

    Zhao F Q, Gong J 2007 Chin. Phys. Lett. 24 1327

    [80]

    Zhao F Q, Zhou B Q 2007 Acta Phys. Sin. 56 4856 (in Chinese)[赵凤岐, 周炳卿 2007 物理学报 56 4856]

    [81]
    [82]
    [83]

    Zhao F Q, Zhang M, Wurentuya 2011 J. Phys. Soc. Japan 80 94713

    [84]

    Zhao F Q, Yong M 2012 Chin. Phys B 21 107103

    [85]
    [86]
    [87]

    Liu D, Shi J J, Butcher K S A 2006 Superlattices and Microstructures 40 180

    [88]
    [89]

    Zhang L, Shi J J 2007 Commun. Theor. Phys. 47 349

    [90]
    [91]

    Cai J, Shi J J 2008 Solid State Commun. 145 235

    [92]
    [93]

    Zhu Y H, Shi J J 2009 Physica E 41 746

    [94]
    [95]

    Vurgaftman I, Melyer J R 2003 J. Appl. Phys. 94 3675

    [96]
    [97]

    Graham D M, Soltani-Vala A, Dawsos P, Godfrey M J, Smeeton T M, Barnard J S, Kappers M J, Humphreys C J, Thrush E J 2005 J. Appl. Phys. 97 103508

    [98]
    [99]

    Liang X X, Wang X 1991 Phys. Rev. B. 43 5155

    [100]
    [101]

    Liang X X, Yang J S 1996 Solid State Commun. 100 629

    [102]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815

    [103]
    [104]

    Perlin P, Gorczyca I, Christensen N E, Grzegorg I, Teisseyre H, Suski T 1992 Phys. Rev. B 45 13307

    [105]
    [106]

    Azuhata T, Sota T, Suzuki K, Nakamura S 1995 J. Phys.: Condens. Matter 7 L129

    [107]
    [108]

    Misek J, Srobar F 1979 Electrotech. Cas. 30 690

    [109]
    [110]

    Harima H 2002 J. Phys.: Condens. Matter 14 R967

    [111]
    [112]

    Kim K, Lambrecht W R L, Segall B 1996 Phys. Rev. B 53 16310

    [113]
    [114]
    [115]

    Mora-Ramos M E 2001 Phys. Stat. Sol. 223 843

  • [1]

    Perkins J D, Mascarenhas A, Zhang Y, Geisz J F, Friedman D J, Olson J M, Kurtz S R 1999 Phys. Rev. Lett. 82 3312

    [2]
    [3]

    Shan W, Walukiewicz W, Yu K M, Ager J W, Haller E E, Geisz J F, Friedman D J, Olson J M, Kurtz S R, Nauka C 2000 Phys. Rev. B 62 4211

    [4]

    Karch K, Wagner J M, Bechstedt F 1998 Phys. Rev. B 57 7043

    [5]
    [6]
    [7]

    Akasaki I, Amano H Jan. J. Appl. Phys. Part I 36 (9A) 5393

    [8]

    Nakamura S 1997 Solid. State. Commun. 102 237

    [9]
    [10]

    Lee B C, Kim K V, StroscioM A, Dutta M 1997 Phys. Rev. B 56 997

    [11]
    [12]

    Malyutenko V K, Bolgov S S, Podoltsrv A D 2010 Appl. Phys. Lett. 97 251110

    [13]
    [14]

    Lee W, Kim M H, Zhu D 2010 J. Appl. Phys. 107 063102

    [15]
    [16]
    [17]

    Nykanen H, Mattila P, Suihkonen S, Riikonen J, Quillet E, Honeyer E, Bellessa J, Sopanen M 2011 J. Appl. Phys. 109 08310

    [18]
    [19]

    Liu Z Q 2012 Appl. Phys. Lett. 101 261106

    [20]
    [21]

    Belabbes A, de Carvalho L C, Schleife A, Bechstedt F 2011 Phys. Rev. B 84 125108

    [22]

    Lee C W, Peter A J 2011 Chin. Phys. B 20 077104

    [23]
    [24]
    [25]

    Wang F, Ji Z W, Wang Q, Wang, X S, Qu S, Xu X G, Lv Y J, Feng Z H 2013 J. Appl. Phys. 114 163525

    [26]
    [27]

    Ryu H Y, Choi W J 2013 J. Appl. Phys. 114 173101

    [28]
    [29]

    Cai J X, Sun H Q, Zheng H, Zhang P J, Guo Z Y 2014 Chin. Phys. B 23 058502

    [30]
    [31]

    Wang H, Farias G A, Freire V N 1999 Phys. Rev. B 60 5705

    [32]

    Zhang J F, Wang C, Zhang J C 2006 Chin. Phys. 15 1060

    [33]
    [34]

    Hylton N P, Dawson P, Kappers M J, Aleese C M, Humphreys C J 2007 Phys. Rev. B 76 205403

    [35]
    [36]
    [37]

    Zhang L 2006 Superlattice. Microst. 40 144

    [38]

    Graham D M, Dawson P, Godfrey M J 2006 Appl. Phys. Lett. 89 211901

    [39]
    [40]
    [41]

    Chen D, Guo Y, Wang L 2007 J. Appl. Phys. 101 053712

    [42]

    Zhu L H, Cai J F, Li X Y, Deng B, Liu B L 2010 Acta Phys. Sin. 59 4996 (in Chinese)[朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林 2010 物理学报 59 4996]

    [43]
    [44]
    [45]

    Huang W D, Chen J D, Ren Y J 2012 J. Appl. Phys. 112 053704

    [46]
    [47]

    Funato M, Matsuda K, Banal R G, Ishii R, Kawakami Y 2013 Phys. Rev. B 87 041306

    [48]

    Xia H, Feng Y, Patterson R, Jia X, Shrestha S, Conibeer G 2013 J. Appl. Phys. 113 164304

    [49]
    [50]
    [51]

    Chen S J, Wang G H 2013 J. Appl. Phys. 113 023515

    [52]

    Pozina G, Hemmingsson C, Amano H, Monear B 2013 Appl. Phys. Lett. 102 082110

    [53]
    [54]
    [55]

    Dong L, Mantese J V, Avrutin V, zgr U, Morko H, Alpay S P 2013 J. Appl. Phys. 114 043715

    [56]
    [57]

    Li T, Wei Q Y, Fischer A M, Huang J Y, Huang Y U, Ponce F A, Liu J P, Lochner Z, Ryou J H, Dupuis R D 2013 Appl. Phys. Lett. 102 041115

    [58]
    [59]

    Park S H, Moon Y T 2013 J. Appl. Phys. 114 083107

    [60]

    Liang M M, Weng G E, Zhang J Y, Cai X M, L X Q, Ying L Y, Zhang B P 2014 Chin. Phys. B 23 054211

    [61]
    [62]

    Lee B C, Kim K W, Stroscio M A, Dutta M 1998 Phys. Rev. B 58 4860

    [63]
    [64]

    Komirenko S M, Kim K W, Stroscio M A, Dutta M 1999 Phys. Rev. B 59 5013

    [65]
    [66]

    Shi J J 2003 Phys. Rev. B 68 165335

    [67]
    [68]

    Shi J J, Chu X L, Goldys E M 2004 Phys. Rev. B 70 115318

    [69]
    [70]
    [71]

    Li L, Liu D, Shi J J 2005 Eur. Phys. J. B 44 401

    [72]

    Bernardini F, Fiorentini V 1999 Phys. Stat. Sol. B 216 391

    [73]
    [74]

    Cingolani R, Botchkarev A, Tang H, Morkoc H, Traetta G, Coli G, Lomascolo M, Di Carlo A, Sala F D, Lugli P 2000 Phys. Rev. B 61 2711

    [75]
    [76]
    [77]

    Shi J J, Gan Z Z 2003 J. Appl. Phys. 94 407

    [78]
    [79]

    Zhao F Q, Gong J 2007 Chin. Phys. Lett. 24 1327

    [80]

    Zhao F Q, Zhou B Q 2007 Acta Phys. Sin. 56 4856 (in Chinese)[赵凤岐, 周炳卿 2007 物理学报 56 4856]

    [81]
    [82]
    [83]

    Zhao F Q, Zhang M, Wurentuya 2011 J. Phys. Soc. Japan 80 94713

    [84]

    Zhao F Q, Yong M 2012 Chin. Phys B 21 107103

    [85]
    [86]
    [87]

    Liu D, Shi J J, Butcher K S A 2006 Superlattices and Microstructures 40 180

    [88]
    [89]

    Zhang L, Shi J J 2007 Commun. Theor. Phys. 47 349

    [90]
    [91]

    Cai J, Shi J J 2008 Solid State Commun. 145 235

    [92]
    [93]

    Zhu Y H, Shi J J 2009 Physica E 41 746

    [94]
    [95]

    Vurgaftman I, Melyer J R 2003 J. Appl. Phys. 94 3675

    [96]
    [97]

    Graham D M, Soltani-Vala A, Dawsos P, Godfrey M J, Smeeton T M, Barnard J S, Kappers M J, Humphreys C J, Thrush E J 2005 J. Appl. Phys. 97 103508

    [98]
    [99]

    Liang X X, Wang X 1991 Phys. Rev. B. 43 5155

    [100]
    [101]

    Liang X X, Yang J S 1996 Solid State Commun. 100 629

    [102]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815

    [103]
    [104]

    Perlin P, Gorczyca I, Christensen N E, Grzegorg I, Teisseyre H, Suski T 1992 Phys. Rev. B 45 13307

    [105]
    [106]

    Azuhata T, Sota T, Suzuki K, Nakamura S 1995 J. Phys.: Condens. Matter 7 L129

    [107]
    [108]

    Misek J, Srobar F 1979 Electrotech. Cas. 30 690

    [109]
    [110]

    Harima H 2002 J. Phys.: Condens. Matter 14 R967

    [111]
    [112]

    Kim K, Lambrecht W R L, Segall B 1996 Phys. Rev. B 53 16310

    [113]
    [114]
    [115]

    Mora-Ramos M E 2001 Phys. Stat. Sol. 223 843

  • [1] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/\begin{document}${\boldsymbol{\beta }}$\end{document}-Bi2O3界面电学性能. 物理学报, 2022, 71(2): 026801. doi: 10.7498/aps.71.20210635
    [2] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/β-Bi2O3界面电学性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210635
    [3] 杨双波. 温度与外磁场对Si均匀掺杂的GaAs量子阱电子态结构的影响. 物理学报, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [4] 武娜, 杨皎, 肖芬, 蔡灵仓, 田春玲. 固氪物态方程的关联量子化学计算. 物理学报, 2014, 63(14): 146102. doi: 10.7498/aps.63.146102
    [5] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究. 物理学报, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [6] 王文娟, 王海龙, 龚谦, 宋志棠, 汪辉, 封松林. 外电场对InGaAsP/InP量子阱内激子结合能的影响. 物理学报, 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [7] 苏安, 高英俊. 双重势垒一维光子晶体量子阱的光传输特性研究. 物理学报, 2012, 61(23): 234208. doi: 10.7498/aps.61.234208
    [8] 陈爱喜, 陈渊, 邓黎, 邝耘丰. 非对称半导体量子阱中自发辐射相干诱导透明. 物理学报, 2012, 61(21): 214204. doi: 10.7498/aps.61.214204
    [9] 孟振华, 李俊斌, 郭永权, 王义. 稀土元素的价电子结构和熔点、结合能的关联性. 物理学报, 2012, 61(10): 107101. doi: 10.7498/aps.61.107101
    [10] 张运炎, 范广涵. 量子阱数量变化对双波长LED作用的研究. 物理学报, 2011, 60(7): 078504. doi: 10.7498/aps.60.078504
    [11] 张益军, 牛军, 赵静, 邹继军, 常本康. 指数掺杂结构对透射式GaAs光电阴极量子效率的影响研究. 物理学报, 2011, 60(6): 067301. doi: 10.7498/aps.60.067301
    [12] 姜文龙, 孟昭晖, 丛林, 汪津, 王立忠, 韩强, 孟凡超, 高永慧. 双量子阱结构OLED效率和电流的磁效应. 物理学报, 2010, 59(9): 6642-6646. doi: 10.7498/aps.59.6642
    [13] 王海霞, 殷 雯. 周期耦合量子阱中的输运问题. 物理学报, 2008, 57(5): 2669-2673. doi: 10.7498/aps.57.2669
    [14] 额尔敦朝鲁. 温度和极化子效应对准二维强耦合激子基态的影响. 物理学报, 2008, 57(1): 416-424. doi: 10.7498/aps.57.416
    [15] 黄书文, 刘 涛, 范云霞, 汪克林. 载流子与铁磁物质耦合系统的严格对角化解与相干态变分方法. 物理学报, 2007, 56(1): 491-499. doi: 10.7498/aps.56.491
    [16] 邹继军, 常本康, 杨 智. 指数掺杂GaAs光电阴极量子效率的理论计算. 物理学报, 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [17] 申 晔, 邢怀中, 俞建国, 吕 斌, 茅惠兵, 王基庆. 极化诱导的内建电场对Mn δ掺杂的GaN/AlGaN量子阱居里温度的调制. 物理学报, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [18] 额尔敦朝鲁, 李树深, 肖景林. 晶格热振动对准二维强耦合极化子有效质量的影响. 物理学报, 2005, 54(9): 4285-4293. doi: 10.7498/aps.54.4285
    [19] 邵嘉平, 胡 卉, 郭文平, 汪 莱, 罗 毅, 孙长征, 郝智彪. 高In组分InxGa1-xN/GaN多量子阱材料电致荧光谱的研究. 物理学报, 2005, 54(8): 3905-3909. doi: 10.7498/aps.54.3905
    [20] 陈贵宾, 陆卫, 缪中林, 李志锋, 蔡炜颖, 沈学础, 陈昌明, 朱德彰, 胡钧, 李明乾. 离子注入诱导量子阱界面混合效应的光致荧光谱研究. 物理学报, 2002, 51(3): 659-662. doi: 10.7498/aps.51.659
计量
  • 文章访问数:  2838
  • PDF下载量:  473
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-10
  • 修回日期:  2014-05-14
  • 刊出日期:  2014-09-05

纤锌矿In0.19Ga0.81N/GaN量子阱中光学声子和内建电场对束缚极化子结合能的影响

  • 1. 内蒙古师范大学物理与电子信息学院, 功能材料物理与化学内蒙古自治区重点实验室, 呼和浩特 010022
    基金项目: 国家自然科学基金(批准号:10964007,11264027)、内蒙古草原英才工程 和内蒙古师范大学十百千人才培养工程基金(批准号:RCPY-2-2012-K-039)资助的课题.

摘要: 用改进的Lee-Low-Pines变分方法研究纤锌矿In0.19Ga0.81N/GaN量子阱结构中束缚极化子能量和结合能等问题,给出基态结合能、不同支长波光学声子对能量和结合能的贡献随阱宽和杂质中心位置变化的数值结果. 在数值计算中包括了该体系中声子频率的各向异性和内建电场对能量和结合能的影响、以及电子和杂质中心与长波光学声子的相互作用. 研究结果表明,In0.19Ga0.81N/GaN量子阱材料中光学声子和内建电场对束缚极化子能量和结合能的贡献很大,它们都引起能量和结合能降低. 结合能随着阱宽的增大而单调减小,窄阱中减小的速度快,而宽阱中减小的速度慢. 不同支声子对能量和结合能的贡献随着阱宽的变化规律不同. 没有内建电场时,窄阱中,定域声子贡献小于界面和半空间声子贡献,而宽阱中,定域声子贡献大于界面和半空间声子贡献. 有内建电场时,定域声子贡献变小,而界面和半空间声子贡献变大,声子总贡献也有明显变化. 在In0.19Ga0.81N/GaN量子阱中,光学声子对束缚极化子能量和结合能的贡献比GaAs/Al0.19Ga0.81As量子阱中的相应贡献(约3.21.8和1.60.3 meV)约大一个数量级. 阱宽(d=8 nm)不变时,在In0.19Ga0.81N/GaN量子阱中结合能随着杂质中心位置Z0的变大而减小,并减小的速度变快. 随着Z0的增大,界面和半空间光学声子对结合能的贡献缓慢减小,而定域光学声子的贡献缓慢增大.

English Abstract

参考文献 (115)

目录

    /

    返回文章
    返回