搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能

金程程 丁玲玲 宋子馨 陶海军

引用本文:
Citation:

BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能

金程程, 丁玲玲, 宋子馨, 陶海军

Improvement of performance of perovskite solar cells through BaTiO3 doping regulated built-in electric field

Jin Cheng-Cheng, Ding Ling-Ling, Song Zi-Xin, Tao Hai-Jun
PDF
HTML
导出引用
  • 碳基无空穴传输层钙钛矿太阳能电池(C-PSCs)因其替换了昂贵的贵金属电极, 以及去掉了稳定性差的空穴传输材料而受到广泛关注. 但是C-PSCs内部载流子分离和传输性能差阻碍了效率的提高, 而内建电场的增强可以改善载流子传输性能从而提升电池光电性能. 本文将铁电材料钛酸钡(BaTiO3)粉末作为添加剂引入钙钛矿前驱液中制备C-PSCs, 改善钙钛矿薄膜形态, 降低薄膜缺陷密度及提高C-PSCs载流子传输性能. 结果表明, 当BaTiO3质量分数为1.0%时, 钙钛矿薄膜均匀致密, 电池的光电转换效率最高. 对薄膜施加正向电压极化处理后, 铁电材料BaTiO3剩余极化电场增大了内建电场, 为载流子输运和萃取提供充足的动力, 从而抑制非辐射复合的发生; 同时耗尽层宽度增大, 反向饱和电流减小, 电池性能显著提升, 优化后最佳器件效率为9.02%. 本文为钙钛矿吸收层掺杂实现内建电场调控提供了一种有效策略.
    The preparation of hybrid perovskite solar cells is expensive and environmentally demanding. Carbon-based HTL-free perovskite solar cells (C-PSCs) have attracted much attention because they replace the expensive precious metal electrode and remove the poor stability of the hole transport material. However, the improvement of efficiency is hampered by poor carrier separation and transport performance within C-PSCs, while the enhancement of the built-in electric field can improve the carrier transport performance, thus enhancing photoelectric performance. The built-in electric field can be regulated by doping. The anomalous photovoltaic effect and the built-in electric field of ferroelectric material play an important role in the field of optoelectronics. In this work, a simple and effective method is developed to improve the performance of perovskite solar cells via the combination of internal doping of ferroelectric polymer and external control of electric field. Ferroelectric material barium titanate (BaTiO3) powder is added into perovskite precursor solution as an additive to prepare C-PSCs, which can improve the perovskite film morphology, reduce the film defect density, and enhance the carrier transport performance of C-PSCs. The results show that when the addition of BaTiO3 is 1.0% (mass fraction), the perovskite film is uniform and dense, and the photoelectric conversion efficiency of the cell is the highest. After the forward voltage polarization treatment, the residual polarized electric field of ferroelectric material BaTiO3 increases the built-in electric field, which provides sufficient power for realizing carrier transport and extraction, thus inhibiting the occurrence of non-radiative recombination. At the same time, the depletion layer width is increased, and the reverse saturation current is reduced, so the cell performance is significantly improved. The optimal device efficiency is 9.02%. This work provides an efficient strategy for regulating the built-in electric field by doping perovskite absorption layer.
      通信作者: 陶海军, taohaijun@nuaa.edu.cn
      Corresponding author: Tao Hai-Jun, taohaijun@nuaa.edu.cn
    [1]

    Qiu L B, Ono L K, Qi Y B 2018 Mater. Today Energy 7 169Google Scholar

    [2]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [3]

    NREL, Best Research-Cell Efficiencies: Emerging Photovoltaics https://www.nrel.gov/pv/cell-efficiency.html [2023-5-28

    [4]

    Cai Y, Liang L S, Gao P 2018 Chin. Phys. B 27 018805Google Scholar

    [5]

    Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I, Lee J, Seo J 2018 Nat. Energy 3 682Google Scholar

    [6]

    Su H, Xiao J Y, Li Q H, Peng C, Zhang X X, Mao C, Yao Q, Lu Y J, Ku Z L, Zhong J 2020 Mater. Sci. Semicond. Proc. 107 104809Google Scholar

    [7]

    Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396Google Scholar

    [8]

    李家森 2021 硕士学位论文 (北京: 北京交通大学)

    Li J S 2021 M. S. Thesis (Beijing: Beijing Jiaotong University

    [9]

    Zhang L Z, Liu C, Zhang J, Li X N, Cheng C, Tian Y Q, Jen A K Y, Xu B M 2018 Adv. Mater. 30 1804028Google Scholar

    [10]

    Ye T, Hou Y C, Nozariasbmarz A, Yang D, Yoon J, Zheng L Y, Wang K, Wang K, Ramakrishna S, Priya S 2021 ACS Energy Lett. 6 3044Google Scholar

    [11]

    Wang K, Zheng L Y, Hou Y C, Nozariasbmarz A, Poudel B, Yoon J, Ye T, Yang D, Pogrebnyakov A V, Gopalan V, Priya S 2022 Joule 6 756Google Scholar

    [12]

    张世宁, 张贤, 杨爽, 俞文锦, 任博文, 吴存存, 肖立新 2023 科学通报 68 39Google Scholar

    Zhang S N, Zhang X, Yang S, Yu W J, Ren B W, Wu C C, Xiao L X 2023 Chin. Sci. Bull. 68 39Google Scholar

    [13]

    王明梓 2022 博士学位论文 (西安: 西北大学)

    Wang M Z 2022 Ph. D. Dissertation (Xi’an: Northwest University

    [14]

    Feng K Y, Liu X Y, Si D H, Tang X, Xing A, Osada M, Xiao P 2017 J. Power Sources 350 35Google Scholar

    [15]

    Chen W J, Liu S, Li Q Q, Cheng Q R, He B S, Hu Z J, Shen Y X, Chen H Y, Xu G Y, Ou X M, Yang H Y, Xi J C, Li Y W, Li Y F 2022 Adv. Mater. 34 2110482Google Scholar

    [16]

    Zhang C C, Wang Z K, Yuan S, Wang R, Li M, Jimoh M F, Liao L S, Yang Y 2019 Adv. Mater. 31 1902222Google Scholar

    [17]

    Zhou Z M, Li X, Cai M L, Xie F X, Wu Y Z, Lan Z, Yang X D, Qiang Y H, Islam A, Han L Y 2017 Adv. Energy Mater. 7 1700763Google Scholar

    [18]

    Euvrard J, Gunawan O, Mitzi D B 2019 Adv. Energy Mater. 9 1902706Google Scholar

    [19]

    Jiang Q, Zhang L Q, Wang H L, Yang X L, Meng J H, Liu H, Yin Z G, Wu J L, Zhang X W, You J B 2017 Nat. Energy 2 16177Google Scholar

    [20]

    Chen Q, Zhou H P, Song T B, Luo S, Hong Z R, Duan H S, Dou L T, Liu Y S, Yang Y 2014 Nano Lett. 14 4158Google Scholar

    [21]

    Li T T, Pan Y F, Wang Z, Xia Y D, Chen Y H, Huang W 2017 J. Mater. Chem. A 5 12602Google Scholar

    [22]

    Jiang Q, Chu Z N, Wang P Y, Yang X L, Liu H, Wang Y, Yin Z G, Wu J L, Zhang X W, You J B 2017 Adv. Mater. 29 1703852Google Scholar

    [23]

    Liu Z H, Wang L, Xie X Y 2020 J. Mater. Chem. C 8 11882Google Scholar

    [24]

    O’Malley K M, Li C Z, Yip H L, Jen A K Y 2012 Adv. Energy Mater. 2 82Google Scholar

    [25]

    Abu Laban W, Etgar L 2013 Energy Environ. Sci. 6 3249Google Scholar

    [26]

    Bai D L, Zhang J R, Jin Z W, Bian H, Wang K, Wang H R, Liang L, Wang Q, Liu S F 2018 ACS Energy Lett. 3 970Google Scholar

    [27]

    Zhu L Z, Ye J J, Zhang X H, Zheng H Y, Liu G Z, Pan X, Dai S Y 2017 J. Mater. Chem. A 5 3675Google Scholar

    [28]

    Hegedus S S, Shafarman W N 2004 Prog. Photovolt. 12 155Google Scholar

    [29]

    朱丽杰 2018 博士学位论文 (北京: 北京交通大学)

    Zhu L J 2018 Ph. D. Dissertation (Beijing: Beijing Jiaotong University

    [30]

    Niu T Q, Lu J, Tang M C, Barrit D, Smilgies D M, Yang Z, Li J B, Fan Y Y, Luo T, McCulloch I, Amassian A, Liu S Z, Zhao K 2018 Energy Environ. Sci. 11 3358Google Scholar

  • 图 1  (a) BaTiO3浓度不同时所制备的MAPbI3薄膜的XRD衍射图谱; (b)—(d)对应BaTiO3:MAPbI3复合薄膜(110)衍射峰归一化处理(b), 强度变化(c), 半峰宽(FWHM)变化(d)

    Fig. 1.  (a) XRD patterns of MAPbI3 films prepared with different BaTiO3 concentrations. (b)–(d) Corresponding to the (110) diffraction peak of BaTiO3:MAPbI3 composite film: (b) (110) crystal plane normalization treatment; (c) strength variation; (d) full-width at half-maximum (FWHM) variation.

    图 2  不同质量分数BaTiO3掺杂MAPbI3薄膜的FE-SEM图 (a) 0; (b) 0.5%; (c) 1.0%; (d) 2.0%

    Fig. 2.  FE-SEM images of MAPbI3 films prepared with different BaTiO3 concentrations: (a) 0; (b) 0.5%; (c) 1.0%; (d) 2.0%.

    图 3  (a) FTO/TiO2/MAPbI3和(b) FTO/TiO2/BaTiO3:MAPbI3薄膜的截面图

    Fig. 3.  Film cross-section of (a) FTO/TiO2/MAPbI3 and (b) FTO/TiO2/BaTiO3:MAPbI3.

    图 4  BaTiO3浓度不同时所制备的MAPbI3 C-PSCs的J -V特性曲线

    Fig. 4.  J -V curves of MAPbI3 C-PSCs prepared with different BaTiO3 concentrations.

    图 5  基于MAPbI3和BaTiO3:MAPbI3单电子器件的空间电荷限制电流(SCLC)测试曲线

    Fig. 5.  Space charge limited current measurement curves for MAPbI3 and BaTiO3:MAPbI3 single-electron device.

    图 6  MAPbI3和BaTiO3:MAPbI3基C-PSCs的(a)暗电流曲线, (b) EQE曲线, (c)稳态输出电流曲线, (d)电化学阻抗谱(暗态, 偏压0.6 V, 插图为等效电路图)

    Fig. 6.  MAPbI3 and BaTiO3:MAPbI3 C-PSCs: (a) Dark current curves; (b) EQE curves; (c) steady-state output current curves; (d) electrochemical impedance spectroscopy (dark state, 0.6 V bias, illustrated as equivalent circuit diagram).

    图 7  不同极化电压处理的BaTiO3:MAPbI3基C-PSCs的J -V特性曲线

    Fig. 7.  J -V curves of BaTiO3:MAPbI3 C-PSCs treated with different polarization voltages.

    图 8  极化处理前后BaTiO3:MAPbI3基C-PSCs的(a) Mott-Schottky曲线和(b)稳态PL光谱

    Fig. 8.  BaTiO3:MAPbI3 C-PSCs before and after polarization treatment: (a) Mott-Schottky curves; (b) steady-state PL spectrum.

    图 9  极化处理前后BaTiO3:MAPbI3基C-PSCs的(a) –dV/dJ与(JSCJ )–1关系曲线; (b) d(J/JSC)/dVVVoc关系曲线; (c) 电化学阻抗谱; (d)不同偏压的Rrec

    Fig. 9.  BaTiO3:MAPbI3 C-PSCs before and after polarization treatment: (a) Relationship between –dV/dJ and (JSCJ )–1; (b) relationship between d(J/JSC)/dV and VVoc; (c) electrochemical impedance spectroscopy; (d) Rrec with different bias.

    图 10  极化处理前后BaTiO3:MAPbI3基C-PSCs的(a)暗电流曲线和(b)电压衰减曲线

    Fig. 10.  BaTiO3:MAPbI3 C-PSCs before and after polarization treatment: (a) Dark current curves; (b) voltage decay curves.

    图 11  BaTiO3:MAPbI3基C-PSCs的(a)极化原理图和(b)性能提升原理图

    Fig. 11.  BaTiO3:MAPbI3 C-PSCs: (a) Polarization schematic diagram; (b) performance improvement schematic diagram.

    表 1  不同浓度BaTiO3所制备的MAPbI3 C-PSCs的光伏性能参数

    Table 1.  Photovoltaic parameters of MAPbI3 C-PSCs prepared with different BaTiO3 concentrations.

    Voc/V JSC/(mA·cm–2) FF/% PCE/%
    Pristine 0.868 10.39 48.26 4.35
    0.5% 0.885 12.41 46.92 5.15
    1.0% 0.904 12.72 50.99 5.87
    2.0% 0.921 11.92 43.70 4.80
    下载: 导出CSV

    表 2  不同极化电压处理的BaTiO3:MAPbI3基C-PSCs的光伏性能参数

    Table 2.  Photovoltaic parameters of BaTiO3:MAPbI3 C-PSCs treated with different polarization voltages.

    Voc/V JSC/(mA·cm–2) FF/% PCE/%
    Pristine 0.888 13.47 47.10 5.64
    0.5 V/μm 0.989 15.72 55.66 8.65
    1.0 V/μm 1.005 15.59 56.40 8.83
    2.0 V/μm 0.940 14.92 50.57 7.09
    下载: 导出CSV

    表 3  极化处理前后BaTiO3:MAPbI3基C-PSCs的NA, Vbi, W

    Table 3.  NA, Vbi, W values of BaTiO3:MAPbI3 C-PSCs before and after polarization treatment.

    NA/cm–3 W/nm Vbi/V
    With BaTiO3 5.82×1015 75.23 0.926
    After Poling 3.91×1015 86.30 1.002
    下载: 导出CSV
  • [1]

    Qiu L B, Ono L K, Qi Y B 2018 Mater. Today Energy 7 169Google Scholar

    [2]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [3]

    NREL, Best Research-Cell Efficiencies: Emerging Photovoltaics https://www.nrel.gov/pv/cell-efficiency.html [2023-5-28

    [4]

    Cai Y, Liang L S, Gao P 2018 Chin. Phys. B 27 018805Google Scholar

    [5]

    Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I, Lee J, Seo J 2018 Nat. Energy 3 682Google Scholar

    [6]

    Su H, Xiao J Y, Li Q H, Peng C, Zhang X X, Mao C, Yao Q, Lu Y J, Ku Z L, Zhong J 2020 Mater. Sci. Semicond. Proc. 107 104809Google Scholar

    [7]

    Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396Google Scholar

    [8]

    李家森 2021 硕士学位论文 (北京: 北京交通大学)

    Li J S 2021 M. S. Thesis (Beijing: Beijing Jiaotong University

    [9]

    Zhang L Z, Liu C, Zhang J, Li X N, Cheng C, Tian Y Q, Jen A K Y, Xu B M 2018 Adv. Mater. 30 1804028Google Scholar

    [10]

    Ye T, Hou Y C, Nozariasbmarz A, Yang D, Yoon J, Zheng L Y, Wang K, Wang K, Ramakrishna S, Priya S 2021 ACS Energy Lett. 6 3044Google Scholar

    [11]

    Wang K, Zheng L Y, Hou Y C, Nozariasbmarz A, Poudel B, Yoon J, Ye T, Yang D, Pogrebnyakov A V, Gopalan V, Priya S 2022 Joule 6 756Google Scholar

    [12]

    张世宁, 张贤, 杨爽, 俞文锦, 任博文, 吴存存, 肖立新 2023 科学通报 68 39Google Scholar

    Zhang S N, Zhang X, Yang S, Yu W J, Ren B W, Wu C C, Xiao L X 2023 Chin. Sci. Bull. 68 39Google Scholar

    [13]

    王明梓 2022 博士学位论文 (西安: 西北大学)

    Wang M Z 2022 Ph. D. Dissertation (Xi’an: Northwest University

    [14]

    Feng K Y, Liu X Y, Si D H, Tang X, Xing A, Osada M, Xiao P 2017 J. Power Sources 350 35Google Scholar

    [15]

    Chen W J, Liu S, Li Q Q, Cheng Q R, He B S, Hu Z J, Shen Y X, Chen H Y, Xu G Y, Ou X M, Yang H Y, Xi J C, Li Y W, Li Y F 2022 Adv. Mater. 34 2110482Google Scholar

    [16]

    Zhang C C, Wang Z K, Yuan S, Wang R, Li M, Jimoh M F, Liao L S, Yang Y 2019 Adv. Mater. 31 1902222Google Scholar

    [17]

    Zhou Z M, Li X, Cai M L, Xie F X, Wu Y Z, Lan Z, Yang X D, Qiang Y H, Islam A, Han L Y 2017 Adv. Energy Mater. 7 1700763Google Scholar

    [18]

    Euvrard J, Gunawan O, Mitzi D B 2019 Adv. Energy Mater. 9 1902706Google Scholar

    [19]

    Jiang Q, Zhang L Q, Wang H L, Yang X L, Meng J H, Liu H, Yin Z G, Wu J L, Zhang X W, You J B 2017 Nat. Energy 2 16177Google Scholar

    [20]

    Chen Q, Zhou H P, Song T B, Luo S, Hong Z R, Duan H S, Dou L T, Liu Y S, Yang Y 2014 Nano Lett. 14 4158Google Scholar

    [21]

    Li T T, Pan Y F, Wang Z, Xia Y D, Chen Y H, Huang W 2017 J. Mater. Chem. A 5 12602Google Scholar

    [22]

    Jiang Q, Chu Z N, Wang P Y, Yang X L, Liu H, Wang Y, Yin Z G, Wu J L, Zhang X W, You J B 2017 Adv. Mater. 29 1703852Google Scholar

    [23]

    Liu Z H, Wang L, Xie X Y 2020 J. Mater. Chem. C 8 11882Google Scholar

    [24]

    O’Malley K M, Li C Z, Yip H L, Jen A K Y 2012 Adv. Energy Mater. 2 82Google Scholar

    [25]

    Abu Laban W, Etgar L 2013 Energy Environ. Sci. 6 3249Google Scholar

    [26]

    Bai D L, Zhang J R, Jin Z W, Bian H, Wang K, Wang H R, Liang L, Wang Q, Liu S F 2018 ACS Energy Lett. 3 970Google Scholar

    [27]

    Zhu L Z, Ye J J, Zhang X H, Zheng H Y, Liu G Z, Pan X, Dai S Y 2017 J. Mater. Chem. A 5 3675Google Scholar

    [28]

    Hegedus S S, Shafarman W N 2004 Prog. Photovolt. 12 155Google Scholar

    [29]

    朱丽杰 2018 博士学位论文 (北京: 北京交通大学)

    Zhu L J 2018 Ph. D. Dissertation (Beijing: Beijing Jiaotong University

    [30]

    Niu T Q, Lu J, Tang M C, Barrit D, Smilgies D M, Yang Z, Li J B, Fan Y Y, Luo T, McCulloch I, Amassian A, Liu S Z, Zhao K 2018 Energy Environ. Sci. 11 3358Google Scholar

  • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [3] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [4] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [5] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [6] 孙盟杰, 何志群, 郑毅帆, 邵宇川. EDTA/SnO2双层复合电子传输层在钙钛矿电池中的应用. 物理学报, 2022, 71(13): 137201. doi: 10.7498/aps.71.20220074
    [7] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [8] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [9] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [10] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [11] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔. 氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用. 物理学报, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [12] 朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊. 缺陷离子调控对BiFeO3-BaTiO3基钙钛矿材料的铁电光伏特性影响. 物理学报, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [13] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [14] 刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤. 双添加剂处理电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯对钙钛矿太阳能电池性能的影响. 物理学报, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [15] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [16] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展. 物理学报, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [17] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [18] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [19] 龚伟, 徐征, 赵谡玲, 刘晓东, 杨倩倩, 樊星. NPB阳极缓冲层对反型结构聚合物太阳能电池性能的影响. 物理学报, 2014, 63(7): 078801. doi: 10.7498/aps.63.078801
    [20] 赵凤岐, 张敏, 李志强, 姬延明. 纤锌矿In0.19Ga0.81N/GaN量子阱中光学声子和内建电场对束缚极化子结合能的影响. 物理学报, 2014, 63(17): 177101. doi: 10.7498/aps.63.177101
计量
  • 文章访问数:  3206
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-14
  • 修回日期:  2023-10-19
  • 上网日期:  2023-11-02
  • 刊出日期:  2024-02-05

/

返回文章
返回