搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿太阳能电池辐照实验研究

李培 徐洁 贺朝会 刘佳欣

引用本文:
Citation:

钙钛矿太阳能电池辐照实验研究

李培, 徐洁, 贺朝会, 刘佳欣

Experimental study on irradiation of perovskite solar cells

Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin
PDF
HTML
导出引用
  • 太阳能电池作为航天器的重要能源, 其空间抗辐射性能具有重要的研究意义. 钙钛矿太阳能电池因其较长的载流子寿命、较高的光吸收性能、高载流子迁移率以及成本低和易于制备等优势成为太阳能电池研究的前沿和热点. 近年来, 钙钛矿太阳能电池的光电转换效率已逐渐提升至25.5%, 在各个领域逐渐走向实际应用, 并将有可能应用于航天器的电源系统. 目前, 钙钛矿太阳能电池的空间辐照效应研究较为分散, 实验样品来自不同的制备工艺, 不同器件结构和组分比例会导致实验结果的差异. 本文基于自主研制的钙钛矿太阳能电池样品分别开展了质子、电子以及γ辐照实验研究, 通过分析辐照前后的光电特性预测其辐射效应规律, 为钙钛矿太阳能电池的空间应用提供实验依据.
    Solar cell is an important energy source for spacecraft. It is significant to study its resistance to space particle irradiation. In the past ten years, the research hotspot of solar cells has focused on the perovskite solar cells (PSCs) because of their advantages of long carrier lifetime, high light absorption performance, low cost and easy preparation. By now the photoelectric conversion efficiency of PSCs has reached to 25.5%. Recently, PSCs were found to be robust to space particle irradiation, which makes them possible to be used in the satellites and spacecraft. The antiradiation effects of perovskite solar cells with different cell structures and preparation processes have been studied, but the obtained experimental results are different. In this work, the experiments on radiations of protons, electrons and gamma rays of the same PSCs are carried out. The photoelectric characteristics before and after space particle irradiation are characterized, so as to analyze the radiation effect of PSCs. The experimental results show that the PSCs are sensitive to electron radiation and gamma radiation. With the increase of electron fluence and gamma total dose, the degradation of photoelectric characteristics of PSCs intensifies gradually. For gamma radiation, PSCs exhibit the most significantly radiation sensitivity. The PSCs are found to be robust to the proton irradiation. With the increase of proton fluence, the short-circuit currents of PSCs change little, the open-circuit voltages remain essentially unchanged, and the cell efficiency can be stably maintained at 94% of the pre-irradiation performance. Based on the above experimental data, a semi-empirical formula is established, and the radiation damage law of PSCs can be predicted with less experimental data, which will support the space application of PSCs.
      通信作者: 李培, lipei0916@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12005159)资助的课题
      Corresponding author: Li Pei, lipei0916@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12005159)
    [1]

    Yoon S J, Kuno M, Kamat P V 2017 ACS Energy Lett. 9 1507

    [2]

    Morana M, Wegscheider M, Bonanni A, Kopidakis N, Shaheen S, Scharber M, Zhu Z, Waller D, Gaudiana R, Brabec C 2008 Adv. Funct. Mater. 18 1757Google Scholar

    [3]

    Barnham K W J, Mazzer M, Clive B 2006 Nat. Mater. 5 161Google Scholar

    [4]

    Green M A 2001 Prog. Photovoltaics 9 123Google Scholar

    [5]

    李燕, 贺红, 党威武, 陈雪莲, 孙璨, 郑嘉璐 2021 物理学报 70 098402Google Scholar

    Li Y, He H, Dang W W, Chen X L, Sun C, Zheng J L 2021 Acta Phys. Sin. 70 098402Google Scholar

    [6]

    Kojima A, Teshima K, Shirai Y, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6052Google Scholar

    [7]

    Green M A, Emery K A, Hishikawa Y, Warta W, Dunlop E D 2014 Prog. Photovolt: Res. Appl. 23 1

    [8]

    Jasenek A, Rau U, Weinert K, Kötschau I M, Hanna G, Voorwinden G, Powalla M, Schock H W, Werner J H 2001 Thin Solid Films 387 228Google Scholar

    [9]

    李澄举 1997 微波与卫星通信 3 00470

    Li C J 1997 Microw. Satell. Commun. 3 00470

    [10]

    Bourgoin J C, Angelis N D 2001 Sol. Energ. Mater. Sol. C. 66 467Google Scholar

    [11]

    李彦朋 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Li Y P 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [12]

    王杰 2016 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Wang J 2016 M. S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [13]

    Grancini G, Roldan-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin M K 2017 Nat. Commun. 8 15684Google Scholar

    [14]

    Meng L, You J, Yang Y 2018 Nat. Commun. 9 5265Google Scholar

    [15]

    Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchunangatchaval T, Wheeler S, Durrant J R, Haque S A 2016 Energy Environ. Sci. 9 1655Google Scholar

    [16]

    Lang F, Nickel N H, Bundesmann J, Seidel S, Denker A, Albrecht S, Brus V V, Rappich J, Rech B, Landi G, Neitzert H C 2016 Adv. Mater. 28 8726Google Scholar

    [17]

    Durant B K, Afshari H, Singh S, Rout B, Eperon G E, Sellers I R 2021 ACS Energy Lett. 6-7 2362

    [18]

    Lang F, Jošt M, Frohna K, Köhnen E, Al-Ashouri A, Bowman A R, Bertram T, Morales-Vilches A B, Koushik D, Tennyson E M, Galkowski K, Landi G, Creatore M, Stannowski B, Kaufmann C A, Bundesmann J, Rappich J, Rech B, Denker A, Albrecht S, Neitzert H C, Nickel N H, Stranks S D 2020 Joule 4 1054Google Scholar

    [19]

    Kanaya S, Kim G, Ikegami M, Miyasaka T, Hirose K 2019 J. Phys. Chem. Lett. 10 22

    [20]

    Miyazawa Y, Ikegami M, Chen H W, Ohshima T, Imaizumi M, Hirose K, Miyasaka T 2018 iScience 2 148Google Scholar

    [21]

    Yang S, Xu Z Y, Xue S, Kandlakunta P, Cao L, Huang J S 2019 Adv. Mater. 31 1805547Google Scholar

    [22]

    Li P, Dong H, Lan J H, Bai Y R, He C H, Ma L Y, Li Y H, Liu J X 2022 Materials 15 4

    [23]

    Shim H E, Park J, Yeon Y, Lee N, Gwon H J 2022 J. Korean Phys. Soc. 3 80

  • 图 1  钙钛矿太阳能电池电子显微镜扫描截面示意图

    Fig. 1.  Cross-sectional SEM image of perovskite solar cell.

    图 2  太阳能电池J-V曲线相关的电性能参数

    Fig. 2.  Parameters of electrical performance associated with J-V curves of solar cells.

    图 3  钙钛矿太阳能电池样品稳定性测试

    Fig. 3.  Stability test of perovskite solar cells.

    图 4  钙钛矿太阳能电池J-V特性曲线随不同辐照条件的变化 (a) 质子辐照; (b) 电子辐照; (c) γ辐照

    Fig. 4.  Variation of J-V characteristics of perovskite solar cells with different irradiation conditions: (a) Proton irradiation; (b) electron irradiation; (c) gamma irradiation.

    图 5  钙钛矿太阳能电池短路电流随不同辐照条件的变化 (a)质子辐照; (b)电子辐照; (c) γ辐照

    Fig. 5.  Variation of JSC characteristics of perovskite solar cells with different irradiation conditions: (a) Proton irradiation; (b) electron irradiation; (c) gamma irradiation.

    图 6  钙钛矿太阳能电池转化效率随不同辐照条件的变化 (a)质子辐照; (b)电子辐照; (c) γ辐照

    Fig. 6.  Variation of PCE characteristics of perovskite solar cells with different irradiation conditions: (a) Proton irradiation; (b) electron irradiation; (c) gamma irradiation.

    图 7  不同辐照条件下钙钛矿太阳能电池电学特性退化随辐照注量的变化 (a)短路电流; (b)开路电压; (c)光电转化效率

    Fig. 7.  Degradation of PSCs under different irradiation conditions varies with the radiation fluence: (a) JSC; (b) VOC; (c) PCE

    表 1  不同辐射环境下钙钛矿太阳能电池各敏感参数半经验公式的拟合系数

    Table 1.  Fitting coefficients of semi empirical formulas for sensitive parameters of perovskite solar cells under different radiation environments.

    质子辐照电子辐照γ辐照
    VOCC = 0.041,
    $ \varphi_x $ = 5.55×1014
    C = 0.015,
    $\varphi_x$ = 2.81×1013
    C = 0.001,
    $\varphi_x$ = 2.95×109
    JSCC = 0.052,
    $\varphi_x$ = 5.67×1013
    C = 0.048,
    $\varphi_x$ = 6.35×1011
    C = 0.013,
    $\varphi_x$ = 3.81×1010
    PmaxC = 0.086,
    $\varphi_x$ = 9.66×1013
    C = 0.091,
    $\varphi_x$ = 1.65×1012
    C = 0.007,
    $\varphi_x$ = 4.63×107
    下载: 导出CSV
  • [1]

    Yoon S J, Kuno M, Kamat P V 2017 ACS Energy Lett. 9 1507

    [2]

    Morana M, Wegscheider M, Bonanni A, Kopidakis N, Shaheen S, Scharber M, Zhu Z, Waller D, Gaudiana R, Brabec C 2008 Adv. Funct. Mater. 18 1757Google Scholar

    [3]

    Barnham K W J, Mazzer M, Clive B 2006 Nat. Mater. 5 161Google Scholar

    [4]

    Green M A 2001 Prog. Photovoltaics 9 123Google Scholar

    [5]

    李燕, 贺红, 党威武, 陈雪莲, 孙璨, 郑嘉璐 2021 物理学报 70 098402Google Scholar

    Li Y, He H, Dang W W, Chen X L, Sun C, Zheng J L 2021 Acta Phys. Sin. 70 098402Google Scholar

    [6]

    Kojima A, Teshima K, Shirai Y, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6052Google Scholar

    [7]

    Green M A, Emery K A, Hishikawa Y, Warta W, Dunlop E D 2014 Prog. Photovolt: Res. Appl. 23 1

    [8]

    Jasenek A, Rau U, Weinert K, Kötschau I M, Hanna G, Voorwinden G, Powalla M, Schock H W, Werner J H 2001 Thin Solid Films 387 228Google Scholar

    [9]

    李澄举 1997 微波与卫星通信 3 00470

    Li C J 1997 Microw. Satell. Commun. 3 00470

    [10]

    Bourgoin J C, Angelis N D 2001 Sol. Energ. Mater. Sol. C. 66 467Google Scholar

    [11]

    李彦朋 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Li Y P 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [12]

    王杰 2016 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Wang J 2016 M. S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [13]

    Grancini G, Roldan-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin M K 2017 Nat. Commun. 8 15684Google Scholar

    [14]

    Meng L, You J, Yang Y 2018 Nat. Commun. 9 5265Google Scholar

    [15]

    Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchunangatchaval T, Wheeler S, Durrant J R, Haque S A 2016 Energy Environ. Sci. 9 1655Google Scholar

    [16]

    Lang F, Nickel N H, Bundesmann J, Seidel S, Denker A, Albrecht S, Brus V V, Rappich J, Rech B, Landi G, Neitzert H C 2016 Adv. Mater. 28 8726Google Scholar

    [17]

    Durant B K, Afshari H, Singh S, Rout B, Eperon G E, Sellers I R 2021 ACS Energy Lett. 6-7 2362

    [18]

    Lang F, Jošt M, Frohna K, Köhnen E, Al-Ashouri A, Bowman A R, Bertram T, Morales-Vilches A B, Koushik D, Tennyson E M, Galkowski K, Landi G, Creatore M, Stannowski B, Kaufmann C A, Bundesmann J, Rappich J, Rech B, Denker A, Albrecht S, Neitzert H C, Nickel N H, Stranks S D 2020 Joule 4 1054Google Scholar

    [19]

    Kanaya S, Kim G, Ikegami M, Miyasaka T, Hirose K 2019 J. Phys. Chem. Lett. 10 22

    [20]

    Miyazawa Y, Ikegami M, Chen H W, Ohshima T, Imaizumi M, Hirose K, Miyasaka T 2018 iScience 2 148Google Scholar

    [21]

    Yang S, Xu Z Y, Xue S, Kandlakunta P, Cao L, Huang J S 2019 Adv. Mater. 31 1805547Google Scholar

    [22]

    Li P, Dong H, Lan J H, Bai Y R, He C H, Ma L Y, Li Y H, Liu J X 2022 Materials 15 4

    [23]

    Shim H E, Park J, Yeon Y, Lee N, Gwon H J 2022 J. Korean Phys. Soc. 3 80

  • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [3] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [4] 薛斌韬, 张利民, 梁永齐, 刘宁, 汪定平, 陈亮, 王铁山. 质子辐照CH3NH3PbI3基钙钛矿太阳能电池的损伤效应. 物理学报, 2023, 72(13): 138802. doi: 10.7498/aps.72.20222100
    [5] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [6] 孙盟杰, 何志群, 郑毅帆, 邵宇川. EDTA/SnO2双层复合电子传输层在钙钛矿电池中的应用. 物理学报, 2022, 71(13): 137201. doi: 10.7498/aps.71.20220074
    [7] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [8] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [9] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [10] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔. 氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用. 物理学报, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [11] 刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤. 双添加剂处理电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯对钙钛矿太阳能电池性能的影响. 物理学报, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [12] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [13] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [14] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [15] 朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴. 300 eV–1 GeV质子在硅中非电离能损的计算. 物理学报, 2014, 63(6): 066102. doi: 10.7498/aps.63.066102
    [16] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [17] 金豫浙, 胡益培, 曾祥华, 杨义军. GaN基多量子阱蓝光LED的γ辐照效应. 物理学报, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [18] 王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇. 质子辐照电荷耦合器件诱导电荷转移效率退化的实验分析. 物理学报, 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
    [19] 乔 辉, 廖 毅, 胡伟达, 邓 屹, 袁永刚, 张勤耀, 李向阳, 龚海梅. 碲镉汞焦平面光伏器件的实时γ辐照效应研究. 物理学报, 2008, 57(11): 7088-7093. doi: 10.7498/aps.57.7088
    [20] 何宝平, 陈 伟, 王桂珍. CMOS器件60Co γ射线、电子和质子电离辐射损伤比较. 物理学报, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
计量
  • 文章访问数:  4774
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-17
  • 修回日期:  2023-03-25
  • 上网日期:  2023-04-21
  • 刊出日期:  2023-06-20

/

返回文章
返回