-
太阳能电池作为航天器的重要能源, 其空间抗辐射性能具有重要的研究意义. 钙钛矿太阳能电池因其较长的载流子寿命、较高的光吸收性能、高载流子迁移率以及成本低和易于制备等优势成为太阳能电池研究的前沿和热点. 近年来, 钙钛矿太阳能电池的光电转换效率已逐渐提升至25.5%, 在各个领域逐渐走向实际应用, 并将有可能应用于航天器的电源系统. 目前, 钙钛矿太阳能电池的空间辐照效应研究较为分散, 实验样品来自不同的制备工艺, 不同器件结构和组分比例会导致实验结果的差异. 本文基于自主研制的钙钛矿太阳能电池样品分别开展了质子、电子以及γ辐照实验研究, 通过分析辐照前后的光电特性预测其辐射效应规律, 为钙钛矿太阳能电池的空间应用提供实验依据.Solar cell is an important energy source for spacecraft. It is significant to study its resistance to space particle irradiation. In the past ten years, the research hotspot of solar cells has focused on the perovskite solar cells (PSCs) because of their advantages of long carrier lifetime, high light absorption performance, low cost and easy preparation. By now the photoelectric conversion efficiency of PSCs has reached to 25.5%. Recently, PSCs were found to be robust to space particle irradiation, which makes them possible to be used in the satellites and spacecraft. The antiradiation effects of perovskite solar cells with different cell structures and preparation processes have been studied, but the obtained experimental results are different. In this work, the experiments on radiations of protons, electrons and gamma rays of the same PSCs are carried out. The photoelectric characteristics before and after space particle irradiation are characterized, so as to analyze the radiation effect of PSCs. The experimental results show that the PSCs are sensitive to electron radiation and gamma radiation. With the increase of electron fluence and gamma total dose, the degradation of photoelectric characteristics of PSCs intensifies gradually. For gamma radiation, PSCs exhibit the most significantly radiation sensitivity. The PSCs are found to be robust to the proton irradiation. With the increase of proton fluence, the short-circuit currents of PSCs change little, the open-circuit voltages remain essentially unchanged, and the cell efficiency can be stably maintained at 94% of the pre-irradiation performance. Based on the above experimental data, a semi-empirical formula is established, and the radiation damage law of PSCs can be predicted with less experimental data, which will support the space application of PSCs.
-
Keywords:
- perovskite solar cell /
- radiation experiments /
- proton /
- electron /
- gamma irradiation
[1] Yoon S J, Kuno M, Kamat P V 2017 ACS Energy Lett. 9 1507
[2] Morana M, Wegscheider M, Bonanni A, Kopidakis N, Shaheen S, Scharber M, Zhu Z, Waller D, Gaudiana R, Brabec C 2008 Adv. Funct. Mater. 18 1757Google Scholar
[3] Barnham K W J, Mazzer M, Clive B 2006 Nat. Mater. 5 161Google Scholar
[4] Green M A 2001 Prog. Photovoltaics 9 123Google Scholar
[5] 李燕, 贺红, 党威武, 陈雪莲, 孙璨, 郑嘉璐 2021 物理学报 70 098402Google Scholar
Li Y, He H, Dang W W, Chen X L, Sun C, Zheng J L 2021 Acta Phys. Sin. 70 098402Google Scholar
[6] Kojima A, Teshima K, Shirai Y, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6052Google Scholar
[7] Green M A, Emery K A, Hishikawa Y, Warta W, Dunlop E D 2014 Prog. Photovolt: Res. Appl. 23 1
[8] Jasenek A, Rau U, Weinert K, Kötschau I M, Hanna G, Voorwinden G, Powalla M, Schock H W, Werner J H 2001 Thin Solid Films 387 228Google Scholar
[9] 李澄举 1997 微波与卫星通信 3 00470
Li C J 1997 Microw. Satell. Commun. 3 00470
[10] Bourgoin J C, Angelis N D 2001 Sol. Energ. Mater. Sol. C. 66 467Google Scholar
[11] 李彦朋 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Li Y P 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[12] Wang J 2016 M. S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[13] Grancini G, Roldan-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin M K 2017 Nat. Commun. 8 15684Google Scholar
[14] Meng L, You J, Yang Y 2018 Nat. Commun. 9 5265Google Scholar
[15] Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchunangatchaval T, Wheeler S, Durrant J R, Haque S A 2016 Energy Environ. Sci. 9 1655Google Scholar
[16] Lang F, Nickel N H, Bundesmann J, Seidel S, Denker A, Albrecht S, Brus V V, Rappich J, Rech B, Landi G, Neitzert H C 2016 Adv. Mater. 28 8726Google Scholar
[17] Durant B K, Afshari H, Singh S, Rout B, Eperon G E, Sellers I R 2021 ACS Energy Lett. 6-7 2362
[18] Lang F, Jošt M, Frohna K, Köhnen E, Al-Ashouri A, Bowman A R, Bertram T, Morales-Vilches A B, Koushik D, Tennyson E M, Galkowski K, Landi G, Creatore M, Stannowski B, Kaufmann C A, Bundesmann J, Rappich J, Rech B, Denker A, Albrecht S, Neitzert H C, Nickel N H, Stranks S D 2020 Joule 4 1054Google Scholar
[19] Kanaya S, Kim G, Ikegami M, Miyasaka T, Hirose K 2019 J. Phys. Chem. Lett. 10 22
[20] Miyazawa Y, Ikegami M, Chen H W, Ohshima T, Imaizumi M, Hirose K, Miyasaka T 2018 iScience 2 148Google Scholar
[21] Yang S, Xu Z Y, Xue S, Kandlakunta P, Cao L, Huang J S 2019 Adv. Mater. 31 1805547Google Scholar
[22] Li P, Dong H, Lan J H, Bai Y R, He C H, Ma L Y, Li Y H, Liu J X 2022 Materials 15 4
[23] Shim H E, Park J, Yeon Y, Lee N, Gwon H J 2022 J. Korean Phys. Soc. 3 80
-
表 1 不同辐射环境下钙钛矿太阳能电池各敏感参数半经验公式的拟合系数
Table 1. Fitting coefficients of semi empirical formulas for sensitive parameters of perovskite solar cells under different radiation environments.
质子辐照 电子辐照 γ辐照 VOC C = 0.041,
$ \varphi_x $ = 5.55×1014C = 0.015,
$\varphi_x$ = 2.81×1013C = 0.001,
$\varphi_x$ = 2.95×109JSC C = 0.052,
$\varphi_x$ = 5.67×1013C = 0.048,
$\varphi_x$ = 6.35×1011C = 0.013,
$\varphi_x$ = 3.81×1010Pmax C = 0.086,
$\varphi_x$ = 9.66×1013C = 0.091,
$\varphi_x$ = 1.65×1012C = 0.007,
$\varphi_x$ = 4.63×107 -
[1] Yoon S J, Kuno M, Kamat P V 2017 ACS Energy Lett. 9 1507
[2] Morana M, Wegscheider M, Bonanni A, Kopidakis N, Shaheen S, Scharber M, Zhu Z, Waller D, Gaudiana R, Brabec C 2008 Adv. Funct. Mater. 18 1757Google Scholar
[3] Barnham K W J, Mazzer M, Clive B 2006 Nat. Mater. 5 161Google Scholar
[4] Green M A 2001 Prog. Photovoltaics 9 123Google Scholar
[5] 李燕, 贺红, 党威武, 陈雪莲, 孙璨, 郑嘉璐 2021 物理学报 70 098402Google Scholar
Li Y, He H, Dang W W, Chen X L, Sun C, Zheng J L 2021 Acta Phys. Sin. 70 098402Google Scholar
[6] Kojima A, Teshima K, Shirai Y, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6052Google Scholar
[7] Green M A, Emery K A, Hishikawa Y, Warta W, Dunlop E D 2014 Prog. Photovolt: Res. Appl. 23 1
[8] Jasenek A, Rau U, Weinert K, Kötschau I M, Hanna G, Voorwinden G, Powalla M, Schock H W, Werner J H 2001 Thin Solid Films 387 228Google Scholar
[9] 李澄举 1997 微波与卫星通信 3 00470
Li C J 1997 Microw. Satell. Commun. 3 00470
[10] Bourgoin J C, Angelis N D 2001 Sol. Energ. Mater. Sol. C. 66 467Google Scholar
[11] 李彦朋 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Li Y P 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[12] Wang J 2016 M. S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[13] Grancini G, Roldan-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin M K 2017 Nat. Commun. 8 15684Google Scholar
[14] Meng L, You J, Yang Y 2018 Nat. Commun. 9 5265Google Scholar
[15] Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchunangatchaval T, Wheeler S, Durrant J R, Haque S A 2016 Energy Environ. Sci. 9 1655Google Scholar
[16] Lang F, Nickel N H, Bundesmann J, Seidel S, Denker A, Albrecht S, Brus V V, Rappich J, Rech B, Landi G, Neitzert H C 2016 Adv. Mater. 28 8726Google Scholar
[17] Durant B K, Afshari H, Singh S, Rout B, Eperon G E, Sellers I R 2021 ACS Energy Lett. 6-7 2362
[18] Lang F, Jošt M, Frohna K, Köhnen E, Al-Ashouri A, Bowman A R, Bertram T, Morales-Vilches A B, Koushik D, Tennyson E M, Galkowski K, Landi G, Creatore M, Stannowski B, Kaufmann C A, Bundesmann J, Rappich J, Rech B, Denker A, Albrecht S, Neitzert H C, Nickel N H, Stranks S D 2020 Joule 4 1054Google Scholar
[19] Kanaya S, Kim G, Ikegami M, Miyasaka T, Hirose K 2019 J. Phys. Chem. Lett. 10 22
[20] Miyazawa Y, Ikegami M, Chen H W, Ohshima T, Imaizumi M, Hirose K, Miyasaka T 2018 iScience 2 148Google Scholar
[21] Yang S, Xu Z Y, Xue S, Kandlakunta P, Cao L, Huang J S 2019 Adv. Mater. 31 1805547Google Scholar
[22] Li P, Dong H, Lan J H, Bai Y R, He C H, Ma L Y, Li Y H, Liu J X 2022 Materials 15 4
[23] Shim H E, Park J, Yeon Y, Lee N, Gwon H J 2022 J. Korean Phys. Soc. 3 80
计量
- 文章访问数: 4774
- PDF下载量: 218
- 被引次数: 0