搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双重势垒一维光子晶体量子阱的光传输特性研究

苏安 高英俊

引用本文:
Citation:

双重势垒一维光子晶体量子阱的光传输特性研究

苏安, 高英俊

Light propagation characteristics of one-dimensional photonic crystal with double-barrier quantum well

Su An, Gao Ying-Jun
PDF
导出引用
  • 利用传输矩阵法,研究单势垒和双重势垒一维光子晶体量子阱结构的光传输特性. 结果表明: 垒层折射率总和大的单势垒光量子阱的透射峰更加精细,内部局域电场更加强; 双重势垒光量子阱的透射峰比单势垒光量子阱的透射峰精细, 内部局域电场也比单势垒光量子阱的强;随着垒层光子晶体周期数增大,双重势垒光量子阱内部局域电场增强,而且垒、阱层折射率总和之比越大,双重势垒光量子阱的内部局域电场增强速度越快,当双重垒层光子晶体周期数同时增大时,双重势垒量子阱内部局域电场增强速度最快,透射峰越加精细.随着阱层光子晶体周期数的增大,单势垒或双重势垒光量子阱的内部局域电场强度均下降,但透射峰的透射率不随之改变.该特性为设计新型可调高品质的量子光学器件提供指导.
    The light transfer characteristics of one-dimensional photonic crystal with single and double-barrier quantum well are studied by transfer matrix method. The results show that when the refractive index of the barrier layer is high, the transmission peaks in single-barrier quantum well of photonic crystal will be narrower and the inner localized field will be stronger, that the peak in the double-barrier is narrower than the one in the single-barrier, and also the inner localized field is stronger in the double-barrier, that with the number of period layer in the photonic crystal increasing, the inner localized field in the double-barrier well is enhanced, furthermore, the bigger the refractive index ratio between barrier and dielectric layers of well, the stronger the inner localized field in the photonic crystal quantum well is. In addition, when the periodicity of the barrier layer in the photonic crystal with a thicker refractive index increases, the inner localized field will strengthen faster, and accordingly, the transmittance of the transmission peak will decrease more quickly. Both of the strengthening and decreasing will work at the top speed when all periods in different barriers increase at the same time. While the period number of the photonic crystal in well layers increases, the inner localized fields in both single and double-barrier will increase, but their transmittances of the transmission peak will keep the same. The characteristics above can provide guidance for designing new high-quality quantum optical devices.
    • 基金项目: 国家自然科学基金项目(批准号: 51161003, 50661001)、 广西自然科学基金(批准号: 2011GXNSFA018145, 2012GXNSFDA053001)、 广西教育厅科研资助项目(批准号: 201012MS206)和广西高校优秀人才资助计划项目(批准号: 桂教人[2011]40号)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51161003, 50661001), the Natural Science Foundation of Guangxi, China (Grant Nos. 2011GXNSFA018145, 2012GXNSFDA053001), the Scientific Research Fundation of the Education Department of Guangxi, China (Grant No. 201012MS206), and Program for Excellent Talents in Guangxi Higher Education Institutions, China (Grant No. [2011]40).
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Su A 2011 Infrar. Laser. Eng. 40 1101 (in Chinese)[苏 安 2011 红外与激光工程 40 1101]

    [4]

    Liu Q H, Hu D S, Yin X G, Wang Y Q 2011 Acta Phys. Sin. 60 094101 (in Chinese) [刘其海, 胡冬生, 尹小刚, 王彦庆 2011 物理学报 60 094101]

    [5]

    Su A, Zhang N 2010 Chin. J . Lumin. 31 439 (in Chinese) [苏 安, 张 宁 2010 发光学报 31 439]

    [6]

    Zhang Z R, Long Z W, Yuan Y Q, Diao X F 2010 Acta Phys. Sin. 59 587 (in Chinese) [张正仁, 隆正文, 袁玉群, 刁心峰 2010 物理学报 59 587]

    [7]

    Chen X F, Jiang M P, Shen X M, Jin Y, Huang Z Y 2008 Acta Phys. Sin. 57 5709 (in Chinese) [陈宪锋, 江美萍, 沈小明, 金 铱, 黄正逸 2008 物理学报 57 5709]

    [8]

    Qiao F, Zhang C, Wan J, Zi J 2000 Appl. Phys. Lett. 77 3698

    [9]

    Fei H M, Zhou F, Yang Y B, Liang J Q 2011 Acta Phys. Sin. 60 074225 (in Chinese) [费宏明, 周 飞, 杨毅彪, 梁九卿 2011 物理学报 60 074225]

    [10]

    Su A, Liang Y J 2011 1st International Conference on High Performance Structures and Materials Engineering Beijing China, May 5-6, 2011 p1696

    [11]

    Bian T T, Zhang Y 2009 Optik. 120 736

    [12]

    Xu C, Xu X C, Han D Z, Liu X H, Liu C P, Wu C J 2007 Opt. Commun. 280 221

    [13]

    Esaki L, Tsu R 1970 IBMJ. Res. Dev. 14 61

    [14]

    Mendez E E, von Klitzing K 1987 Physics and Application of Quantum Wells and Superlattices (New York: Plenum) pp79-98

    [15]

    Jiang Y, Niu C, Lin D L 1999 Phys. Rev. B 59 9981

    [16]

    Dong H X, Jiang H T, Yang C Q, Shi Y L 2007 Acta Opt. Sin. 27 2245 (in Chinese) [董海霞, 江海涛, 杨成全, 石云龙 2007 光学学报 27 2245]

    [17]

    Su A, Gao Y J 2010 Acta Photo. Sin. 39 842 (in Chinese) [苏 安, 高英俊 2010 光子学报 39 842]

    [18]

    Liu J, Sun J Q, Huang D X, Huang C Q, Wu M 2007 Acta Phys. Sin. 56 2281 (in Chinese) [刘 靖, 孙军强, 黄德修, 黄重庆, 吴 铭 2007 物理学报 56 2281]

    [19]

    Wang X D, Yan K Z, Liu F 2003 Optoelectronics·Laser 14 1063 (in Chinese) [王旭东, 闫珂柱, 刘 芳 2003 光电子·激光 14 1063]

    [20]

    Fang S F, Li J S, Su S, Zhang H Z 2009 J. Jilin Univ. (Science Edition) 47 98 (in Chinese) [房淑芬, 李集思, 苏 适, 张汉壮 2009 吉林大学学报 (理学版) 47 98]

    [21]

    Gong Y L, Xu Z Y, Zhang R J 2004 J. Tongji Univ. (Science Edition) 32 920 (in Chinese) [龚益玲, 许震宇, 张若京 2004 同济大学学报 (自然科学版) 32 920]

    [22]

    Wang Y L, Gao Y J, Wang N 2007 Guangxi Sci. 14 56 (in Chinese) [王玉玲, 高英俊, 王 娜 2007 广西科学 14 56]

    [23]

    Gao Y J, Wang Y L, Huang C G, Chen H B, Wang N 2007 Phys. Scr. T129 349

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Su A 2011 Infrar. Laser. Eng. 40 1101 (in Chinese)[苏 安 2011 红外与激光工程 40 1101]

    [4]

    Liu Q H, Hu D S, Yin X G, Wang Y Q 2011 Acta Phys. Sin. 60 094101 (in Chinese) [刘其海, 胡冬生, 尹小刚, 王彦庆 2011 物理学报 60 094101]

    [5]

    Su A, Zhang N 2010 Chin. J . Lumin. 31 439 (in Chinese) [苏 安, 张 宁 2010 发光学报 31 439]

    [6]

    Zhang Z R, Long Z W, Yuan Y Q, Diao X F 2010 Acta Phys. Sin. 59 587 (in Chinese) [张正仁, 隆正文, 袁玉群, 刁心峰 2010 物理学报 59 587]

    [7]

    Chen X F, Jiang M P, Shen X M, Jin Y, Huang Z Y 2008 Acta Phys. Sin. 57 5709 (in Chinese) [陈宪锋, 江美萍, 沈小明, 金 铱, 黄正逸 2008 物理学报 57 5709]

    [8]

    Qiao F, Zhang C, Wan J, Zi J 2000 Appl. Phys. Lett. 77 3698

    [9]

    Fei H M, Zhou F, Yang Y B, Liang J Q 2011 Acta Phys. Sin. 60 074225 (in Chinese) [费宏明, 周 飞, 杨毅彪, 梁九卿 2011 物理学报 60 074225]

    [10]

    Su A, Liang Y J 2011 1st International Conference on High Performance Structures and Materials Engineering Beijing China, May 5-6, 2011 p1696

    [11]

    Bian T T, Zhang Y 2009 Optik. 120 736

    [12]

    Xu C, Xu X C, Han D Z, Liu X H, Liu C P, Wu C J 2007 Opt. Commun. 280 221

    [13]

    Esaki L, Tsu R 1970 IBMJ. Res. Dev. 14 61

    [14]

    Mendez E E, von Klitzing K 1987 Physics and Application of Quantum Wells and Superlattices (New York: Plenum) pp79-98

    [15]

    Jiang Y, Niu C, Lin D L 1999 Phys. Rev. B 59 9981

    [16]

    Dong H X, Jiang H T, Yang C Q, Shi Y L 2007 Acta Opt. Sin. 27 2245 (in Chinese) [董海霞, 江海涛, 杨成全, 石云龙 2007 光学学报 27 2245]

    [17]

    Su A, Gao Y J 2010 Acta Photo. Sin. 39 842 (in Chinese) [苏 安, 高英俊 2010 光子学报 39 842]

    [18]

    Liu J, Sun J Q, Huang D X, Huang C Q, Wu M 2007 Acta Phys. Sin. 56 2281 (in Chinese) [刘 靖, 孙军强, 黄德修, 黄重庆, 吴 铭 2007 物理学报 56 2281]

    [19]

    Wang X D, Yan K Z, Liu F 2003 Optoelectronics·Laser 14 1063 (in Chinese) [王旭东, 闫珂柱, 刘 芳 2003 光电子·激光 14 1063]

    [20]

    Fang S F, Li J S, Su S, Zhang H Z 2009 J. Jilin Univ. (Science Edition) 47 98 (in Chinese) [房淑芬, 李集思, 苏 适, 张汉壮 2009 吉林大学学报 (理学版) 47 98]

    [21]

    Gong Y L, Xu Z Y, Zhang R J 2004 J. Tongji Univ. (Science Edition) 32 920 (in Chinese) [龚益玲, 许震宇, 张若京 2004 同济大学学报 (自然科学版) 32 920]

    [22]

    Wang Y L, Gao Y J, Wang N 2007 Guangxi Sci. 14 56 (in Chinese) [王玉玲, 高英俊, 王 娜 2007 广西科学 14 56]

    [23]

    Gao Y J, Wang Y L, Huang C G, Chen H B, Wang N 2007 Phys. Scr. T129 349

  • [1] 隋文杰, 张玉, 张紫瑞, 王小龙, 张洪方, 史强, 杨冰. 拓扑自旋光子晶体中螺旋边界态单向传输调控研究. 物理学报, 2022, 71(19): 194101. doi: 10.7498/aps.71.20220353
    [2] 杨红卫, 孟珊珊, 高冉冉, 彭硕. 光子晶体传输特性的时域精细积分法分析. 物理学报, 2017, 66(8): 084101. doi: 10.7498/aps.66.084101
    [3] 梁文耀, 张玉霞, 陈武喝. 低对称性光子晶体超宽带全角自准直传输的机理研究. 物理学报, 2015, 64(6): 064209. doi: 10.7498/aps.64.064209
    [4] 李春雷, 徐燕, 张燕翔, 叶宝生. 双量子阱中光子辅助电子自旋隧穿. 物理学报, 2013, 62(10): 107301. doi: 10.7498/aps.62.107301
    [5] 刘明, 徐小峰, 王永良, 曾佳, 李华, 邱阳, 张树林, 张国峰, 孔祥燕, 谢晓明. 超导量子干涉器件读出电路中匹配变压器的传输特性研究. 物理学报, 2013, 62(18): 188501. doi: 10.7498/aps.62.188501
    [6] 李春早, 刘少斌, 孔祥鲲, 卞博锐, 张学勇. 外磁场与温度对低温超导光子晶体低频禁带特性的影响. 物理学报, 2012, 61(7): 075203. doi: 10.7498/aps.61.075203
    [7] 李文胜, 罗时军, 黄海铭, 张琴, 是度芳. 含特异材料光子晶体隧穿模的偏振特性. 物理学报, 2012, 61(10): 104101. doi: 10.7498/aps.61.104101
    [8] 王慧琴, 方利广, 王一凡, 余奥列. 光子晶体晶粒尺寸和排列结构对随机激光辐射特性的影响. 物理学报, 2011, 60(1): 014203. doi: 10.7498/aps.60.014203
    [9] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性. 物理学报, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [10] 费宏明, 周飞, 杨毅彪, 梁九卿. 光子晶体双量子阱的共振隧穿. 物理学报, 2011, 60(7): 074225. doi: 10.7498/aps.60.074225
    [11] 杨毅彪, 王拴锋, 李秀杰, 王云才, 梁伟. 介质柱型二维Triangular格子光子晶体的禁带特性. 物理学报, 2010, 59(7): 5073-5077. doi: 10.7498/aps.59.5073
    [12] 王慧琴, 刘正东. 光子晶体对非晶纳米团簇辐射特性的影响. 物理学报, 2009, 58(3): 1648-1654. doi: 10.7498/aps.58.1648
    [13] 孔令凯, 郑志强, 冯卓宏, 李小燕, 姜翠华, 明海. 二维空气环型光子晶体的负折射成像特性. 物理学报, 2009, 58(11): 7702-7707. doi: 10.7498/aps.58.7702
    [14] 王 科, 郑婉华, 任 刚, 杜晓宇, 邢名欣, 陈良惠. 双色量子阱红外探测器顶部光子晶体耦合层的设计优化. 物理学报, 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [15] 董海霞, 江海涛, 杨成全, 石云龙. 含双负缺陷的一维光子晶体耦合腔的杂质带特性. 物理学报, 2006, 55(6): 2777-2780. doi: 10.7498/aps.55.2777
    [16] 厉以宇, 顾培夫, 李明宇, 张锦龙, 刘 旭. 波状结构二维光子晶体的自准直特性及亚波长成像的研究. 物理学报, 2006, 55(5): 2596-2600. doi: 10.7498/aps.55.2596
    [17] 关春颖, 苑立波. 六角蜂窝结构光子晶体异质结带隙特性研究. 物理学报, 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [18] 许兴胜, 熊志刚, 孙增辉, 杜 伟, 鲁 琳, 陈弘达, 金爱子, 张道中. 半导体量子阱材料微加工光子晶体的光学特性. 物理学报, 2006, 55(3): 1248-1252. doi: 10.7498/aps.55.1248
    [19] 冯立娟, 江海涛, 李宏强, 张冶文, 陈 鸿. 光子晶体耦合腔波导的色散特性. 物理学报, 2005, 54(5): 2102-2105. doi: 10.7498/aps.54.2102
    [20] 周 梅, 陈效双, 徐 靖, 陆 卫. 硅基两维光子晶体的制备和光子带隙特性. 物理学报, 2004, 53(10): 3583-3586. doi: 10.7498/aps.53.3583
计量
  • 文章访问数:  6631
  • PDF下载量:  686
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-21
  • 修回日期:  2012-05-14
  • 刊出日期:  2012-12-05

双重势垒一维光子晶体量子阱的光传输特性研究

  • 1. 河池学院 物理与电子工程系,宜州 546300;
  • 2. 广西大学 物理科学与工程技术学院,南宁 530004
    基金项目: 国家自然科学基金项目(批准号: 51161003, 50661001)、 广西自然科学基金(批准号: 2011GXNSFA018145, 2012GXNSFDA053001)、 广西教育厅科研资助项目(批准号: 201012MS206)和广西高校优秀人才资助计划项目(批准号: 桂教人[2011]40号)资助的课题.

摘要: 利用传输矩阵法,研究单势垒和双重势垒一维光子晶体量子阱结构的光传输特性. 结果表明: 垒层折射率总和大的单势垒光量子阱的透射峰更加精细,内部局域电场更加强; 双重势垒光量子阱的透射峰比单势垒光量子阱的透射峰精细, 内部局域电场也比单势垒光量子阱的强;随着垒层光子晶体周期数增大,双重势垒光量子阱内部局域电场增强,而且垒、阱层折射率总和之比越大,双重势垒光量子阱的内部局域电场增强速度越快,当双重垒层光子晶体周期数同时增大时,双重势垒量子阱内部局域电场增强速度最快,透射峰越加精细.随着阱层光子晶体周期数的增大,单势垒或双重势垒光量子阱的内部局域电场强度均下降,但透射峰的透射率不随之改变.该特性为设计新型可调高品质的量子光学器件提供指导.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回