搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双重势垒一维光子晶体量子阱的光传输特性研究

苏安 高英俊

引用本文:
Citation:

双重势垒一维光子晶体量子阱的光传输特性研究

苏安, 高英俊

Light propagation characteristics of one-dimensional photonic crystal with double-barrier quantum well

Su An, Gao Ying-Jun
PDF
导出引用
  • 利用传输矩阵法,研究单势垒和双重势垒一维光子晶体量子阱结构的光传输特性. 结果表明: 垒层折射率总和大的单势垒光量子阱的透射峰更加精细,内部局域电场更加强; 双重势垒光量子阱的透射峰比单势垒光量子阱的透射峰精细, 内部局域电场也比单势垒光量子阱的强;随着垒层光子晶体周期数增大,双重势垒光量子阱内部局域电场增强,而且垒、阱层折射率总和之比越大,双重势垒光量子阱的内部局域电场增强速度越快,当双重垒层光子晶体周期数同时增大时,双重势垒量子阱内部局域电场增强速度最快,透射峰越加精细.随着阱层光子晶体周期数的增大,单势垒或双重势垒光量子阱的内部局域电场强度均下降,但透射峰的透射率不随之改变.该特性为设计新型可调高品质的量子光学器件提供指导.
    The light transfer characteristics of one-dimensional photonic crystal with single and double-barrier quantum well are studied by transfer matrix method. The results show that when the refractive index of the barrier layer is high, the transmission peaks in single-barrier quantum well of photonic crystal will be narrower and the inner localized field will be stronger, that the peak in the double-barrier is narrower than the one in the single-barrier, and also the inner localized field is stronger in the double-barrier, that with the number of period layer in the photonic crystal increasing, the inner localized field in the double-barrier well is enhanced, furthermore, the bigger the refractive index ratio between barrier and dielectric layers of well, the stronger the inner localized field in the photonic crystal quantum well is. In addition, when the periodicity of the barrier layer in the photonic crystal with a thicker refractive index increases, the inner localized field will strengthen faster, and accordingly, the transmittance of the transmission peak will decrease more quickly. Both of the strengthening and decreasing will work at the top speed when all periods in different barriers increase at the same time. While the period number of the photonic crystal in well layers increases, the inner localized fields in both single and double-barrier will increase, but their transmittances of the transmission peak will keep the same. The characteristics above can provide guidance for designing new high-quality quantum optical devices.
    • 基金项目: 国家自然科学基金项目(批准号: 51161003, 50661001)、 广西自然科学基金(批准号: 2011GXNSFA018145, 2012GXNSFDA053001)、 广西教育厅科研资助项目(批准号: 201012MS206)和广西高校优秀人才资助计划项目(批准号: 桂教人[2011]40号)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51161003, 50661001), the Natural Science Foundation of Guangxi, China (Grant Nos. 2011GXNSFA018145, 2012GXNSFDA053001), the Scientific Research Fundation of the Education Department of Guangxi, China (Grant No. 201012MS206), and Program for Excellent Talents in Guangxi Higher Education Institutions, China (Grant No. [2011]40).
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Su A 2011 Infrar. Laser. Eng. 40 1101 (in Chinese)[苏 安 2011 红外与激光工程 40 1101]

    [4]

    Liu Q H, Hu D S, Yin X G, Wang Y Q 2011 Acta Phys. Sin. 60 094101 (in Chinese) [刘其海, 胡冬生, 尹小刚, 王彦庆 2011 物理学报 60 094101]

    [5]

    Su A, Zhang N 2010 Chin. J . Lumin. 31 439 (in Chinese) [苏 安, 张 宁 2010 发光学报 31 439]

    [6]

    Zhang Z R, Long Z W, Yuan Y Q, Diao X F 2010 Acta Phys. Sin. 59 587 (in Chinese) [张正仁, 隆正文, 袁玉群, 刁心峰 2010 物理学报 59 587]

    [7]

    Chen X F, Jiang M P, Shen X M, Jin Y, Huang Z Y 2008 Acta Phys. Sin. 57 5709 (in Chinese) [陈宪锋, 江美萍, 沈小明, 金 铱, 黄正逸 2008 物理学报 57 5709]

    [8]

    Qiao F, Zhang C, Wan J, Zi J 2000 Appl. Phys. Lett. 77 3698

    [9]

    Fei H M, Zhou F, Yang Y B, Liang J Q 2011 Acta Phys. Sin. 60 074225 (in Chinese) [费宏明, 周 飞, 杨毅彪, 梁九卿 2011 物理学报 60 074225]

    [10]

    Su A, Liang Y J 2011 1st International Conference on High Performance Structures and Materials Engineering Beijing China, May 5-6, 2011 p1696

    [11]

    Bian T T, Zhang Y 2009 Optik. 120 736

    [12]

    Xu C, Xu X C, Han D Z, Liu X H, Liu C P, Wu C J 2007 Opt. Commun. 280 221

    [13]

    Esaki L, Tsu R 1970 IBMJ. Res. Dev. 14 61

    [14]

    Mendez E E, von Klitzing K 1987 Physics and Application of Quantum Wells and Superlattices (New York: Plenum) pp79-98

    [15]

    Jiang Y, Niu C, Lin D L 1999 Phys. Rev. B 59 9981

    [16]

    Dong H X, Jiang H T, Yang C Q, Shi Y L 2007 Acta Opt. Sin. 27 2245 (in Chinese) [董海霞, 江海涛, 杨成全, 石云龙 2007 光学学报 27 2245]

    [17]

    Su A, Gao Y J 2010 Acta Photo. Sin. 39 842 (in Chinese) [苏 安, 高英俊 2010 光子学报 39 842]

    [18]

    Liu J, Sun J Q, Huang D X, Huang C Q, Wu M 2007 Acta Phys. Sin. 56 2281 (in Chinese) [刘 靖, 孙军强, 黄德修, 黄重庆, 吴 铭 2007 物理学报 56 2281]

    [19]

    Wang X D, Yan K Z, Liu F 2003 Optoelectronics·Laser 14 1063 (in Chinese) [王旭东, 闫珂柱, 刘 芳 2003 光电子·激光 14 1063]

    [20]

    Fang S F, Li J S, Su S, Zhang H Z 2009 J. Jilin Univ. (Science Edition) 47 98 (in Chinese) [房淑芬, 李集思, 苏 适, 张汉壮 2009 吉林大学学报 (理学版) 47 98]

    [21]

    Gong Y L, Xu Z Y, Zhang R J 2004 J. Tongji Univ. (Science Edition) 32 920 (in Chinese) [龚益玲, 许震宇, 张若京 2004 同济大学学报 (自然科学版) 32 920]

    [22]

    Wang Y L, Gao Y J, Wang N 2007 Guangxi Sci. 14 56 (in Chinese) [王玉玲, 高英俊, 王 娜 2007 广西科学 14 56]

    [23]

    Gao Y J, Wang Y L, Huang C G, Chen H B, Wang N 2007 Phys. Scr. T129 349

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Su A 2011 Infrar. Laser. Eng. 40 1101 (in Chinese)[苏 安 2011 红外与激光工程 40 1101]

    [4]

    Liu Q H, Hu D S, Yin X G, Wang Y Q 2011 Acta Phys. Sin. 60 094101 (in Chinese) [刘其海, 胡冬生, 尹小刚, 王彦庆 2011 物理学报 60 094101]

    [5]

    Su A, Zhang N 2010 Chin. J . Lumin. 31 439 (in Chinese) [苏 安, 张 宁 2010 发光学报 31 439]

    [6]

    Zhang Z R, Long Z W, Yuan Y Q, Diao X F 2010 Acta Phys. Sin. 59 587 (in Chinese) [张正仁, 隆正文, 袁玉群, 刁心峰 2010 物理学报 59 587]

    [7]

    Chen X F, Jiang M P, Shen X M, Jin Y, Huang Z Y 2008 Acta Phys. Sin. 57 5709 (in Chinese) [陈宪锋, 江美萍, 沈小明, 金 铱, 黄正逸 2008 物理学报 57 5709]

    [8]

    Qiao F, Zhang C, Wan J, Zi J 2000 Appl. Phys. Lett. 77 3698

    [9]

    Fei H M, Zhou F, Yang Y B, Liang J Q 2011 Acta Phys. Sin. 60 074225 (in Chinese) [费宏明, 周 飞, 杨毅彪, 梁九卿 2011 物理学报 60 074225]

    [10]

    Su A, Liang Y J 2011 1st International Conference on High Performance Structures and Materials Engineering Beijing China, May 5-6, 2011 p1696

    [11]

    Bian T T, Zhang Y 2009 Optik. 120 736

    [12]

    Xu C, Xu X C, Han D Z, Liu X H, Liu C P, Wu C J 2007 Opt. Commun. 280 221

    [13]

    Esaki L, Tsu R 1970 IBMJ. Res. Dev. 14 61

    [14]

    Mendez E E, von Klitzing K 1987 Physics and Application of Quantum Wells and Superlattices (New York: Plenum) pp79-98

    [15]

    Jiang Y, Niu C, Lin D L 1999 Phys. Rev. B 59 9981

    [16]

    Dong H X, Jiang H T, Yang C Q, Shi Y L 2007 Acta Opt. Sin. 27 2245 (in Chinese) [董海霞, 江海涛, 杨成全, 石云龙 2007 光学学报 27 2245]

    [17]

    Su A, Gao Y J 2010 Acta Photo. Sin. 39 842 (in Chinese) [苏 安, 高英俊 2010 光子学报 39 842]

    [18]

    Liu J, Sun J Q, Huang D X, Huang C Q, Wu M 2007 Acta Phys. Sin. 56 2281 (in Chinese) [刘 靖, 孙军强, 黄德修, 黄重庆, 吴 铭 2007 物理学报 56 2281]

    [19]

    Wang X D, Yan K Z, Liu F 2003 Optoelectronics·Laser 14 1063 (in Chinese) [王旭东, 闫珂柱, 刘 芳 2003 光电子·激光 14 1063]

    [20]

    Fang S F, Li J S, Su S, Zhang H Z 2009 J. Jilin Univ. (Science Edition) 47 98 (in Chinese) [房淑芬, 李集思, 苏 适, 张汉壮 2009 吉林大学学报 (理学版) 47 98]

    [21]

    Gong Y L, Xu Z Y, Zhang R J 2004 J. Tongji Univ. (Science Edition) 32 920 (in Chinese) [龚益玲, 许震宇, 张若京 2004 同济大学学报 (自然科学版) 32 920]

    [22]

    Wang Y L, Gao Y J, Wang N 2007 Guangxi Sci. 14 56 (in Chinese) [王玉玲, 高英俊, 王 娜 2007 广西科学 14 56]

    [23]

    Gao Y J, Wang Y L, Huang C G, Chen H B, Wang N 2007 Phys. Scr. T129 349

  • [1] 代雪峰, 贡同. 铁磁性电极条件下T型双量子点结构中马约拉纳束缚态的解耦现象. 物理学报, 2024, 73(5): 057301. doi: 10.7498/aps.73.20231434
    [2] 孙小聪, 李卫, 王雅君, 郑耀辉. 基于压缩态光场的量子增强型光学相位追踪. 物理学报, 2024, 73(5): 054203. doi: 10.7498/aps.73.20231835
    [3] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应. 物理学报, 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [4] 王俊, 蔡飞燕, 张汝钧, 李永川, 周伟, 李飞, 邓科, 郑海荣. 基于压电声子晶体板波声场的微粒操控. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231886
    [5] 蒋驰, 耿滔. 角向偏振涡旋光的紧聚焦特性研究以及超长超分辨光针的实现. 物理学报, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [6] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计. 物理学报, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [7] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [8] 李靖, 刘运全. 基于相对论自由电子的量子物理. 物理学报, 2022, 71(23): 233302. doi: 10.7498/aps.71.20221289
    [9] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [10] 刘尚阔, 王涛, 李坤, 曹昆, 张玺斌, 周艳, 赵建科, 姚保利. 光源光谱特性对空间相机调制传递函数检测的影响. 物理学报, 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [11] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210907
    [12] 张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟. 电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控. 物理学报, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [13] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [14] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [15] 石泰峡, 董丽娟, 陈永强, 刘艳红, 刘丽想, 石云龙. 人工磁导体对无线能量传输空间场的调控. 物理学报, 2019, 68(21): 214203. doi: 10.7498/aps.68.20190862
计量
  • 文章访问数:  8323
  • PDF下载量:  701
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-21
  • 修回日期:  2012-05-14
  • 刊出日期:  2012-12-05

/

返回文章
返回