搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力条件下复杂等离子体中激光诱导马赫锥的三维模拟

黄渝峰 贾文柱 张莹莹 宋远红

引用本文:
Citation:

微重力条件下复杂等离子体中激光诱导马赫锥的三维模拟

黄渝峰, 贾文柱, 张莹莹, 宋远红

Three-dimensional simulation of laser-induced Mach cones in complex plasmas under microgravity conditions

Huang Yu-Feng, Jia Wen-Zhu, Zhang Ying-Ying, Song Yuan-Hong
PDF
HTML
导出引用
  • 基于三维流体力学模型, 研究了微重力条件下复杂等离子体中不同耦合参数形式、屏蔽参数、尘埃粒子表面带电量以及等离子体密度对激光诱导尘埃扰动密度形成马赫锥的影响情况. 模拟发现, 当屏蔽参数较大时, 不同的耦合参数形式对尘埃颗粒扰动密度产生较大影响. 此外, 激光辐射力平行或者垂直激光移动速度时, 马赫锥在三维空间中呈对称或反对称形貌. 并且, 增大屏蔽参数、减小尘埃粒子表面带电量、减小等离子体密度, 都会增强尘埃粒子之间的库仑屏蔽作用, 进而使尘埃扰动密度形成的马赫锥更加局域在激光斑点附近, 表现为扰动范围缩小, 而扰动密度值增大.
    The three-dimensional density distribution of dust particles in complex plasma under microgravity condition has received much attention. Based on the three-dimensional hydrodynamic simulation, the influences of different coupling parameters, shielding parameters, charge of dust particles and plasma density on the Mach cone by laser-induced are studied in complex plasma under microgravity conditions. When the shielding parameters are large, it is found that three different formulas of coupling parameters $ \varGamma = \dfrac{{Z_{\text{d}}^{2}{e^2}}}{{d \cdot {T_{\text{d}}}}} $, $ \varGamma ' = \dfrac{{Z_{\text{d}}^{2}{e^2}}}{{d \cdot {T_{\text{d}}}}}\exp ( - \kappa ) $ and $ \varGamma ' = \dfrac{{Z_{\text{d}}^{2}{e^2}}}{{d \cdot {T_{\text{d}}}}}(1{+}\kappa {+}\dfrac{{{\kappa ^2}}}{2})\exp ( - \kappa ) $ have a great influence on the disturbance density of dust particles, and the simulation results are in better agreement with the theoretical expectations under the third formulas. In addition, when the laser radiation force is parallel or vertical to the laser movement speed, the Mach cone structure is symmetrical or antisymmetric in the three-dimensional space, which is mainly based on the asymmetry of the laser disturbance mode. Besides, increasing the shielding parameters, or reducing the charge of dust particles, or reducing the plasma density, the shielding interaction between the dust particles is enhanced, making the Mach cone formed by the dust disturbance density more localized around the laser spot, which is characterized by narrowing the disturbance range and increasing density value. It is expected that this work can provide some reference for the theoretical and experimental studies of laser-induced Mach cone in three-dimensional complex plasma under microgravity conditions.
      通信作者: 张莹莹, yyzhang1231@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12275039, 12020101005, 11975067)和中央高校基本科研业务费(批准号: DUT23BK016)资助的课题.
      Corresponding author: Zhang Ying-Ying, yyzhang1231@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275039, 12020101005, 11975067) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. DUT23BK016).
    [1]

    Selwyn G S, Singh J, Bennett R S 1989 J. Vac. Sci. Technol. , A 7 2758Google Scholar

    [2]

    Fortov V E, Khrapak A G, Khrapak S A, Molotkov V I, Petrov O F 2004 Phys. Usp. 47 447Google Scholar

    [3]

    Merlino R L, Goree J A 2004 Phys. Today 57 32Google Scholar

    [4]

    Markus H T, Hubertus M T, Christina A K, Andre M, Uwe K 2023 npj Microgravity 9 13Google Scholar

    [5]

    Zaehringer E, Schwabe M, Zhdanov S, Mohr D P, Knapek C A, Huber P, Semenov I L, Thomas H M 2018 Phys. Plasmas 25 033703Google Scholar

    [6]

    Samsonov D, Goree J, Ma Z W, Bhattacharjee A, Thomas H M, Morfill G E 1999 Phys. Rev. Lett. 83 3649Google Scholar

    [7]

    Ma Z W, Bhattacharjee A 2002 Phys. Plasmas 9 3349Google Scholar

    [8]

    Melzer A, Nunomura S, Samsonov D, Ma Z W, Goree J 2000 Phys. Rev. E 62 4162Google Scholar

    [9]

    Sato N, Uchida G, Kaneko T, Shimizu S, Iizuka S 2001 Phys. Plasmas 8 1786Google Scholar

    [10]

    Cheung F, Samarian A, James B 2003 New J. Phys. 5 75Google Scholar

    [11]

    Schwabe M, Jiang K, Zhdanov S, Hagl T, Huber P, Ivlev A V, Lipaev A M, Molotkov V I, Naumkin V N, Sutterlin K R, Thomas H M, Fortov V E, Morfill G E, Skvortsov A, Volkov S 2011 EPL 96 55001Google Scholar

    [12]

    Nosenko V, Goree J, Ma Z W, Piel A 2002 Phys. Rev. Lett. 88 135001Google Scholar

    [13]

    Nosenko V, Goree J, Ma Z W, Dubin D H E, Piel A 2003 Phys. Rev. E 68 056409Google Scholar

    [14]

    Hou L J, Wang Y N, Mišković Z L 2004 Phys. Rev. E 70 056406Google Scholar

    [15]

    段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红 2023 物理学报 72 165202Google Scholar

    Duan M Y, Jia W Z, Zhang Y Y, Zhang Y F, Song Y H 2023 Acta Phys. Sin. 72 165202Google Scholar

    [16]

    Jia W Z, Zhang Q Z, Wang X F, Song Y H, Zhang Y Y, Wang Y N 2019 J. Phys. D: Appl. Phys. 52 015206Google Scholar

    [17]

    Jiang K, Hou L J, Wang Y N 2005 Chin. Phys. Lett. 22 1713Google Scholar

    [18]

    Hou L J, Mišković Z L, Jiang K, Wang Y N 2006 Phys. Rev. Lett. 96 255005Google Scholar

    [19]

    Jiang K, Hou L J, Wang Y N, Mišković Z L 2006 Phys. Rev. E. 73 016404Google Scholar

    [20]

    Slattery W L, Doolen G D, DeWitt H E 1980 Phys. Rev. A 21 2087Google Scholar

    [21]

    Ichimaru S 1982 Rev. Mod. Phys. 54 1017Google Scholar

    [22]

    Hartmann P, Kalman G J, Donkó Z, Kutasi K 2005 Phys. Rev. E 72 026409Google Scholar

    [23]

    Vaulina O S, Khrapak S A, Morfill G 2002 Phys. Rev. E 66 016404Google Scholar

    [24]

    Wani R, Mir A, Batool F, Tiwari S 2022 Sci. Rep. 12 11557Google Scholar

    [25]

    Kaw P K, Sen A 1998 Phys. Plasmas 5 3552Google Scholar

    [26]

    Kalman G J, Rosenberg M, DeWitt H E 2000 Phys. Rev. Lett. 84 6030Google Scholar

    [27]

    Ikezi H 1986 Phys. Fluids 29 1764Google Scholar

    [28]

    Dasgupta C, Maitra S 2021 Phys. Plasmas 28 043703Google Scholar

    [29]

    Bandyopadhyay P, Dey R, Kadyan S, Sen A 2014 Phys. Plasmas 21 103707Google Scholar

    [30]

    Nunomura S, Zhdanov S, Samsonov D, Morfill G 2005 Phys. Rev. Lett. 94 045001Google Scholar

    [31]

    Vaulina O S, Vladimirov S V 2002 Phys. Plasmas 9 835Google Scholar

    [32]

    Fortov V E, Vaulina O S, Petrov O F, Molotkov V I, Lipaev A M, Torchinsky V M, Thomas H M, Morfill G E, Khrapak S A, Semenov Yu P, Ivanov A I, Krikalev S K, Kalery A Yu, Zaletin S V, Gidzenko Yu P 2003 Phys. Rev. Lett. 90 245005Google Scholar

    [33]

    Caliebe D, Arp O, Piel A 2011 Phys. Plasmas 18 073702Google Scholar

    [34]

    Vaulina O S, Khrapak S A 2000 J. Exp. Theor. Phys. 90 287Google Scholar

    [35]

    Hamaguchi S, Farouki R T, Dubin D H E 1997 Phys. Rev. E 56 4671Google Scholar

    [36]

    Epstein P S 1924 Phys. Rev. 23 710Google Scholar

    [37]

    Slattery W L, Doolen G D, DeWitt H E 1982 Phys. Rev. A 26 2255Google Scholar

    [38]

    Dubin D 2000 Phys. Plasmas 7 3895Google Scholar

  • 图 1  假设$ {{\boldsymbol{F}}}_{{\mathrm{L}}}/ /{{\boldsymbol{v}}}_{{\mathrm{L}}} $时, ${Z_{\text{d}}} = 4000 e$, ${n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$, 屏蔽参数分别为(a) $\kappa = 2$, (b) $\kappa = 1$和(c) $\kappa = 0.5$, 耦合参数形式分别为${f_1}(\kappa )$, ${f_2}(\kappa )$, ${f_3}(\kappa )$, 尘埃粒子扰动密度${{{n_{{\text{d}}1}}} \mathord{\left/ {\vphantom {{{n_{{\text{d}}1}}} {{n_{{\text{d0}}}}}}} \right. } {{n_{{\text{d0}}}}}}$(用${n_{{\text{d0}}}}$无量纲)随着z轴的变化情况, 其中$ x = 0 $, $ y = 0 $

    Fig. 1.  The laser-induced perturbed density ${{{n_{{\text{d}}1}}} \mathord{\left/ {\vphantom {{{n_{{\text{d}}1}}} {{n_{{\text{d}}0}}}}} \right. } {{n_{{\text{d}}0}}}}$dependent on the axial position z, for different screening parameters: (a) $\kappa = 2$; (b) $\kappa = 1$; and (c) $\kappa = 0.5$, and different coupling parameters:${f_1}(\kappa )$, ${f_2}(\kappa )$, and ${f_3}(\kappa )$, with ${Z_{\text{d}}} = 4000 e, {\text{ }}{n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$, and $ {{\boldsymbol{F}}}_{{\mathrm{L}}}/ / {{\boldsymbol{v}}}_{{\mathrm{L}}} $.

    图 2  假设$ {{\boldsymbol{F}}}_{{\mathrm{L}}}/ / {{\boldsymbol{v}}}_{{\mathrm{L}}} $时, ${Z_{\text{d}}} = 4000 e$, ${n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$, 三种形式${f_1}(\kappa )$, ${f_2}(\kappa )$, ${f_3}(\kappa )$条件下, 耦合参数${\varGamma ^ * }$随着屏蔽参数$\kappa $的变化曲线

    Fig. 2.  The coupling parameter ${\varGamma ^ * }$ change versus the screening parameter $\kappa $for the three forms ${f_1}(\kappa )$, ${f_2}(\kappa )$, ${f_3}(\kappa )$, with ${Z_{\text{d}}} = 4000 e, {\text{ }}{n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$, and $ {{\boldsymbol{F}}}_{\text{L}}/ / {{\boldsymbol{v}}}_{\text{L}} $.

    图 3  假设$ {{\boldsymbol{F}}}_{\text{L}}/ /{{\boldsymbol{v}}}_{\text{L}} $时, 在${Z_{\text{d}}} = 4000 e$, ${n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$条件下, 尘埃粒子扰动密度${{{n_{{\text{d}}1}}} \mathord{\left/ {\vphantom {{{n_{{\text{d}}1}}} {{n_{{\text{d}}0}}}}} \right. } {{n_{{\text{d}}0}}}}$(用${n_{{\text{d0}}}}$无量纲) (a), (c), (e) x-z平面(y = 0) 形成的马赫锥; (b), (d), (f) x-y截面(z = –30)形成的三维对称结构. 其中屏蔽参数分别为(a), (b) $\kappa = 2$, (c), (d) $\kappa = 1$和(e), (f) $\kappa = 0.5$

    Fig. 3.  Mach cones by the laser-induced perturbed density ${{{n_{{\text{d}}1}}} \mathord{\left/ {\vphantom {{{n_{{\text{d}}1}}} {{n_{{\text{d}}0}}}}} \right. } {{n_{{\text{d}}0}}}}$in the (a), (c) (e) x-z plane (y = 0) and (b), (d), (f) plane x-y (z = –30), for different screening parameters (a), (b) $\kappa = 2$, (c), (d) $\kappa = 1$, and (e), (f) $\kappa = 0.5$, with ${Z_{\text{d}}} = 4000 e, {\text{ }}{n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{{{ - 3}}}}$, and $ {{\boldsymbol{F}}}_{\text{L}}/ / {{\boldsymbol{v}}}_{\text{L}} $.

    图 4  当${{\boldsymbol{F}}_{\mathrm{L}}} \bot {{\boldsymbol{v}}_{\text{L}}}$时, 在${Z_{\text{d}}} = 4000 e$, ${n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$条件下, 尘埃粒子扰动密度${{{n_{{\text{d}}1}}} \mathord{\left/ {\vphantom {{{n_{{\text{d}}1}}} {{n_{{\text{d0}}}}}}} \right. } {{n_{{\text{d0}}}}}}$(用${n_{{\text{d}}0}}$无量纲)在(a), (c), (e) x-z平面(y = 0) 形成的马赫锥, 以及在(b), (d), (f) x-y截面(z = –30)形成的三维结构, 屏蔽参数分别为 (a), (b) $\kappa = 2$, (c), (d) $\kappa = 1$和 (e), (f) $\kappa = 0.5$

    Fig. 4.  Mach cones by the laser-induced perturbed density ${{{n_{{\text{d}}1}}} \mathord{\left/ {\vphantom {{{n_{{\text{d}}1}}} {{n_{{\text{d0}}}}}}} \right. } {{n_{{\text{d0}}}}}}$ in the (a), (c), (e) x-z plane (y = 0) and (b), (d), (f) plane x-y (z = –30), for different screening parameters (a), (b) $\kappa = 2$, (c), (d) $\kappa = 1$, and (e), (f) $\kappa = 0.5$, with ${Z_{\text{d}}} = 4000 e, $$ {\text{ }}{n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$, and ${{\boldsymbol{F}}_{\text{L}}} \bot {{\boldsymbol{v}}_{\text{L}}}$

    图 5  当$ {{\boldsymbol{F}}}_{\text{L}}/ / {{\boldsymbol{v}}}_{{\mathrm{L}}} $时, 在$\kappa = 1, {\text{ }}{n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$条件下, 激光诱导尘埃粒子扰动密度${{{n_{{\text{d}}1}}} \mathord{\left/ {\vphantom {{{n_{{\text{d}}1}}} {{n_{{\text{d}}0}}}}} \right. } {{n_{{\text{d}}0}}}}$(用${n_{{\text{d}}0}}$无量纲)在x-z平面($ y = 0 $)上形成的马赫锥, 尘埃表面电荷量分别为 (a) ${Z_{\text{d}}} = 1000 e$; (b) ${Z_{\text{d}}} = 2000 e$; (c) ${Z_{\text{d}}} = 4000 e$; (d) ${Z_{\text{d}}} = 6000 e$

    Fig. 5.  Mach cones by the laser-induced perturbed density ${{{n_{{\text{d}}1}}} \mathord{\left/ {\vphantom {{{n_{{\text{d}}1}}} {{n_{{\text{d}}0}}}}} \right. } {{n_{{\text{d}}0}}}}$in the x-z plane ($ y = 0 $), for different charge on each dust particle: (a) ${Z_{\text{d}}} = 1000 e$; (b) $ {Z_{\text{d}}} = 2000 e $; (c) ${Z_{\text{d}}} = 4000 e$; (d) ${Z_{\text{d}}} = 6000 e$, with $\kappa = 1, {\text{ }}{n_{\text{e}}} = {10^9}{\kern 1 pt} {\text{c}}{{\text{m}}^{ - 3}}$, and $ {{\boldsymbol{F}}}_{\text{L}}/ / {{\boldsymbol{v}}}_{\text{L}} $.

    图 6  当$ {{\boldsymbol{F}}}_{{\mathrm{L}}}/ / {{\boldsymbol{v}}}_{{\mathrm{L}}} $时, 在$\kappa = 2, {\text{ }}{Z_{\text{d}}} = 4000 e$条件下, 激光诱导尘埃粒子扰动密度${{{n_{{\text{d1}}}}} \mathord{\left/ {\vphantom {{{n_{{\text{d1}}}}} {{n_{{\text{d}}0}}}}} \right. } {{n_{{\text{d}}0}}}}$(用${n_{{\text{d0}}}}$无量纲)在x-z平面($ y = 0 $)上形成的马赫锥, 等离子体密度分别为 (a) ${n_{\text{e}}} = {10^8}\;{\text{c}}{{\text{m}}^{{{ - 3}}}}$; (b) ${n_{\text{e}}} = {10^{9}}\;{\text{c}}{{\text{m}}^{ - 3}}$; (c) ${n_{\text{e}}} = 5 \times {10^9}\;{\text{c}}{{\text{m}}^{ - 3}}$; (d) ${n_{\text{e}}} = {10^{10}}\;{\text{c}}{{\text{m}}^{ - 3}}$

    Fig. 6.  Mach cones by the laser-induced perturbed density ${{{n_{{\text{d1}}}}} \mathord{\left/ {\vphantom {{{n_{{\text{d1}}}}} {{n_{{\text{d0}}}}}}} \right. } {{n_{{\text{d0}}}}}}$in the x-z plane ($ y = 0 $), for different plasma densities: (a) ${n_{\text{e}}} = {10^8}\;{\text{c}}{{\text{m}}^{ - 3}}$; (b) ${n_{\text{e}}} = {10^9}\;{\text{c}}{{\text{m}}^{ - 3}}$; (c) ${n_{\text{e}}} = 5 \times {10^9}\;{\text{c}}{{\text{m}}^{ - 3}}$; (d) ${n_{\text{e}}} = {10^{10}}\;{\text{c}}{{\text{m}}^{ - 3}}$, with $\kappa = 2, {\text{ }}{Z_{\text{d}}} = 4000 e$, and $ {{\boldsymbol{F}}}_{\text{L}}/ /{{\boldsymbol{v}}}_{\text{L}} $.

  • [1]

    Selwyn G S, Singh J, Bennett R S 1989 J. Vac. Sci. Technol. , A 7 2758Google Scholar

    [2]

    Fortov V E, Khrapak A G, Khrapak S A, Molotkov V I, Petrov O F 2004 Phys. Usp. 47 447Google Scholar

    [3]

    Merlino R L, Goree J A 2004 Phys. Today 57 32Google Scholar

    [4]

    Markus H T, Hubertus M T, Christina A K, Andre M, Uwe K 2023 npj Microgravity 9 13Google Scholar

    [5]

    Zaehringer E, Schwabe M, Zhdanov S, Mohr D P, Knapek C A, Huber P, Semenov I L, Thomas H M 2018 Phys. Plasmas 25 033703Google Scholar

    [6]

    Samsonov D, Goree J, Ma Z W, Bhattacharjee A, Thomas H M, Morfill G E 1999 Phys. Rev. Lett. 83 3649Google Scholar

    [7]

    Ma Z W, Bhattacharjee A 2002 Phys. Plasmas 9 3349Google Scholar

    [8]

    Melzer A, Nunomura S, Samsonov D, Ma Z W, Goree J 2000 Phys. Rev. E 62 4162Google Scholar

    [9]

    Sato N, Uchida G, Kaneko T, Shimizu S, Iizuka S 2001 Phys. Plasmas 8 1786Google Scholar

    [10]

    Cheung F, Samarian A, James B 2003 New J. Phys. 5 75Google Scholar

    [11]

    Schwabe M, Jiang K, Zhdanov S, Hagl T, Huber P, Ivlev A V, Lipaev A M, Molotkov V I, Naumkin V N, Sutterlin K R, Thomas H M, Fortov V E, Morfill G E, Skvortsov A, Volkov S 2011 EPL 96 55001Google Scholar

    [12]

    Nosenko V, Goree J, Ma Z W, Piel A 2002 Phys. Rev. Lett. 88 135001Google Scholar

    [13]

    Nosenko V, Goree J, Ma Z W, Dubin D H E, Piel A 2003 Phys. Rev. E 68 056409Google Scholar

    [14]

    Hou L J, Wang Y N, Mišković Z L 2004 Phys. Rev. E 70 056406Google Scholar

    [15]

    段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红 2023 物理学报 72 165202Google Scholar

    Duan M Y, Jia W Z, Zhang Y Y, Zhang Y F, Song Y H 2023 Acta Phys. Sin. 72 165202Google Scholar

    [16]

    Jia W Z, Zhang Q Z, Wang X F, Song Y H, Zhang Y Y, Wang Y N 2019 J. Phys. D: Appl. Phys. 52 015206Google Scholar

    [17]

    Jiang K, Hou L J, Wang Y N 2005 Chin. Phys. Lett. 22 1713Google Scholar

    [18]

    Hou L J, Mišković Z L, Jiang K, Wang Y N 2006 Phys. Rev. Lett. 96 255005Google Scholar

    [19]

    Jiang K, Hou L J, Wang Y N, Mišković Z L 2006 Phys. Rev. E. 73 016404Google Scholar

    [20]

    Slattery W L, Doolen G D, DeWitt H E 1980 Phys. Rev. A 21 2087Google Scholar

    [21]

    Ichimaru S 1982 Rev. Mod. Phys. 54 1017Google Scholar

    [22]

    Hartmann P, Kalman G J, Donkó Z, Kutasi K 2005 Phys. Rev. E 72 026409Google Scholar

    [23]

    Vaulina O S, Khrapak S A, Morfill G 2002 Phys. Rev. E 66 016404Google Scholar

    [24]

    Wani R, Mir A, Batool F, Tiwari S 2022 Sci. Rep. 12 11557Google Scholar

    [25]

    Kaw P K, Sen A 1998 Phys. Plasmas 5 3552Google Scholar

    [26]

    Kalman G J, Rosenberg M, DeWitt H E 2000 Phys. Rev. Lett. 84 6030Google Scholar

    [27]

    Ikezi H 1986 Phys. Fluids 29 1764Google Scholar

    [28]

    Dasgupta C, Maitra S 2021 Phys. Plasmas 28 043703Google Scholar

    [29]

    Bandyopadhyay P, Dey R, Kadyan S, Sen A 2014 Phys. Plasmas 21 103707Google Scholar

    [30]

    Nunomura S, Zhdanov S, Samsonov D, Morfill G 2005 Phys. Rev. Lett. 94 045001Google Scholar

    [31]

    Vaulina O S, Vladimirov S V 2002 Phys. Plasmas 9 835Google Scholar

    [32]

    Fortov V E, Vaulina O S, Petrov O F, Molotkov V I, Lipaev A M, Torchinsky V M, Thomas H M, Morfill G E, Khrapak S A, Semenov Yu P, Ivanov A I, Krikalev S K, Kalery A Yu, Zaletin S V, Gidzenko Yu P 2003 Phys. Rev. Lett. 90 245005Google Scholar

    [33]

    Caliebe D, Arp O, Piel A 2011 Phys. Plasmas 18 073702Google Scholar

    [34]

    Vaulina O S, Khrapak S A 2000 J. Exp. Theor. Phys. 90 287Google Scholar

    [35]

    Hamaguchi S, Farouki R T, Dubin D H E 1997 Phys. Rev. E 56 4671Google Scholar

    [36]

    Epstein P S 1924 Phys. Rev. 23 710Google Scholar

    [37]

    Slattery W L, Doolen G D, DeWitt H E 1982 Phys. Rev. A 26 2255Google Scholar

    [38]

    Dubin D 2000 Phys. Plasmas 7 3895Google Scholar

  • [1] 田淼, 姚廷昱, 才志民, 刘富成, 贺亚峰. 尘埃等离子体棘轮中颗粒分离的三维模拟. 物理学报, 2024, 73(11): 115201. doi: 10.7498/aps.73.20240319
    [2] 徐子原, 周辉, 刘光翰, 高中亮, 丁丽, 雷凡. 三维行波磁场对等离子体鞘套密度的调控作用. 物理学报, 2024, 73(17): 175201. doi: 10.7498/aps.73.20240877
    [3] 赵明亮, 邢思雨, 唐雯, 张钰如, 高飞, 王友年. 面向半导体工艺的平面线圈感性耦合氩等离子体源的三维流体模拟研究. 物理学报, 2024, 73(21): 215201. doi: 10.7498/aps.73.20240952
    [4] 段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红. 容性耦合硅烷等离子体尘埃颗粒空间分布的二维流体模拟. 物理学报, 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [5] 谷馨, 张惠芳, 李明雨, 陈俊雅, 何英. 三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析. 物理学报, 2022, 71(24): 247301. doi: 10.7498/aps.71.20221365
    [6] 朱子豪, 高有康, 曾严, 程政, 马洪华, 易煦农. 基于四盘形谐振腔耦合波导的三波段等离子体诱导透明效应. 物理学报, 2022, 71(24): 244201. doi: 10.7498/aps.71.20221397
    [7] 王丽, 温德奇, 田崇彪, 宋远红, 王友年. 容性耦合等离子体中电子加热过程及放电参数控制. 物理学报, 2021, 70(9): 095214. doi: 10.7498/aps.70.20210473
    [8] 张改玲, 滑跃, 郝泽宇, 任春生. 13.56 MHz/2 MHz柱状感性耦合等离子体参数的对比研究. 物理学报, 2019, 68(10): 105202. doi: 10.7498/aps.68.20190071
    [9] 车碧轩, 李小康, 程谋森, 郭大伟, 杨雄. 一种耦合外部电路的脉冲感应推力器磁流体力学数值仿真模型. 物理学报, 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [10] 黎航, 杨冬, 李三伟, 况龙钰, 李丽灵, 袁铮, 张海鹰, 于瑞珍, 杨志文, 陈韬, 曹柱荣, 蒲昱东, 缪文勇, 王峰, 杨家敏, 江少恩, 丁永坤, 胡广月, 郑坚. 黑腔中等离子体相互作用的流体力学现象观测. 物理学报, 2018, 67(23): 235201. doi: 10.7498/aps.67.20181391
    [11] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [12] 魏小龙, 徐浩军, 李建海, 林敏, 宋慧敏. 高气压空气环状感性耦合等离子体实验研究和参数诊断. 物理学报, 2015, 64(17): 175201. doi: 10.7498/aps.64.175201
    [13] 何福顺, 李刘合, 李芬, 顿丹丹, 陶婵偲. 增强辉光放电等离子体离子注入的三维PIC/MC模拟. 物理学报, 2012, 61(22): 225203. doi: 10.7498/aps.61.225203
    [14] 王伟宗, 吴翊, 荣命哲, 杨飞. 局域热力学平衡态空气电弧等离子体输运参数计算研究. 物理学报, 2012, 61(10): 105201. doi: 10.7498/aps.61.105201
    [15] 孟立民, 滕爱萍, 李英骏, 程涛, 张杰. 基于自相似模型的二维X射线激光等离子体流体力学. 物理学报, 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [16] 马小涛, 郑婉华, 任 刚, 樊中朝, 陈良惠. 感应耦合等离子体刻蚀InP/InGaAsP二维光子晶体结构的研究. 物理学报, 2007, 56(2): 977-981. doi: 10.7498/aps.56.977
    [17] 徐利军, 刘少斌, 莫锦军, 袁乃昌. 各向异性磁化等离子体涂敷三维导体目标FDTD分析. 物理学报, 2006, 55(7): 3470-3474. doi: 10.7498/aps.55.3470
    [18] 辛 煜, 狄小莲, 虞一青, 宁兆元. 多源感应耦合等离子体的产生及等离子体诊断. 物理学报, 2006, 55(7): 3494-3500. doi: 10.7498/aps.55.3494
    [19] 苍 宇, 鲁 欣, 武慧春, 张 杰. 有质动力和静电分离场对激光等离子体流体力学状态的影响. 物理学报, 2005, 54(2): 812-817. doi: 10.7498/aps.54.812
    [20] 杨维纮, 胡希伟. 非均匀载流柱形等离子体中的磁流体力学波. 物理学报, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
计量
  • 文章访问数:  1927
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-24
  • 修回日期:  2023-12-29
  • 上网日期:  2024-01-30
  • 刊出日期:  2024-04-20

/

返回文章
返回