搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

容性耦合等离子体中电子加热过程及放电参数控制

王丽 温德奇 田崇彪 宋远红 王友年

引用本文:
Citation:

容性耦合等离子体中电子加热过程及放电参数控制

王丽, 温德奇, 田崇彪, 宋远红, 王友年

Electron heating dynamics and plasma parameters control in capacitively coupled plasma

Wang Li, Wen De-Qi, Tian Chong-Biao, Song Yuan-Hong, Wang You-Nian
PDF
HTML
导出引用
  • 容性耦合等离子体放电因在工业界有重要的应用价值而受到广泛关注. 对于容性耦合等离子体放电的研究主要集中于对等离子体参数的控制, 以实现更好的工艺效果, 例如高深宽比刻蚀等. 而关于等离子体参数的调控主要分为气体、腔室以及源这三个方面. 改变这些外部参数, 可以直接影响鞘层的动力学过程以及带电粒子的加热过程, 进而实现对电子和离子能量、通量, 等离子体均匀性, 中性基团的密度等的控制, 最终提高工艺质量和生产效率. 本文梳理了近些年容性耦合等离子体研究的几个主要方向, 尤其对等离子体放电中非常基础且重要的电子加热动力学问题进行了详尽的讨论, 并重点介绍了一些通过外部放电参数调控容性耦合等离子体放电的手段和相关的研究热点.
    Capacitively coupled plasma (CCP) has gain wide attention due to its important applications in industry. The researches of CCP mainly focus on the discharge characteristics and plasma parameters under different discharge conditions to obtain a good understanding of the discharge, find good methods of controlling the charged particle properties, and improve the process performance and efficiency. The controlling of plasma parameters is based on the following three aspects: gas, chamber, and power source. Changing these discharge conditions can directly influence the sheath dynamics and the charged particle heating process, which can further influence the electron and ion distribution functions, the plasma uniformity, and the production of neutral particles, etc. Based on a review of the recent years’ researches of CCP, the electron heating dynamics and several common methods of controlling the plasma parameters, i.e. voltage waveform tailoring, realistic secondary electron emission, and magnetized capacitively coupled plasma are introduced and discussed in detail in this work.
      通信作者: 宋远红, songyh@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12020101005, 11975067)和国家留学基金管理委员会(批准号: 201906060024)资助的课题
      Corresponding author: Song Yuan-Hong, songyh@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12020101005, 11975067) and the China Scholarship Council (Grant No. 201906060024)
    [1]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharge for Materials Processing (New York: Wiley-Interscience) pp1−5

    [2]

    Chabert P, Braithwaite N 2011 Physics of Radio-Frequency Plasmas (New York: Cambridge University Press)

    [3]

    Hartmann P, Wang L, Nösges K, Berger B, Wilczek S, Brinkmann R P, Mussenbrock T, Juhasz Z, Donkó Z, Derzsi A, Lee E, Schulze J 2020 Plasma Sources Sci. Technol. 29 075014Google Scholar

    [4]

    Korolov I, Derzsi A, Donkó Z, Schulze J 2013 Appl. Phys. Lett. 103 064102Google Scholar

    [5]

    Schulze J, Schüngel E, Donkó Z, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 015017Google Scholar

    [6]

    Lafleur T, Booth J P 2012 J. Phys. D: Appl. Phys. 45 395203Google Scholar

    [7]

    Lafleur T, Delattre P A, Johnson E V, Booth J P 2012 Appl. Phys. Lett 101 124104Google Scholar

    [8]

    Bruneau B, Lafleur T, Booth J P, Johnson E 2016 Plasma Sources Sci. Technol. 25 025006Google Scholar

    [9]

    Donkó Z, Derzsi A, Vass M, Schulze J, Schuengel E, Hamaguchi S 2018 Plasma Sources Sci. Technol. 27 104008Google Scholar

    [10]

    Turner M M, Hutchinson D, Doyle R A, et al. 1996 Phys Rev Lett. 76 2069Google Scholar

    [11]

    Vasenkov A V 2004 J. Appl. Phys. 95 834Google Scholar

    [12]

    Zheng B, Y Fu, Wang K, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abe9f9Google Scholar

    [13]

    Stefan R, Nikita B, Marcel R, et al. 2018 Plasma Sources Sci. Technol. 27 094001Google Scholar

    [14]

    Oberberg M, Berger B, Buschheuer M, Engel D, Wölfel C, Eremin D, Lunze J, Brinkmann R P, Awakowicz P, Schulze J 2020 Plasma Sources Sci. Technol. 29 075013Google Scholar

    [15]

    Wang L, Wen D Q, Hartmann P, Donkó Z, Derzsi A, Wang X F, Song Y H, Wang Y N, Schulze J 2020 Plasma Sources Sci. Technol. 29 105004Google Scholar

    [16]

    Yang S, Innocenti M E, Zhang Y, Yi L, Jiang W 2017 J. Vac. Sci. Technol., A 35 061311Google Scholar

    [17]

    Zhang Q Z, Wang Y N, Bogaerts A 2014 J. Appl. Phys. 115 3048Google Scholar

    [18]

    Wen D Q, Kawamura E, Lieberman M A, et al. 2017 J. Phys. D: Appl. Phys. 50 495201Google Scholar

    [19]

    Wang L, Peter H, Donko Z, Song Y H, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abf206Google Scholar

    [20]

    Brandt S W, Berger B, Donko Z, et al. 2019 Plasma Sources Sci. Technol. 28 095021Google Scholar

    [21]

    Song S H, Kushner M J 2012 Plasma Sources Sci. Technol. 21 055028Google Scholar

    [22]

    Derzsi A, Lafleur T, Booth J P, et al. 2016 Plasma Sources Sci. Technol. 25 015004Google Scholar

    [23]

    Franek J, Brandt S, Berger B, Liese M, Barthel M, Schungel E, Schulze J 2015 Rev. Sci. Instrum. 86 053504Google Scholar

    [24]

    Schmidt F, Schulze J, Johnson E, Booth J P, Keil D, French D M, Trieschmann J, Mussenbrock T 2018 Plasma Sources Sci. Technol. 27 095012Google Scholar

    [25]

    Wang J K, Dine S, Booth J P, et al. 2019 J. Vac. Sci. Technol., A 37 021303Google Scholar

    [26]

    Cargill P J 2007 Plasma Phys. Controlled Fusion 49 197Google Scholar

    [27]

    Hammond E P, Mahesh K, Moin P J 2002 J. Comput. Phys. 176 402Google Scholar

    [28]

    Larson M G, Bengzon F 2013 The Finite Element Method: Theory, Implementation and Applications (Berlin, Heidelberg: Springer-Verlag)

    [29]

    陆金甫, 关治 2004 偏微分方程数值解法 (北京: 清华大学出版社) 第77−80页

    Lu J P, Guan Z 2004 Numerical Methods for Partial Differential Equations (Beijing: Tsinghua University Press) pp77–80 (in Chinese)

    [30]

    Rebiai S, Bahouh H, Sahli S 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1616Google Scholar

    [31]

    Liu Y X, Liang Y S, Wen D Q, Bi Z H, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025013Google Scholar

    [32]

    Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013Google Scholar

    [33]

    Czarnetzki U, Mussenbrock T, Brinkmann R P 2006 Phys. Plasmas 13 123503Google Scholar

    [34]

    Lieberman M A, Lichtenberg A J, Kawamura E, Mussenbrock T, Brinkmann R P 2008 Phys. Plasmas 15 063505Google Scholar

    [35]

    Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J, Wang Y N 2016 Plasma Sources Sci. Technol. 26 015007Google Scholar

    [36]

    Mussenbrock T, Brinkmann R P, Lieberman M A, Lichtenberg A J, Kawamura E 2008 Phys. Rev. Lett. 101 085004Google Scholar

    [37]

    Fu Y, Zheng B, Wen D Q, Zhang P, Fan Q H, Verboncoeur J P 2020 Plasma Sources Sci. Technol. 29 09lt01Google Scholar

    [38]

    Derzsi A, Korolov I, Schüngel E, Donkó Z, Schulze J 2015 Plasma Sources Sci. Technol. 24 034002Google Scholar

    [39]

    Horváth B, Daksha M, Korolov I, Derzsi A, Schulze J 2017 Plasma Sources Sci. Technol. 26 124001Google Scholar

    [40]

    Birdsall C K, Langdon A B 1985 Plasma Physics Via Computer Simulation (New York: McGraw-Hill)

    [41]

    Verboncoeur J P 2005 Plasma Phys. Controlled Fusion 47 A231Google Scholar

    [42]

    Donkó Z, Derzsi A, Vass M, et al. 2021 arXiv:2103.09642 [physics.plasm-ph]

    [43]

    Donkó Z 2011 Plasma Sources Sci. Technol. 20 024001

    [44]

    Nanbu K 2000 IEEE Trans Dielectr. Electr. Insul. 28 971Google Scholar

    [45]

    Turner M M 1995 Phys. Rev. Lett. 75 1312Google Scholar

    [46]

    Schulze J, Derzsi A, Dittmann K, Hemke T, Meichsner J, Donko Z 2011 Phys. Rev. Lett. 107 275001Google Scholar

    [47]

    Kim H C, Lee J K 2004 Phys. Rev. Lett. 93 085003Google Scholar

    [48]

    Turner M M, Chabert P 2006 Phys. Rev. Lett. 96 205001Google Scholar

    [49]

    Liu Y X, Schungel E, Korolov I, Donko Z, Wang Y N, Schulze J 2016 Phys. Rev. Lett. 116 255002Google Scholar

    [50]

    Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002Google Scholar

    [51]

    Wilczek S, Trieschmann J, Eremin D, Brinkmann R P, Schulze J, Schuengel E, Derzsi A, Korolov I, Hartmann P, Donkó Z, Mussenbrock T 2016 Phys. Plasmas 23 063514Google Scholar

    [52]

    Jiang W, Wang H Y, Bi Z H, Wang Y N 2011 Plasma Sources Sci. Technol. 20 035013Google Scholar

    [53]

    Zhang Q Z, Zhao S X, Jiang W, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 305203Google Scholar

    [54]

    Eremin D, Bienholz S, Szeremley D, Trieschmann J, Ries S, Awakowicz P, Mussenbrock T, Brinkmann R P 2016 Plasma Sources Sci. Technol. 25 025020Google Scholar

    [55]

    Eremin D 2017 IEEE Trans. Plasma Sci. 45 527Google Scholar

    [56]

    Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J, Wang Y N 2017 Phys. Plasmas 24 083517Google Scholar

    [57]

    Eremin D, Brinkmann R P, Mussenbrock T 2017 Plasma Processes Polym. 14 1600164Google Scholar

    [58]

    Wen D Q, Zhang Q Z, Jiang W, et al. 2014 J. Appl. Phys. 115 233303Google Scholar

    [59]

    Wang L, Hartmann P, Donkó Z, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abf31dGoogle Scholar

    [60]

    Gudmundsson J T, Kawamura E, Lieberman M A 2013 Plasma Sources Sci. Technol. 22 035011Google Scholar

    [61]

    Verboncoeur J P, Langdon A B, Gladd N T 1995 Comput. Phys. Commun. 87 199Google Scholar

    [62]

    夏伯特P, 布雷斯韦特N 著(王友年, 徐军, 宋远红 译) 2015 射频离子体物理学 (北京: 科学出版社)

    Chabert P, Braithwaite N (translated by Wang Y N, Xu J, Song Y H) 2015 Physics of Radio-Frequency Plasmas (Beijing: Science Press) (in Chinese)

    [63]

    Liu J, Wen D Q, Liu Y X, Gao F, Lu W Q, Wang Y N 2013 J. Vac. Sci. Technol., A 31 061308Google Scholar

    [64]

    Zhu X M, Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001Google Scholar

    [65]

    Li J, Liu F X, Zhu X M, Pu Y K 2011 J. Phys. D: Appl. Phys. 44 292001Google Scholar

    [66]

    Xue C, Gao F, Wen D Q, Wang Y N 2019 J. Appl. Phys. 125 023303Google Scholar

    [67]

    Godyak V A, Piejak R B 1990 Phys. Rev. Lett. 65 996Google Scholar

    [68]

    Lieberman M A 1989 IEEE Trans. Plasma Sci. Soc. 17 338Google Scholar

    [69]

    Kaganovich I D, Polomarov O V, Theodosiou C E 2006 IEEE Trans. Plasma Sci. 34 696Google Scholar

    [70]

    Gozadinos G, Turner M M, Vender D 2001 Phys. Rev. Lett. 87 135004Google Scholar

    [71]

    Lafleur T, Chabert P, Turner M M, Booth J P 2014 Plasma Sources Sci. Technol. 23 015016Google Scholar

    [72]

    Schulze J, Donkó Z, Derzsi A, et al. 2015 Plasma Sources Sci. Technol. 24 015019Google Scholar

    [73]

    Schulze J, Donkó Z, Lafleur T, Wilczek S, Brinkmann R P 2018 Plasma Sources Sci. Technol. 27 055010Google Scholar

    [74]

    Wilczek S, Schulze J, Brinkmann R P, Donkó Z, Trieschmann J, Mussenbrock T 2020 J. Appl. Phys. 127 181101

    [75]

    Vass M, Wilczek S, Lafleur T, et al. 2020 Plasma Sources Sci. Technol. 29 085014Google Scholar

    [76]

    Vass M, Wilczek S, Lafleur T, et al. 2020 Plasma Sources Sci. Technol. 29 025019Google Scholar

    [77]

    Belenguer P, Boeuf J P 1990 Phys. Rev. A 41 4447Google Scholar

    [78]

    Booth J P, Curley G, Marić D, Chabert P 2010 Plasma Sources Sci. Technol. 19 015005Google Scholar

    [79]

    Liu G H, Liu Y X, Wen D Q, Wang Y N 2015 Plasma Sources Sci. Technol. 24 034006Google Scholar

    [80]

    Wang L, Wen D Q, Zhang Q Z, Song Y H, Zhang Y R, Wang Y N 2019 Plasma Sources Sci. Technol. 28 055007Google Scholar

    [81]

    Schulze J, Kampschulte T, Luggenholscher D, Czarnetzki U 2007 J. Phys. Conf. Ser. 86 012010Google Scholar

    [82]

    Berger B, You K, Lee H C, Mussenbrock T, Awakowicz P, Schulze J 2018 Plasma Sources Sci. Technol. 27 12LT02Google Scholar

    [83]

    Schüngel E, Brandt S, Donkó Z, et al. 2016 Plasma Sources Sci. Technol. 24 044009Google Scholar

    [84]

    Schulze J, Heil B G, Luggenhölscher D, Brinkmann R P, Czarnetzki U 2008 J. Phys. D: Appl. Phys. 41 195212Google Scholar

    [85]

    Schulze J, Heil B G, et al. 2008 J. Phys. D: Appl. Phys. 41 42003Google Scholar

    [86]

    Donkó Z, Schulze J, Czarnetzki U, Luggenhölscher D 2009 Appl. Phys. Lett. 94 131501Google Scholar

    [87]

    Schulze J, Donkó Z, Heil B G, Luggenhölscher D, Mussenbrock T, Brinkmann R P, Czarnetzki U 2008 J. Phys. D: Appl. Phys. 41 105214Google Scholar

    [88]

    Campanell M D, Khrabrov A V, Kaganovich I D 2012 Phys. Rev. Lett. 108 255001Google Scholar

    [89]

    Campanell M 2013 Phys. Rev. E 88 033103Google Scholar

    [90]

    Kushner M J 2003 J. Appl. Phys. 94 1436Google Scholar

    [91]

    Sharma S, Kaganovich I D, Khrabrov A V, Kaw P, Sen A 2018 Phys. Plasmas 25 080704Google Scholar

    [92]

    Krüger F, Wilczek S, Mussenbrock T, Schulze J 2019 Plasma Sources Sci. Technol. 28 075017Google Scholar

    [93]

    Zhang P, Zhang L, Xu L 2020 Plasma Processes Polym. 17 2000014Google Scholar

    [94]

    Zhang P, Zhang L, Lü K 2020 Plasma Chem. Plasma Process. 40 1605Google Scholar

    [95]

    Lee I, Graves D B, Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018Google Scholar

    [96]

    Liu J, Zhang Y, Zhao K, Wen D, Wang Y 2021 Plasma Sources Sci. Technol. 23 035401Google Scholar

    [97]

    Lieberman M A, Booth J P, Chabert P, et al. 2002 Plasma Sources Sci. Technol. 11 283Google Scholar

    [98]

    Chabert P, Raimbault J L, Rax J M, Lieberman M A 2004 Phys. Plasmas 11 1775Google Scholar

    [99]

    Rauf S, Bera K, Collins K 2008 Plasma Sources Sci. Technol. 17 035003Google Scholar

    [100]

    Kawamura E, Lieberman M A, Graves D B 2014 Plasma Sources Sci. Technol. 23 064003Google Scholar

    [101]

    Kawamura E, Lichtenberg A J, Lieberman M A, Marakhtanov A M 2016 Plasma Sources Sci. Technol. 25 035007Google Scholar

    [102]

    Sansonnens L, Howling A A, Hollenstein C 2006 Plasma Sources Sci. Technol. 15 302Google Scholar

    [103]

    Lieberman M A, Lichtenberg A J, Kawamura E, Chabert P 2016 Phys. Plasmas 23 013501Google Scholar

    [104]

    Yang Y, Kushner M J 2010 J. Phys. D: Appl. Phys. 43 152001Google Scholar

    [105]

    Yang Y, Kushner M J 2010 J. Appl. Phys. 108 113306Google Scholar

    [106]

    Schmidt H, Sansonnens L, Howling A A, Hollenstein C, Elyaakoubi M, Schmitt J P M 2004 J. Appl. Phys. 95 4559Google Scholar

    [107]

    Kawamura E, Wen D Q, Lieberman M A, Lichtenberg A J 2017 J. Vac. Sci. Technol., A 35 05c311Google Scholar

    [108]

    Zhao K, Liu Y X, Kawamura E, Wen D Q, Lieberman M A, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055017Google Scholar

    [109]

    Zhao K, Wen D Q, Liu Y X, Lieberman M A, Economou D J, Wang Y N 2019 Phys. Rev. Lett. 122 185002Google Scholar

    [110]

    Lieberman M A, Lichtenberg A J, Kawamura E, Marakhtanov A M 2015 Plasma Sources Sci. Technol. 24 055011Google Scholar

    [111]

    Surendra M, Graves D B 1991 Appl. Phys. Lett. 59 2091Google Scholar

    [112]

    Cao Z, Walsh J L, Kong M G 2009 Appl. Phys. Lett. 94 021501Google Scholar

    [113]

    Lee J K, Manuilenko O V, Babaeva N Y, Kim H C, Shon J W 2005 Plasma Sources Sci. Technol. 14 89Google Scholar

    [114]

    Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506Google Scholar

    [115]

    Heil B G, Schulze J, Mussenbrock T, Brinkmann R P, Czarnetzki U 2008 IEEE Trans. Plasma Sci. 36 1404Google Scholar

    [116]

    Schüngel E, Zhang Q Z, Iwashita S, Schulze J, Hou L J, Wang Y N, Czarnetzki U 2011 J. Phys. D: Appl. Phys. 44 285205Google Scholar

    [117]

    Zhang Q Z, Jiang W, Hou L J, Wang Y N 2011 J. Appl. Phys. 109 013308Google Scholar

    [118]

    Delattre P A, Lafleur T, Johnson E, Booth J P 2013 J. Phys. D: Appl. Phys. 46 235201Google Scholar

    [119]

    Bruneau B, Gans T, O'Connell D, Greb A, Johnson E V, Booth J P 2015 Phys. Rev. Lett. 114 125002Google Scholar

    [120]

    Bruneau B, Novikova T, Lafleur T, Booth J P, Johnson E V 2014 Plasma Sources Sci. Technol. 23 065010Google Scholar

    [121]

    Hartmann P, Wang L, Nösges K, et al. 2021 J. Phys. D: Appl. Phys. 54 255202Google Scholar

    [122]

    Schüngel E, Mohr S, Schulze J, Czarnetzki U 2015 Appl. Phys. Lett. 106 054108Google Scholar

    [123]

    Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055003Google Scholar

    [124]

    Korolov I, Steuer D, Bischoff L, Hübner G, Liu Y, Schulz-von der Gathen V, Böke M, Mussenbrock T, Schulze J 2021 J. Phys. D: Appl. Phys. 54 125203Google Scholar

    [125]

    Schulze J, Schüngel E, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 092005Google Scholar

    [126]

    Berger B, Brandt S, Franek J, Schüngel E, Koepke M, Mussenbrock T, Schulze J 2015 J. Appl. Phys. 118 223302Google Scholar

    [127]

    Schüngel E, Eremin D, Schulze J, Mussenbrock T, Czarnetzki U 2012 J. Appl. Phys. 112 053302Google Scholar

    [128]

    Yang S, Chang L, Zhang Y, Jiang W 2018 Plasma Sources Sci. Technol. 27 035008Google Scholar

    [129]

    Schulze J, Donko Z, Schüngel E, et al. 2011 Plasma Sources Sci. Technol. 20 45007Google Scholar

    [130]

    Donke Z, Schulze J, Hartmann P, et al. 2010 Appl. Phys. Lett. 97 033502Google Scholar

    [131]

    Lafleur T, Chabert P, Booth J P 2013 J. Phys. D: Appl. Phys. 46 135201Google Scholar

    [132]

    Proto A, Gudmundsson J T 2018 Atoms 6 65Google Scholar

    [133]

    Donkó Z, Schulze J, Hartmann P, Korolov I, Czarnetzki U, Schüngel E 2010 Appl. Phys. Lett. 97 081501Google Scholar

    [134]

    Derzsi A, Horváth B, Korolov I, Donkó Z, Schulze J 2019 J. Appl. Phys 126 043303Google Scholar

    [135]

    Phelps A V, Pitchford L C, Pédoussat C, Donkó Z 1999 Plasma Sources Sci. Technol. 8 B1Google Scholar

    [136]

    Daksha M, Derzsi A, Wilczek S, Trieschmann J, Mussenbrock T, Awakowicz P, Donkó Z, Schulze J 2017 Plasma Sources Sci. Technol. 26 085006Google Scholar

    [137]

    Daksha M, Derzsi A, Mujahid Z, Schulenberg D, Berger B, Donkó Z, Schulze J 2019 Plasma Sources Sci. Technol. 28 034002Google Scholar

    [138]

    Sun J Y, Wen D Q, Zhang Q Z, Liu Y X, Wang Y N 2019 Phys. Plasmas 26 063505Google Scholar

    [139]

    Derzsi A, Horváth B, Donkó Z, Schulze J 2020 Plasma Sources Sci. Technol. 29 074001Google Scholar

    [140]

    Oberberg M, Engel D, Berger B, Wölfel C, Eremin D, Lunze J, Brinkmann R P, Awakowicz P, Schulze J 2019 Plasma Sources Sci. Technol. 28 115021Google Scholar

  • 图 1  容性耦合等离子体源重点内容结构图

    Fig. 1.  Important elements related to capacitively coupled plasma source.

    图 2  CCP放电中等离子体参数控制重点内容结构图

    Fig. 2.  Important elements related to plasma parameter control in CCP discharge.

    图 3  (a) 几何对称CCP放电腔室结构; (b) 几何非对称CCP放电腔室结构

    Fig. 3.  (a) Schematics of geometrically symmetric CCP discharge; (b) schematics of geometrically asymmetric CCP discharge.

    图 4  PIC/MCC模拟流程图

    Fig. 4.  Flow chart of the PIC/MCC simulation.

    图 5  (a) 时空分布的电子碰撞电离图; (b) 电场图; (c) 电子密度图. 放电条件: 四氟化碳气体, L = 1.5 cm, P = 90 Pa, f = 40 MHz, 功率20 W, 单频波[79]

    Fig. 5.  Spatio-temporal plots of the ionization rate (a), electric field (b) and electron density (c). The discharge conditions are: CF4 gas, L = 1.5 cm, P = 90 Pa, f = 40 MHz, single frequency voltage waveform with a power 20 W[79].

    图 6  (a) CF4放电中, 实验测得电子碰撞激发速率的时空分布图; (b) PIC/MCC模拟的电子碰撞电离速率时空分布图. 放电条件: L = 1.5 cm, P = 100 Pa, f = 8 MHz, V0 = 300 V[49]

    Fig. 6.  (a) Spatio-temporal plots of the exitation rate from experiment; (b) ionization rate from PIC/MCC simulations. The discharge conditions: CF4 gas, L = 1.5 cm, P = 100 Pa, f = 8 MHz, V0 = 300 V[49].

    图 7  时空分布的电子碰撞解离速率图(第一列); 电子碰撞电离速率图(第二列); 电场图(第三列); 净电荷密度图(第四列)和电子吸收功率图(第五列); 放电条件: 氧气, L = 3 cm, P = 40 Pa, f = 6 MHz, V0 = 200 V[80]

    Fig. 7.  Spatio-temporal plots of the dissociation rate (first column), ionization rate (second column), electric field (third column), charge density (fourth column), and electron power absorption rate (fifth column). The discharge conditions: oxygen gas, L = 3 cm, P = 40 Pa, f = 6 MHz, V0 = 200 V[80].

    图 8  (a) 放电中心位置的电流密度图; (b) 功率源极板鞘层电压图; (c) 鞘层电压的傅里叶分析图. 放电条件: 氩气, L = 2 cm, P = 20 mTorr, f = 13.56 MHz, Δτ = 6 ns, V0 = 400 V, 高斯波形

    Fig. 8.  (a) Current density at the discharge center; (b) voltage drop of the sheath at the powered electrode; (c) the Fourier spectrum of the sheath voltage at the powered electrode. Discharge conditions: Ar gas, L = 2 cm, P = 20 mTorr, f = 13.56 MHz, Δτ = 6 ns, V0 = 400 V, Gaussian waveform.

    图 9  时空分布的(a)电场图、(b) 电子吸收功率图、(c) 电子碰撞激发率图. 放电条件: L = 2 cm, P = 20 mTorr, f = 13.56 MHz, Δτ = 6 ns, V0 = 400 V, 高斯波形

    Fig. 9.  Spatio-temporal plots of electric field (a), electron power absorption (b), and ionization rate (c). Discharge conditions: Argon gas, L = 2 cm, P = 20 mTorr, f = 13.56 MHz, Δτ = 6 ns, V0 = 400 V, Gaussian waveform.

    图 10  PIC/MCC及玻尔兹曼分析模型给出的t/TRF = 0.5时, 磁场为0 G (a) 和200 G (b) 时接地极板附近电场的空间分布图. 放电条件: 氧气, L = 2.5 cm, P = 100 mTorr, f = 13.56 MHz, V0 = 300 V[15]

    Fig. 10.  Spatial distribution of the electric field near the grounded electrode from the PIC/MCC simulation and Boltzmann term analysis model at the time t/TRF = 0.5 at B = 0 G (a) and B = 200 G (b). Discharge conditions: oxygen gas, L = 2.5 cm, P = 100 mTorr, f = 13.56 MHz, V0 = 300 V[15].

    图 11  模拟、实验及模型给出的归一化的直流自偏压随相位角的变化图. 放电条件: L = 2.5 cm, P = 10 Pa, f = 13.56 MHz, V0 = 150 V[116]

    Fig. 11.  Normalized DC self-bias as a function of the phase angle from experiments, simulations and models. Discharge conditions: L = 2.5 cm, P = 10 Pa, f = 13.56 MHz, V0 = 150 V[116].

    图 12  不同相位角下, 功率极板上的氩离子能量分布. 放电条件: L = 2.5 cm, P = 103 mTorr, f1 = 13.56 MHz, f2 = 27.12 MHz, V0 = 150 V[117]

    Fig. 12.  Ion energy distribution at the powered electrode as a function of the phase angle. Discharge conditions: L = 2.5 cm, P = 103 mTorr, f1 = 13.56 MHz, f2 = 27.12 MHz, V0 = 150 V[117].

    图 13  在103和30 mTorr下, 不同相位角下氩气及氧气放电中功率极板上的离子通量. 放电条件: L = 2.5 cm, f = 13.56 MHz, V0 = 150 V[117]

    Fig. 13.  Ion flux at the powered electrode as a function of the phase angle in argon and oxygen discharge at 103 and 30 mTorr. Other discharge conditions: L = 2.5 cm, f =13.56 MHz, V0 = 150 V[117].

    图 14  随相位角的变化, 电子密度空间分布图. 放电条件: P = 200 mTorr, f = 13.56 MHz, V0 = 100 V, 两个半径为15 cm的平行板电极, 电极间隙为3 cm, 电极和侧壁之间的距离为5 cm[123]

    Fig. 14.  Spatial distributions of the electron density at different phase angles. Discharge conditions: P = 200 mTorr, f = 13.56 MHz, V0 = 100 V; the discharge is two plane and parallel electrodes with radii of 15 cm; the electrode gap is 3 cm, and the distance between electrodes and side-walls is 5 cm[123].

    图 15  不同电压下, A和B两种情况下离子密度峰值及其比值, 其中情况A为两个极板材料都是铜; 情况B为功率电极材料为二氧化硅, 接地电极材料为铜; 放电条件: 氩气, L = 4.0 cm, P = 2.0 Pa, f = 13.56 MHz[138]

    Fig. 15.  Peak electron density in case A and case B and the peak density ratio as a function of the driving voltage amplitude. In case A, the surface material is Cu for both the powered and grounded electrode. In case B, the powered electrode is made of SiO2, while the grounded electrode is made of Cu. Discharge conditions: Argon gas, L = 4 cm, P = 2.0 Pa, f = 13.56 MHz[138].

    图 16  时空分布的电场图(第一行)、电子功率吸收功率图(第二行)和电离速率图(第三行); 在磁场B = 0 G (第一列)、B = 50 G (第二列)、B = 100 G (第三列)和B = 200 G (第四列)下的时空分布图. 放电条件: 氧气, L = 2.5 cm, P = 100 mTorr, f = 13.56 MHz, V0 = 300 V[15]

    Fig. 16.  Spatio-temporal plots of the electric field (first row), electron power absorption rate (second row), and ionization rate (third row) at B = 0, 50, 100, 200 G. Discharge conditions: oxygen gas, L = 2.5 cm, P = 100 mTorr, f = 13.56 MHz, V0 = 300 V[15].

  • [1]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharge for Materials Processing (New York: Wiley-Interscience) pp1−5

    [2]

    Chabert P, Braithwaite N 2011 Physics of Radio-Frequency Plasmas (New York: Cambridge University Press)

    [3]

    Hartmann P, Wang L, Nösges K, Berger B, Wilczek S, Brinkmann R P, Mussenbrock T, Juhasz Z, Donkó Z, Derzsi A, Lee E, Schulze J 2020 Plasma Sources Sci. Technol. 29 075014Google Scholar

    [4]

    Korolov I, Derzsi A, Donkó Z, Schulze J 2013 Appl. Phys. Lett. 103 064102Google Scholar

    [5]

    Schulze J, Schüngel E, Donkó Z, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 015017Google Scholar

    [6]

    Lafleur T, Booth J P 2012 J. Phys. D: Appl. Phys. 45 395203Google Scholar

    [7]

    Lafleur T, Delattre P A, Johnson E V, Booth J P 2012 Appl. Phys. Lett 101 124104Google Scholar

    [8]

    Bruneau B, Lafleur T, Booth J P, Johnson E 2016 Plasma Sources Sci. Technol. 25 025006Google Scholar

    [9]

    Donkó Z, Derzsi A, Vass M, Schulze J, Schuengel E, Hamaguchi S 2018 Plasma Sources Sci. Technol. 27 104008Google Scholar

    [10]

    Turner M M, Hutchinson D, Doyle R A, et al. 1996 Phys Rev Lett. 76 2069Google Scholar

    [11]

    Vasenkov A V 2004 J. Appl. Phys. 95 834Google Scholar

    [12]

    Zheng B, Y Fu, Wang K, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abe9f9Google Scholar

    [13]

    Stefan R, Nikita B, Marcel R, et al. 2018 Plasma Sources Sci. Technol. 27 094001Google Scholar

    [14]

    Oberberg M, Berger B, Buschheuer M, Engel D, Wölfel C, Eremin D, Lunze J, Brinkmann R P, Awakowicz P, Schulze J 2020 Plasma Sources Sci. Technol. 29 075013Google Scholar

    [15]

    Wang L, Wen D Q, Hartmann P, Donkó Z, Derzsi A, Wang X F, Song Y H, Wang Y N, Schulze J 2020 Plasma Sources Sci. Technol. 29 105004Google Scholar

    [16]

    Yang S, Innocenti M E, Zhang Y, Yi L, Jiang W 2017 J. Vac. Sci. Technol., A 35 061311Google Scholar

    [17]

    Zhang Q Z, Wang Y N, Bogaerts A 2014 J. Appl. Phys. 115 3048Google Scholar

    [18]

    Wen D Q, Kawamura E, Lieberman M A, et al. 2017 J. Phys. D: Appl. Phys. 50 495201Google Scholar

    [19]

    Wang L, Peter H, Donko Z, Song Y H, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abf206Google Scholar

    [20]

    Brandt S W, Berger B, Donko Z, et al. 2019 Plasma Sources Sci. Technol. 28 095021Google Scholar

    [21]

    Song S H, Kushner M J 2012 Plasma Sources Sci. Technol. 21 055028Google Scholar

    [22]

    Derzsi A, Lafleur T, Booth J P, et al. 2016 Plasma Sources Sci. Technol. 25 015004Google Scholar

    [23]

    Franek J, Brandt S, Berger B, Liese M, Barthel M, Schungel E, Schulze J 2015 Rev. Sci. Instrum. 86 053504Google Scholar

    [24]

    Schmidt F, Schulze J, Johnson E, Booth J P, Keil D, French D M, Trieschmann J, Mussenbrock T 2018 Plasma Sources Sci. Technol. 27 095012Google Scholar

    [25]

    Wang J K, Dine S, Booth J P, et al. 2019 J. Vac. Sci. Technol., A 37 021303Google Scholar

    [26]

    Cargill P J 2007 Plasma Phys. Controlled Fusion 49 197Google Scholar

    [27]

    Hammond E P, Mahesh K, Moin P J 2002 J. Comput. Phys. 176 402Google Scholar

    [28]

    Larson M G, Bengzon F 2013 The Finite Element Method: Theory, Implementation and Applications (Berlin, Heidelberg: Springer-Verlag)

    [29]

    陆金甫, 关治 2004 偏微分方程数值解法 (北京: 清华大学出版社) 第77−80页

    Lu J P, Guan Z 2004 Numerical Methods for Partial Differential Equations (Beijing: Tsinghua University Press) pp77–80 (in Chinese)

    [30]

    Rebiai S, Bahouh H, Sahli S 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1616Google Scholar

    [31]

    Liu Y X, Liang Y S, Wen D Q, Bi Z H, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025013Google Scholar

    [32]

    Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013Google Scholar

    [33]

    Czarnetzki U, Mussenbrock T, Brinkmann R P 2006 Phys. Plasmas 13 123503Google Scholar

    [34]

    Lieberman M A, Lichtenberg A J, Kawamura E, Mussenbrock T, Brinkmann R P 2008 Phys. Plasmas 15 063505Google Scholar

    [35]

    Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J, Wang Y N 2016 Plasma Sources Sci. Technol. 26 015007Google Scholar

    [36]

    Mussenbrock T, Brinkmann R P, Lieberman M A, Lichtenberg A J, Kawamura E 2008 Phys. Rev. Lett. 101 085004Google Scholar

    [37]

    Fu Y, Zheng B, Wen D Q, Zhang P, Fan Q H, Verboncoeur J P 2020 Plasma Sources Sci. Technol. 29 09lt01Google Scholar

    [38]

    Derzsi A, Korolov I, Schüngel E, Donkó Z, Schulze J 2015 Plasma Sources Sci. Technol. 24 034002Google Scholar

    [39]

    Horváth B, Daksha M, Korolov I, Derzsi A, Schulze J 2017 Plasma Sources Sci. Technol. 26 124001Google Scholar

    [40]

    Birdsall C K, Langdon A B 1985 Plasma Physics Via Computer Simulation (New York: McGraw-Hill)

    [41]

    Verboncoeur J P 2005 Plasma Phys. Controlled Fusion 47 A231Google Scholar

    [42]

    Donkó Z, Derzsi A, Vass M, et al. 2021 arXiv:2103.09642 [physics.plasm-ph]

    [43]

    Donkó Z 2011 Plasma Sources Sci. Technol. 20 024001

    [44]

    Nanbu K 2000 IEEE Trans Dielectr. Electr. Insul. 28 971Google Scholar

    [45]

    Turner M M 1995 Phys. Rev. Lett. 75 1312Google Scholar

    [46]

    Schulze J, Derzsi A, Dittmann K, Hemke T, Meichsner J, Donko Z 2011 Phys. Rev. Lett. 107 275001Google Scholar

    [47]

    Kim H C, Lee J K 2004 Phys. Rev. Lett. 93 085003Google Scholar

    [48]

    Turner M M, Chabert P 2006 Phys. Rev. Lett. 96 205001Google Scholar

    [49]

    Liu Y X, Schungel E, Korolov I, Donko Z, Wang Y N, Schulze J 2016 Phys. Rev. Lett. 116 255002Google Scholar

    [50]

    Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002Google Scholar

    [51]

    Wilczek S, Trieschmann J, Eremin D, Brinkmann R P, Schulze J, Schuengel E, Derzsi A, Korolov I, Hartmann P, Donkó Z, Mussenbrock T 2016 Phys. Plasmas 23 063514Google Scholar

    [52]

    Jiang W, Wang H Y, Bi Z H, Wang Y N 2011 Plasma Sources Sci. Technol. 20 035013Google Scholar

    [53]

    Zhang Q Z, Zhao S X, Jiang W, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 305203Google Scholar

    [54]

    Eremin D, Bienholz S, Szeremley D, Trieschmann J, Ries S, Awakowicz P, Mussenbrock T, Brinkmann R P 2016 Plasma Sources Sci. Technol. 25 025020Google Scholar

    [55]

    Eremin D 2017 IEEE Trans. Plasma Sci. 45 527Google Scholar

    [56]

    Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J, Wang Y N 2017 Phys. Plasmas 24 083517Google Scholar

    [57]

    Eremin D, Brinkmann R P, Mussenbrock T 2017 Plasma Processes Polym. 14 1600164Google Scholar

    [58]

    Wen D Q, Zhang Q Z, Jiang W, et al. 2014 J. Appl. Phys. 115 233303Google Scholar

    [59]

    Wang L, Hartmann P, Donkó Z, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abf31dGoogle Scholar

    [60]

    Gudmundsson J T, Kawamura E, Lieberman M A 2013 Plasma Sources Sci. Technol. 22 035011Google Scholar

    [61]

    Verboncoeur J P, Langdon A B, Gladd N T 1995 Comput. Phys. Commun. 87 199Google Scholar

    [62]

    夏伯特P, 布雷斯韦特N 著(王友年, 徐军, 宋远红 译) 2015 射频离子体物理学 (北京: 科学出版社)

    Chabert P, Braithwaite N (translated by Wang Y N, Xu J, Song Y H) 2015 Physics of Radio-Frequency Plasmas (Beijing: Science Press) (in Chinese)

    [63]

    Liu J, Wen D Q, Liu Y X, Gao F, Lu W Q, Wang Y N 2013 J. Vac. Sci. Technol., A 31 061308Google Scholar

    [64]

    Zhu X M, Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001Google Scholar

    [65]

    Li J, Liu F X, Zhu X M, Pu Y K 2011 J. Phys. D: Appl. Phys. 44 292001Google Scholar

    [66]

    Xue C, Gao F, Wen D Q, Wang Y N 2019 J. Appl. Phys. 125 023303Google Scholar

    [67]

    Godyak V A, Piejak R B 1990 Phys. Rev. Lett. 65 996Google Scholar

    [68]

    Lieberman M A 1989 IEEE Trans. Plasma Sci. Soc. 17 338Google Scholar

    [69]

    Kaganovich I D, Polomarov O V, Theodosiou C E 2006 IEEE Trans. Plasma Sci. 34 696Google Scholar

    [70]

    Gozadinos G, Turner M M, Vender D 2001 Phys. Rev. Lett. 87 135004Google Scholar

    [71]

    Lafleur T, Chabert P, Turner M M, Booth J P 2014 Plasma Sources Sci. Technol. 23 015016Google Scholar

    [72]

    Schulze J, Donkó Z, Derzsi A, et al. 2015 Plasma Sources Sci. Technol. 24 015019Google Scholar

    [73]

    Schulze J, Donkó Z, Lafleur T, Wilczek S, Brinkmann R P 2018 Plasma Sources Sci. Technol. 27 055010Google Scholar

    [74]

    Wilczek S, Schulze J, Brinkmann R P, Donkó Z, Trieschmann J, Mussenbrock T 2020 J. Appl. Phys. 127 181101

    [75]

    Vass M, Wilczek S, Lafleur T, et al. 2020 Plasma Sources Sci. Technol. 29 085014Google Scholar

    [76]

    Vass M, Wilczek S, Lafleur T, et al. 2020 Plasma Sources Sci. Technol. 29 025019Google Scholar

    [77]

    Belenguer P, Boeuf J P 1990 Phys. Rev. A 41 4447Google Scholar

    [78]

    Booth J P, Curley G, Marić D, Chabert P 2010 Plasma Sources Sci. Technol. 19 015005Google Scholar

    [79]

    Liu G H, Liu Y X, Wen D Q, Wang Y N 2015 Plasma Sources Sci. Technol. 24 034006Google Scholar

    [80]

    Wang L, Wen D Q, Zhang Q Z, Song Y H, Zhang Y R, Wang Y N 2019 Plasma Sources Sci. Technol. 28 055007Google Scholar

    [81]

    Schulze J, Kampschulte T, Luggenholscher D, Czarnetzki U 2007 J. Phys. Conf. Ser. 86 012010Google Scholar

    [82]

    Berger B, You K, Lee H C, Mussenbrock T, Awakowicz P, Schulze J 2018 Plasma Sources Sci. Technol. 27 12LT02Google Scholar

    [83]

    Schüngel E, Brandt S, Donkó Z, et al. 2016 Plasma Sources Sci. Technol. 24 044009Google Scholar

    [84]

    Schulze J, Heil B G, Luggenhölscher D, Brinkmann R P, Czarnetzki U 2008 J. Phys. D: Appl. Phys. 41 195212Google Scholar

    [85]

    Schulze J, Heil B G, et al. 2008 J. Phys. D: Appl. Phys. 41 42003Google Scholar

    [86]

    Donkó Z, Schulze J, Czarnetzki U, Luggenhölscher D 2009 Appl. Phys. Lett. 94 131501Google Scholar

    [87]

    Schulze J, Donkó Z, Heil B G, Luggenhölscher D, Mussenbrock T, Brinkmann R P, Czarnetzki U 2008 J. Phys. D: Appl. Phys. 41 105214Google Scholar

    [88]

    Campanell M D, Khrabrov A V, Kaganovich I D 2012 Phys. Rev. Lett. 108 255001Google Scholar

    [89]

    Campanell M 2013 Phys. Rev. E 88 033103Google Scholar

    [90]

    Kushner M J 2003 J. Appl. Phys. 94 1436Google Scholar

    [91]

    Sharma S, Kaganovich I D, Khrabrov A V, Kaw P, Sen A 2018 Phys. Plasmas 25 080704Google Scholar

    [92]

    Krüger F, Wilczek S, Mussenbrock T, Schulze J 2019 Plasma Sources Sci. Technol. 28 075017Google Scholar

    [93]

    Zhang P, Zhang L, Xu L 2020 Plasma Processes Polym. 17 2000014Google Scholar

    [94]

    Zhang P, Zhang L, Lü K 2020 Plasma Chem. Plasma Process. 40 1605Google Scholar

    [95]

    Lee I, Graves D B, Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018Google Scholar

    [96]

    Liu J, Zhang Y, Zhao K, Wen D, Wang Y 2021 Plasma Sources Sci. Technol. 23 035401Google Scholar

    [97]

    Lieberman M A, Booth J P, Chabert P, et al. 2002 Plasma Sources Sci. Technol. 11 283Google Scholar

    [98]

    Chabert P, Raimbault J L, Rax J M, Lieberman M A 2004 Phys. Plasmas 11 1775Google Scholar

    [99]

    Rauf S, Bera K, Collins K 2008 Plasma Sources Sci. Technol. 17 035003Google Scholar

    [100]

    Kawamura E, Lieberman M A, Graves D B 2014 Plasma Sources Sci. Technol. 23 064003Google Scholar

    [101]

    Kawamura E, Lichtenberg A J, Lieberman M A, Marakhtanov A M 2016 Plasma Sources Sci. Technol. 25 035007Google Scholar

    [102]

    Sansonnens L, Howling A A, Hollenstein C 2006 Plasma Sources Sci. Technol. 15 302Google Scholar

    [103]

    Lieberman M A, Lichtenberg A J, Kawamura E, Chabert P 2016 Phys. Plasmas 23 013501Google Scholar

    [104]

    Yang Y, Kushner M J 2010 J. Phys. D: Appl. Phys. 43 152001Google Scholar

    [105]

    Yang Y, Kushner M J 2010 J. Appl. Phys. 108 113306Google Scholar

    [106]

    Schmidt H, Sansonnens L, Howling A A, Hollenstein C, Elyaakoubi M, Schmitt J P M 2004 J. Appl. Phys. 95 4559Google Scholar

    [107]

    Kawamura E, Wen D Q, Lieberman M A, Lichtenberg A J 2017 J. Vac. Sci. Technol., A 35 05c311Google Scholar

    [108]

    Zhao K, Liu Y X, Kawamura E, Wen D Q, Lieberman M A, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055017Google Scholar

    [109]

    Zhao K, Wen D Q, Liu Y X, Lieberman M A, Economou D J, Wang Y N 2019 Phys. Rev. Lett. 122 185002Google Scholar

    [110]

    Lieberman M A, Lichtenberg A J, Kawamura E, Marakhtanov A M 2015 Plasma Sources Sci. Technol. 24 055011Google Scholar

    [111]

    Surendra M, Graves D B 1991 Appl. Phys. Lett. 59 2091Google Scholar

    [112]

    Cao Z, Walsh J L, Kong M G 2009 Appl. Phys. Lett. 94 021501Google Scholar

    [113]

    Lee J K, Manuilenko O V, Babaeva N Y, Kim H C, Shon J W 2005 Plasma Sources Sci. Technol. 14 89Google Scholar

    [114]

    Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506Google Scholar

    [115]

    Heil B G, Schulze J, Mussenbrock T, Brinkmann R P, Czarnetzki U 2008 IEEE Trans. Plasma Sci. 36 1404Google Scholar

    [116]

    Schüngel E, Zhang Q Z, Iwashita S, Schulze J, Hou L J, Wang Y N, Czarnetzki U 2011 J. Phys. D: Appl. Phys. 44 285205Google Scholar

    [117]

    Zhang Q Z, Jiang W, Hou L J, Wang Y N 2011 J. Appl. Phys. 109 013308Google Scholar

    [118]

    Delattre P A, Lafleur T, Johnson E, Booth J P 2013 J. Phys. D: Appl. Phys. 46 235201Google Scholar

    [119]

    Bruneau B, Gans T, O'Connell D, Greb A, Johnson E V, Booth J P 2015 Phys. Rev. Lett. 114 125002Google Scholar

    [120]

    Bruneau B, Novikova T, Lafleur T, Booth J P, Johnson E V 2014 Plasma Sources Sci. Technol. 23 065010Google Scholar

    [121]

    Hartmann P, Wang L, Nösges K, et al. 2021 J. Phys. D: Appl. Phys. 54 255202Google Scholar

    [122]

    Schüngel E, Mohr S, Schulze J, Czarnetzki U 2015 Appl. Phys. Lett. 106 054108Google Scholar

    [123]

    Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055003Google Scholar

    [124]

    Korolov I, Steuer D, Bischoff L, Hübner G, Liu Y, Schulz-von der Gathen V, Böke M, Mussenbrock T, Schulze J 2021 J. Phys. D: Appl. Phys. 54 125203Google Scholar

    [125]

    Schulze J, Schüngel E, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 092005Google Scholar

    [126]

    Berger B, Brandt S, Franek J, Schüngel E, Koepke M, Mussenbrock T, Schulze J 2015 J. Appl. Phys. 118 223302Google Scholar

    [127]

    Schüngel E, Eremin D, Schulze J, Mussenbrock T, Czarnetzki U 2012 J. Appl. Phys. 112 053302Google Scholar

    [128]

    Yang S, Chang L, Zhang Y, Jiang W 2018 Plasma Sources Sci. Technol. 27 035008Google Scholar

    [129]

    Schulze J, Donko Z, Schüngel E, et al. 2011 Plasma Sources Sci. Technol. 20 45007Google Scholar

    [130]

    Donke Z, Schulze J, Hartmann P, et al. 2010 Appl. Phys. Lett. 97 033502Google Scholar

    [131]

    Lafleur T, Chabert P, Booth J P 2013 J. Phys. D: Appl. Phys. 46 135201Google Scholar

    [132]

    Proto A, Gudmundsson J T 2018 Atoms 6 65Google Scholar

    [133]

    Donkó Z, Schulze J, Hartmann P, Korolov I, Czarnetzki U, Schüngel E 2010 Appl. Phys. Lett. 97 081501Google Scholar

    [134]

    Derzsi A, Horváth B, Korolov I, Donkó Z, Schulze J 2019 J. Appl. Phys 126 043303Google Scholar

    [135]

    Phelps A V, Pitchford L C, Pédoussat C, Donkó Z 1999 Plasma Sources Sci. Technol. 8 B1Google Scholar

    [136]

    Daksha M, Derzsi A, Wilczek S, Trieschmann J, Mussenbrock T, Awakowicz P, Donkó Z, Schulze J 2017 Plasma Sources Sci. Technol. 26 085006Google Scholar

    [137]

    Daksha M, Derzsi A, Mujahid Z, Schulenberg D, Berger B, Donkó Z, Schulze J 2019 Plasma Sources Sci. Technol. 28 034002Google Scholar

    [138]

    Sun J Y, Wen D Q, Zhang Q Z, Liu Y X, Wang Y N 2019 Phys. Plasmas 26 063505Google Scholar

    [139]

    Derzsi A, Horváth B, Donkó Z, Schulze J 2020 Plasma Sources Sci. Technol. 29 074001Google Scholar

    [140]

    Oberberg M, Engel D, Berger B, Wölfel C, Eremin D, Lunze J, Brinkmann R P, Awakowicz P, Schulze J 2019 Plasma Sources Sci. Technol. 28 115021Google Scholar

  • [1] 段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红. 容性耦合硅烷等离子体尘埃颗粒空间分布的二维流体模拟. 物理学报, 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [2] 宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红. 容性耦合放电等离子体增强氧化硅薄膜沉积模拟研究. 物理学报, 2022, 71(17): 170201. doi: 10.7498/aps.71.20220493
    [3] 操礼阳, 马晓萍, 邓丽丽, 卢曼婷, 辛煜. 射频容性耦合Ar/O2等离子体的轴向诊断. 物理学报, 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [4] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, 69(8): 085201. doi: 10.7498/aps.69.20191864
    [5] 胡艳婷, 张钰如, 宋远红, 王友年. 相位角对容性耦合电非对称放电特性的影响. 物理学报, 2018, 67(22): 225203. doi: 10.7498/aps.67.20181400
    [6] 王俊, 王涛, 唐成双, 辛煜. 甚高频激发容性耦合氩等离子体的电子能量分布函数的演变. 物理学报, 2016, 65(5): 055203. doi: 10.7498/aps.65.055203
    [7] 郝莹莹, 孟秀兰, 姚福宝, 赵国明, 王敬, 张连珠. N2-H2容性耦合等离子体电非对称效应的particle-in-cell/Monte Carlo模拟. 物理学报, 2014, 63(18): 185205. doi: 10.7498/aps.63.185205
    [8] 王建伟, 宋亦旭, 任天令, 李进春, 褚国亮. F等离子体刻蚀Si中Lag效应的分子动力学模拟. 物理学报, 2013, 62(24): 245202. doi: 10.7498/aps.62.245202
    [9] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断. 物理学报, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [10] 邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量. 物理学报, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [11] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究. 物理学报, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [12] 陈宇辉, 王阳, 左方圆, 赖天树, 吴谊群. 半金属锑薄膜中电子动力学研究. 物理学报, 2009, 58(5): 3548-3552. doi: 10.7498/aps.58.3548
    [13] 杨 涓, 许映乔, 朱良明. 局域环境中微波等离子体电子密度诊断实验研究. 物理学报, 2008, 57(3): 1788-1791. doi: 10.7498/aps.57.1788
    [14] 谭世杰, 郑 坚. 不同加热机制产生的超热电子的相干渡越辐射谐波研究. 物理学报, 2007, 56(12): 7132-7137. doi: 10.7498/aps.56.7132
    [15] 郝作强, 俞 进, 张 杰, 远晓辉, 郑志远, 杨 辉, 王兆华, 令维军, 魏志义. 用声学诊断方法测量激光等离子体通道的长度与电子密度. 物理学报, 2005, 54(3): 1290-1294. doi: 10.7498/aps.54.1290
    [16] 夏江帆, 张军, 张杰. 用激光等离子体实验对天体物理动力学过程进行模拟的可行性研究. 物理学报, 2001, 50(5): 994-1000. doi: 10.7498/aps.50.994
    [17] 刘明海, 胡希伟, 邬钦崇, 俞国扬. 电子回旋共振等离子体源的数值模拟. 物理学报, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [18] 黄文忠, 张覃鑫, 何绍堂, 谷渝秋, 尤永录, 江文勉. 利用类铜离子谱线诊断银等离子体电子密度. 物理学报, 1995, 44(11): 1783-1787. doi: 10.7498/aps.44.1783
    [19] 关维恕, 王恩耀, 程仕清, 段淑云, 王纪海, 顾彪, 尚振奎. 电子迥旋加热等离子体及热电子环特性的实验研究. 物理学报, 1989, 38(2): 228-235. doi: 10.7498/aps.38.228
    [20] 陈雁萍, 周玉美. 弱相对论性非热平衡等离子体的电子迴旋共振加热. 物理学报, 1984, 33(7): 1050-1057. doi: 10.7498/aps.33.1050
计量
  • 文章访问数:  6504
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-04-23
  • 上网日期:  2021-04-28
  • 刊出日期:  2021-05-05

/

返回文章
返回