搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阿秒瞬态吸收光谱: 揭示电子动力学的超快光学探针

张一晨 丁南南 李加林 付玉喜

引用本文:
Citation:

阿秒瞬态吸收光谱: 揭示电子动力学的超快光学探针

张一晨, 丁南南, 李加林, 付玉喜

Attosecond transient absorption spectroscopy: an ultrafast optical probe for revealing electron dynamics

ZHANG Yichen, DING Nannan, LI Jialin, FU Yuxi
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 阿秒瞬态吸收光谱是一种全光学泵浦-探测光谱技术. 该技术利用阿秒脉冲(极紫外至软X射线区间)激发或探测应用体系, 实时追踪电子跃迁、量子态演化及能量传递等过程, 为揭示电子和核相关超快动力学机制提供了前沿研究手段. 其核心优势在于: 1)同时具备超快时间(亚飞秒级)和精细光谱(meV级)分辨能力; 2)宽谱阿秒脉冲同时激发多个量子态, 实现多能级并行探测; 3)内壳层-价态跃迁的元素与位点特异性, 使其能够解析电荷转移、自旋态变化及局域结构演化. 目前, 阿秒瞬态吸收光谱已在原子分子物理、电子相干动力学及强场物理等研究领域取得重要突破. 本文系统地阐述了阿秒瞬态吸收光谱的技术原理, 重点分析其在气相和凝聚相体系的应用进展, 展望其在超快物理化学和量子材料等领域的应用前景. 同时, 针对阿秒激光发展趋势和探测技术特点, 探讨了阿秒瞬态吸收光谱技术未来发展方向.
    Attosecond transient absorption spectroscopy (ATAS) is an all‐optical pump-probe technique that employs attosecond pulses (from the extreme ultraviolet to soft X-ray) to excite or probe a system, enabling real‐time tracking of electronic transitions, quantum state evolution, and energy transfer processes. This approach possesses some key advantages: 1) ultrafast temporal resolution (sub‐femtosecond) combined with high spectral resolution (millielectronvolt level); 2) broadband excitation of multiple quantum states, allowing simultaneous detection of multiple energy levels; and 3) element- and site-specific insights provided by the measurements of inner-shell to valence transition reveal charge transfer dynamics, spin state changes, and local structural evolution. To date, significant breakthroughs have been achieved in atomic/molecular physics, electronic coherent dynamics, and strong-field physics by using ATAS. This paper systematically reviews the technical principles and theoretical models related to ATAS by using medium intensity near-infrared pulses, analyzes the recent progress of the applications in gas-phase systems and condensed-phase systems, and explores their future prospects in ultrafast physical chemistry and quantum materials. In gas-phase environments, the ATAS has demonstrated significant capabilities in probing energy level shifts and population transfers in atomic systems, as well as capturing nonadiabatic dynamics and charge migration in diatomic and polyatomic molecules. While in condensed-phase systems, this technique has been effectively used to study the ultrafast dynamics of carriers in semiconductors and to examine the interaction dynamics of localized electrons in insulators and transition metals. Given the rapid evolution of attosecond laser technologies and the unique advantages of the ATAS detection method, this paper also outlines potential future directions. These prospects are expected to further expand the frontiers of ultrafast spectroscopy and drive advancements in a range of disciplines in basic research and technological applications.
  • 图 1  ATAS实验装置示意图(HHG, 高次谐波产生; MCP, 微通道板). 其中, 金属箔(铝箔、铟箔、锆箔等, 根据探测的光谱范围选择)用于阻挡驱动光; 轮胎镜用于将阿秒脉冲聚焦到样品靶上; 空芯镜用于将飞秒光与阿秒脉冲合束

    Fig. 1.  Schematic of the ATAS setup (HHG, high-order harmonic generation; MCP, Microchannel Plate). Metal foils (e.g., aluminum, indium, or zirconium, chosen by spectral range) block the driving light. A toroidal mirror focuses the attosecond pulses onto the sample, and a hole mirror combines the femtosecond beam with the attosecond pulses.

    图 2  (a) LISs态能级示意图(出自文献[38], 已获得授权). 黑色虚线为LISs, LISs通过吸收一个XUV光子(紫色)和吸收或发射一个NIR光子(红色)将基态耦合到1 sns和1 snd态; (b) He原子的ATAS图(出自文献[40], 已获得授权). 图中观察到AT分裂和LISs时间延迟依赖的吸收特征(+代表辐射NIR光子, –代表吸收NIR光子)

    Fig. 2.  (a) Schematic energy level diagram of light-induced states (LISs). Reproduced with permission from Ref. [38]. The black dashed line indicates the LISs, which couple the ground state to the 1 sns and 1 snd states via absorption of one XUV photon (purple) and absorption or emission of one NIR photon (red); (b) ATAS spectrum of He, showing AT splitting and time-delay-dependent absorption features of the LISs. Here, “+” denotes NIR photon emission and “–” denotes NIR photon absorption. Reproduced with permission from Ref.[40]

    图 3  (a) CH3I的ATAS图: 顶部标尺中σ*代表价态, 6 pe, 6 pa1, 7 p代表Rydberg态, 53—57 eV处吸收线型变为类Fano线型. 出自文献[43], 已获得授权. Ne原子的(b)原始和(c)间接路径消除后的ATAS. 出自文献, 已获得授权[34]

    Fig. 3.  (a) ATAS spectrum of CH3I: the top scale marks the valence state (σ*) and Rydberg states (6 pe, 6 pa1, 7 p); the absorption profile between 53–57 eV turns Fano-like. Reproduced with permission from Ref. [43]. (b) The original ATAS and (c) ATAS after indirect path elimination of Ne atom. Reproduced with permission from Ref. [34].

    图 4  (a) R-I势能曲线示意图; (b) i-C3H7I在–4—160 fs延迟处的吸收光谱图. 光谱以灰色颜色绘制, 随着延迟的增加, 光谱向蓝色演化, 虚线表示碘原子跃迁对应的位置; (c) i-C3H7I的ATAS图, 根据图(a)中介绍的Region 1—3标记方案, 对状态特异性分子特征及其向原子跃迁的收敛(箭头所示)进行标记. 出自文献[47], 已获得授权

    Fig. 4.  (a) Schematic of the R-I potential energy curve; (b) absorption spectrum of i-C3H7I between –4 and 160 fs delay: gray curves shift toward blue with delay, the dashed line marks the iodine transition; (c) ATAS spectrum of i-C3H7I with state-specific molecular features and their convergence toward atomic transitions (arrows) labeled using the Region 1–3 scheme. Reproduced with permission from Ref. [47].

    图 5  (a)振动相干和(b)电子相干示意图. 出自文献[48], 已获得授权

    Fig. 5.  Schematic of (a) vibrational and (b) electronic coherences. Reproduced with permission from Ref. [48].

    图 6  (a) Si带隙动力学的阿秒探测原理(出自文献[29], 已获得授权); (b) 100.35 e V处XUV透射率的时间演化图(出自文献[29], 已获得授权), 内插图显示了对阶跃上升时间的拟合; (c)绝缘相动力学行为的双组分拟合(出自文献[31], 已获得授权); (d)自由载流子屏蔽介导的Mott相变示意图, 库仑力的驱动下载流子在空间上重新分配以屏蔽离子核(t0t0 + τscreening). 出自文献[31], 已获得授权

    Fig. 6.  (a) Principle of attosecond probing of band-gap dynamics in Si. Reproduced with permission from Ref. [29]. (b) XUV transmission at 100.35 eV over time; the inset illustrates a fit for the step rise time. Reproduced with permission from Ref. [29]. (c) A two-component fit for the dynamics behavior of insulating phase. Reproduced with permission from Ref.[31]. (d) Schematic of free-carrier screening-mediated Mott transition, coulomb forces drive the carriers redistribute spatially to screen the ion cores (t0t0 + τscreening). Reproduced with permission from Ref.[31].

    图 7  (a)液态水氧K边的阿秒探测原理; (b) 0.6 fs 延迟处液态水AX-ATAS光谱. 出自文献[60], 已获得授权

    Fig. 7.  (a) The principle of attosecond probing of oxygen K-edge electrons in liquid water; (b) AX-ATAS spectrum of liquid water at 0.6 fs delay. Reproduced with permission from Ref.[60].

  • [1]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 6909

    [2]

    Li M X, Xie M, Wang H Y, Jia L J, Li J L, Wang W T, Cai J A, Hong X C, Shi X S, Lv Y, Zhao X N, Luo S Z, Jiang W, Peng L, Ding D J 2024 Phys. Rev. Lett. 133 253201Google Scholar

    [3]

    Tao Z S, Chen C, Szilvási T, Keller M, Mavrikakis M, Kapteyn H, Murnane M 2016 Science 353 62Google Scholar

    [4]

    Sansone G, Kelkensberg F, Pérez-Torres J F, Morales F, Kling M F, Siu W, Ghafur O, Johnsson P, Swoboda M, Benedetti E, Ferrari F, Lépine F, Sanz-Vicario J L, Zherebtsov S, Znakovskaya I, L’Huillier A, Ivanov M Y, Nisoli M, Martín F, Vrakking M J J 2010 Nature 465 763Google Scholar

    [5]

    Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martín F, Keller U 2018 Nat. Phys. 14 733Google Scholar

    [6]

    Borrego-Varillas R, Lucchini M, Nisoli M 2022 Rep. Prog. Phys. 85 066401Google Scholar

    [7]

    Goulielmakis E, Loh Z, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739Google Scholar

    [8]

    Beck A R, Neumark D M, Leone S R 2015 Chem. Phys. Lett. 624 119Google Scholar

    [9]

    Ramasesha K, Leone S R, Neumark D M 2016 Annu. Rev. Phys. Chem. 67 41Google Scholar

    [10]

    Di Palo N, Inzani G, Dolso G L, Talarico M, Bonetti S, Lucchini M 2024 APL Photonics 9 020901Google Scholar

    [11]

    Kobayashi Y, Leone S R 2022 J. Chem. Phys. 157 180901Google Scholar

    [12]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [13]

    Duris J, Li S Q, Driver T, Champenois E G, MacArthur J P, Lutman A A, Zhang Z, Rosenberger P, Aldrich J W, Coffee R, Coslovich G, Decker F, Glownia J M, Hartmann G, Helml W, Kamalov A, Knurr J, Krzywinski J, Lin M, Marangos J P, Nantel M, Natan A, O’Neal J T, Shivaram N, Walter P, Wang A L, Welch J J, Wolf T J A, Xu J Z, Kling M F, Bucksbaum P H, Zholents A, Huang Z, Cryan J P, Marinelli A 2020 Nat. Photonics 14 30

    [14]

    Alqattan H, Hui D D, Pervak V, Hassan M Th 2022 APL Photonics 7 041301Google Scholar

    [15]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [16]

    Wang X W, Xiao F, Wang J C, Wang L, Zhang B, Liu J L, Zhao J, Zhao Z X 2024 Ultrafast Sci. 4 0080Google Scholar

    [17]

    Stooß V, Hartmann M, Birk P, Borisova G D, Ding T, Blättermann A, Ott C, Pfeifer T 2019 Rev. Sci. Instrum. 90 053108Google Scholar

    [18]

    Gaarde M B, Buth C, Tate J L, Schafer K J 2011 Phys. Rev. A 83 013419Google Scholar

    [19]

    Chen S H, Wu M X, Gaarde M B, Schafer K J 2013 Phys. Rev. A 88 033409Google Scholar

    [20]

    Santra R, Dunford R W, Young L 2006 Phys. Rev. A 74 043403Google Scholar

    [21]

    Santra R, Yakovlev V S, Pfeifer T, Loh Z 2011 Phys. Rev. A 83 033405Google Scholar

    [22]

    Wu M X, Chen S H, Camp S, Schafer K J, Gaarde M B 2016 J. Phys. B: At. Mol. Opt. Phys. 49 062003Google Scholar

    [23]

    Hollstein M, Santra R, Pfannkuche D 2017 Phys. Rev. A 95 053411Google Scholar

    [24]

    Timmers H, Zhu X L, Li Z, Kobayashi Y, Sabbar M, Hollstein M, Reduzzi M, Martínez T J, Neumark D M, Leone S R 2019 Nat. Commun. 10 3133Google Scholar

    [25]

    Bækhøj J E, Lévêque C, Madsen L B 2018 Phys. Rev. Lett. 121 023203Google Scholar

    [26]

    Mashiko H, Oguri K, Yamaguchi T, Suda A, Gotoh H 2016 Nat. Phys. 12 741Google Scholar

    [27]

    Zürch M, Chang H, Borja L J, Kraus P M, Cushing S K, Gandman A, Kaplan C J, Oh M H, Prell J S, Prendergast D, Pemmaraju C D, Neumark D M, Leone S R 2017 Nat. Commun. 8 15734Google Scholar

    [28]

    Schultze M, Bothschafter E M, Sommer A, Holzner S, Schweinberger W, Fiess M, Hofstetter M, Kienberger R, Apalkov V, Yakovlev V S, Stockman M I, Krausz F 2013 Nature 493 75Google Scholar

    [29]

    Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348Google Scholar

    [30]

    Volkov M, Sato S A, Schlaepfer F, Kasmi L, Hartmann N, Lucchini M, Gallmann L, Rubio A, Keller U 2019 Nat. Phys. 15 1145Google Scholar

    [31]

    Jager M F, Ott C, Kraus P M, Kaplan C J, Pouse W, Marvel R E, Haglund R F, Neumark D M, Leone S R 2017 Proc. Natl. Acad. Sci. U. S. A. 114 9558Google Scholar

    [32]

    Bernhardt B, Beck A R, Li X, Warrick E R, Bell M J, Haxton D J, McCurdy C W, Neumark D M, Leone S R 2014 Phys. Rev. A 89 023408Google Scholar

    [33]

    Wang H, Chini M, Chen S Y, Zhang C, He F, Cheng Y, Wu Y, Thumm U, Chang Z H 2010 Phys. Rev. Lett. 105 143002Google Scholar

    [34]

    Wang X W, Chini M, Cheng Y, Wu Y, Tong X, Chang Z H 2013 Phys. Rev. A 87 063413Google Scholar

    [35]

    Cao W, Warrick E R, Neumark D M, Leone S R 2016 New J. Phys. 18 013041Google Scholar

    [36]

    Beck A R, Bernhardt B, Warrick E R, Wu M, Chen S, Gaarde M B, Schafer K J, Neumark D M, Leone S R 2014 New J. Phys. 16 113016Google Scholar

    [37]

    Chini M, Wang X W, Cheng Y, Chang Z H 2014 J. Phys. B: At. Mol. Opt. Phys. 47 124009Google Scholar

    [38]

    Chen S H, Bell M J, Beck A R, Mashiko H, Wu M X, Pfeiffer A N, Gaarde M B, Neumark D M, Leone S R, Schafer K J 2012 Phys. Rev. A 86 063408Google Scholar

    [39]

    Wu M X, Chen S H, Gaarde M B, Schafer K J 2013 Phys. Rev. A 88 043416Google Scholar

    [40]

    Chini M, Wang X W, Cheng Y, Wu Y, Zhao D, Telnov D A, Chu S, Chang Z H 2013 Sci. Rep. 3 1105Google Scholar

    [41]

    Chini M, Zhao B Z, Wang H, Cheng Y, Hu S X, Chang Z H 2012 Phys. Rev. Lett. 109 073601Google Scholar

    [42]

    Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716

    [43]

    Drescher L, Reitsma G, Witting T, Patchkovskii S, Mikosch J, Vrakking M J J 2019 J. Phys. Chem. Lett. 10 265Google Scholar

    [44]

    Chen S H, Wu M X, Gaarde M B, Schafer K J 2013 Phys. Rev. A 87 033408Google Scholar

    [45]

    Kobayashi Y, Chang K F, Zeng T, Neumark D M, Leone S R 2019 Science 365 79Google Scholar

    [46]

    Zinchenko K S, Ardana-Lamas F, Seidu I, Neville S P, van der Veen J, Lanfaloni V U, Schuurman M S, Wörner H J 2021 Science 371 489Google Scholar

    [47]

    Chang K F, Reduzzi M, Wang H, Poullain S M, Kobayashi Y, Barreau L, Prendergast D, Neumark D M, Leone S R 2020 Nat. Commun. 11 4042Google Scholar

    [48]

    Kobayashi Y, Chang K F, Poullain S M, Scutelnic V, Zeng T, Neumark D M, Leone S R 2020 Phys. Rev. A 101 063414Google Scholar

    [49]

    Wei Z R, Li J L, Wang L, See S T, Jhon M H, Zhang Y F, Shi F, Yang M H, Loh Z 2017 Nat. Commun. 8 735Google Scholar

    [50]

    Wei Z R, Li J L, Zhang H M, Lu Y P, Yang M H, Loh Z 2019 J. Chem. Phys. 151 214308Google Scholar

    [51]

    Peng P, Marceau C, Hervé M, Corkum P B, Naumov A Y, Villeneuve D M 2019 Nat. Commun. 10 5269Google Scholar

    [52]

    Peng P, Mi Y H, Lytova M, Britton M, Ding X, Naumov A Yu, Corkum P B, Villeneuve D M 2022 Nat. Photonics 16 45Google Scholar

    [53]

    Holler M, Schapper F, Gallmann L, Keller U 2011 Phys. Rev. Lett. 106 123601Google Scholar

    [54]

    Sabbar M, Timmers H, Chen Y, Pymer A K, Loh Z, Sayres S G, Pabst S, Santra R, Leone S R 2017 Nat. Phys. 13 472Google Scholar

    [55]

    Golubev N V, Vaníček J, Kuleff A I 2021 Phys. Rev. Lett. 127 123001Google Scholar

    [56]

    Kobayashi Y, Neumark D M, Leone S R 2022 Opt. Express 30 5673Google Scholar

    [57]

    Lucchini M, Sato S A, Lucarelli G D, Moio B, Inzani G, Borrego-Varillas R, Frassetto F, Poletto L, Hübener H, De Giovannini U, Rubio A, Nisoli M 2021 Nat. Commun. 12 1021Google Scholar

    [58]

    Géneaux R, Kaplan C J, Yue L, Ross A D, Bækhøj J E, Kraus P M, Chang H, Guggenmos A, Huang M, Zürch M, Schafer K J, Neumark D M, Gaarde M B, Leone S R 2020 Phys. Rev. Lett. 124 207401Google Scholar

    [59]

    Kaplan C J, Kraus P M, Ross A D, Zürch M, Cushing S K, Jager M F, Chang H, Gullikson E M, Neumark D M, Leone S R 2018 Phys. Rev. B 97 205202Google Scholar

    [60]

    Li S, Lu L X, Bhattacharyya S, Pearce C, Li K, Nienhuis E T, Doumy G, Schaller R D, Moeller S, Lin M, Dakovski G, Hoffman D J, Garratt D, Larsen K A, Koralek J D, Hampton C Y, Cesar D, Duris J, Zhang Z, Sudar N, Cryan J P, Marinelli A, Li X S, Inhester L, Santra R, Young L 2024 Science 383 1118Google Scholar

    [61]

    Gutberlet T, Chang H, Zayko S, Sivis M, Ropers C 2023 Opt. Express 31 39757Google Scholar

    [62]

    Volkov M, Pupeikis J, Phillips C R, Schlaepfer F, Gallmann L, Keller U 2019 Opt. Express 27 7886Google Scholar

    [63]

    Géneaux R, Chang H, Schwartzberg A M, Marroux H J B 2021 Opt. Express 29 951Google Scholar

    [64]

    Faccialà D, Toulson B W, Gessner O 2021 Opt. Express 29 35135Google Scholar

    [65]

    Midorikawa K 2022 Nat. Photonics 16 267Google Scholar

    [66]

    Siegrist F, Gessner J A, Ossiander M, Denker C, Chang Y, Schröder M C, Guggenmos A, Cui Y, Walowski J, Martens U, Dewhurst J K, Kleineberg U, Münzenberg M, Sharma S, Schultze M 2019 Nature 571 240Google Scholar

    [67]

    Okino T, Furukawa Y, Nabekawa Y, Miyabe S, Amani Eilanlou A, Takahashi E J, Yamanouchi K, Midorikawa K 2015 Sci. Adv. 1 e1500356Google Scholar

    [68]

    Tzallas P, Skantzakis E, Nikolopoulos L A A, Tsakiris G D, Charalambidis D 2011 Nat. Phys. 7 781Google Scholar

    [69]

    Moulet A, Bertrand J B, Klostermann T, Guggenmos A, Karpowicz N, Goulielmakis E 2017 Science 357 1134Google Scholar

  • [1] 杨旭, 冯红梅, 刘佳南, 张向群, 何为, 成昭华. 超快自旋动力学: 从飞秒磁学到阿秒磁学. 物理学报, doi: 10.7498/aps.73.20240646
    [2] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究. 物理学报, doi: 10.7498/aps.71.20221298
    [3] 陈高. 利用三色组合脉冲激光获得孤立阿秒脉冲发射. 物理学报, doi: 10.7498/aps.71.20211502
    [4] 宋浩, 吕孝源, 朱若碧, 陈高. 利用脉宽10 fs偏振控制脉冲获得孤立阿秒脉冲. 物理学报, doi: 10.7498/aps.68.20190392
    [5] 吕孝源, 朱若碧, 宋浩, 苏宁, 陈高. 基于正交偏振场的双光学控制方案获得孤立阿秒脉冲产生. 物理学报, doi: 10.7498/aps.68.20190847
    [6] 陈基根, 曾思良, 杨玉军, 程超. 三色激光控制量子路径生成短于30阿秒的孤立脉冲. 物理学报, doi: 10.7498/aps.61.123201
    [7] 陆莹瑛, 曾志男, 郑颖辉, 邹璞, 刘灿东, 龚成, 李儒新, 徐至展. 双色光场驱动产生单个阿秒脉冲过程中的宏观效应. 物理学报, doi: 10.7498/aps.60.103202
    [8] 潘慧玲, 李鹏程, 周效信. 利用两束同色激光场和半周期脉冲驱动原子产生单个阿秒脉冲. 物理学报, doi: 10.7498/aps.60.043203
    [9] 李伟, 王国利, 周效信. 啁啾激光与半周期脉冲形成的组合场驱动原子产生单个阿秒脉冲. 物理学报, doi: 10.7498/aps.60.123201
    [10] 陈基根, 杨玉军, 陈漾. 附加谐波脉冲生成强的39阿秒孤立脉冲. 物理学报, doi: 10.7498/aps.60.033202
    [11] 罗牧华, 张秋菊, 闫春燕. 超相对论激光和稠密等离子体作用产生阿秒脉冲的优化. 物理学报, doi: 10.7498/aps.59.8559
    [12] 洪伟毅, 杨振宇, 兰鹏飞, 张庆斌, 李钱光, 陆培祥. 非平行偏振双色场驱动产生脉宽稳定的单个宽谱阿秒脉冲. 物理学报, doi: 10.7498/aps.58.4914
    [13] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲. 物理学报, doi: 10.7498/aps.58.1579
    [14] 张庆斌, 洪伟毅, 兰鹏飞, 杨振宇, 陆培祥. 利用调制的偏振态门控制阿秒脉冲的产生. 物理学报, doi: 10.7498/aps.57.7848
    [15] 洪伟毅, 杨振宇, 兰鹏飞, 陆培祥. 利用低频场控制轨道直接产生低于50阿秒的单个脉冲. 物理学报, doi: 10.7498/aps.57.5853
    [16] 郑颖辉, 曾志男, 李儒新, 徐至展. 极紫外阿秒脉冲在高次谐波产生过程中引起的非偶极效应. 物理学报, doi: 10.7498/aps.56.2243
    [17] 曹 伟, 兰鹏飞, 陆培祥. 利用43飞秒的强激光脉冲实现单个阿秒脉冲输出的新机理. 物理学报, doi: 10.7498/aps.56.1608
    [18] 曹 伟, 兰鹏飞, 陆培祥. 紧聚焦激光束作用于电子实现单个阿秒脉冲输出. 物理学报, doi: 10.7498/aps.55.2115
    [19] 郑 君, 盛政明, 张 杰. 高能电子与超强激光束作用产生的阿秒脉冲列. 物理学报, doi: 10.7498/aps.54.2638
    [20] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲. 物理学报, doi: 10.7498/aps.53.2316
计量
  • 文章访问数:  434
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-24
  • 修回日期:  2025-05-13
  • 上网日期:  2025-05-20

/

返回文章
返回