搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阿秒瞬态吸收光谱:揭示电子动力学的超快光学探针

张一晨 丁南南 李加林 付玉喜

引用本文:
Citation:

阿秒瞬态吸收光谱:揭示电子动力学的超快光学探针

张一晨, 丁南南, 李加林, 付玉喜

Attosecond transient absorption spectroscopy: an ultrafast optical probe for revealing electron dynamics

ZHANG Yichen, DING Nannan, LI Jialin, FU Yuxi
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 阿秒瞬态吸收光谱是一种全光学泵浦-探测光谱技术。该技术利用阿秒脉冲(极紫外至软X射线区间)激发或探测应用体系,实时追踪电子跃迁、量子态演化及能量传递等过程,为揭示电子和核相关超快动力学机制提供了前沿研究手段。其核心优势在于:(1)同时具备超快时间(亚飞秒级)和精细光谱(meV级)分辨能力;(2)宽谱阿秒脉冲同时激发多个量子态,实现多能级并行探测;(3)内壳层-价态跃迁的元素与位点特异性,使其能够解析电荷转移、自旋态变化及局域结构演化。目前,阿秒瞬态吸收光谱已在原子分子物理、电子相干动力学及强场物理等研究领域取得重要突破。本文系统阐述了阿秒瞬态吸收光谱的技术原理,重点分析其在气相和凝聚相体系的应用进展,展望其在超快物理化学和量子材料等领域的应用前景。同时,针对阿秒激光发展趋势和探测技术特点,探讨了阿秒瞬态吸收光谱技术未来发展方向。
    Attosecond transient absorption spectroscopy (ATAS) is an all-optical pump-probe technique that employs attosecond pulses (from the extreme ultraviolet to soft X-ray) to excite or probe a system, enabling real-time tracking of electronic transitions, quantum state evolution, and energy transfer processes. This approach offers key advantages: (1) ultrafast temporal resolution (sub-femtosecond) combined with high spectral resolution (millielectronvolt level); (2) broadband excitation of multiple quantum states, allowing simultaneous detection across multiple energy levels; and (3) element- and site-specific insights afforded by inner-shell to valence transition measurements that reveal charge transfer dynamics, spin state changes, and local structural evolution. To date, significant breakthroughs have been achieved in atomic/molecular physics, electronic coherent dynamics, and strong-field physics using ATAS. This paper systematically reviews the technical principles and theoretical models associated with ATAS employing moderately strong near-infrared pulses, analyzes recent progress in applications to both gas-phase and condensed-phase systems, and explores its future prospects in ultrafast physical chemistry and quantum materials. In gas-phase environments, ATAS has demonstrated significant capabilities in probing energy level shifts and population transfers in atomic systems, as well as capturing nonadiabatic dynamics and charge migration in diatomic and polyatomic molecules. In contrast, within condensed-phase systems, the technique has been effectively used to study the ultrafast dynamics of carriers in semiconductors and to examine the interaction dynamics of localized electrons in insulators and transition metals. Given the rapid evolution of attosecond laser technologies and the distinct advantages of the ATAS detection approach, the paper also outlines potential future directions. These prospects promise to further extend the frontiers of ultrafast spectroscopy and to drive advances across a range of disciplines in both fundamental research and technological applications.
  • [1]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 6909

    [2]

    Li M X, Xie M, Wang H Y, Jia L J, Li J L, Wang W T, Cai J A, Hong X C, Shi X S, Lv Y, Zhao X N, Luo S Z, Jiang W, Peng L, Ding D J 2024 Phys. Rev. Lett. 133 253201

    [3]

    Tao Z S, Chen C, Szilvási T, Keller M, Mavrikakis M, Kapteyn H, Murnane M 2016 Science 353 62

    [4]

    Sansone G, Kelkensberg F, Pérez-Torres J F, Morales F, Kling M F, Siu W, Ghafur O, Johnsson P, Swoboda M, Benedetti E, Ferrari F, Lépine F, Sanz-Vicario J L, Zherebtsov S, Znakovskaya I, L’Huillier A, Ivanov M Y, Nisoli M, Martín F, Vrakking M J J 2010 Nature 465 763

    [5]

    Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martín F, Keller U 2018 Nat. Phys. 14 733

    [6]

    Borrego-Varillas R, Lucchini M, Nisoli M 2022 Rep. Prog. Phys. 85 066401

    [7]

    Goulielmakis E, Loh Z, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739

    [8]

    Beck A R, Neumark D M, Leone S R 2015 Chem. Phys. Lett. 624 119

    [9]

    Ramasesha K, Leone S R, Neumark D M 2016 Annu. Rev. Phys. Chem. 67 41

    [10]

    Di Palo N, Inzani G, Dolso G L, Talarico M, Bonetti S, Lucchini M 2024 APL Photonics 9 020901

    [11]

    Kobayashi Y, Leone S R 2022 J. Chem. Phys. 157 180901

    [12]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [13]

    Duris J, Li S Q, Driver T, Champenois E G, MacArthur J P, Lutman A A, Zhang Z, Rosenberger P, Aldrich J W, Coffee R, Coslovich G, Decker F, Glownia J M, Hartmann G, Helml W, Kamalov A, Knurr J, Krzywinski J, Lin M, Marangos J P, Nantel M, Natan A, O’Neal J T, Shivaram N, Walter P, Wang A L, Welch J J, Wolf T J A, Xu J Z, Kling M F, Bucksbaum P H, Zholents A, Huang Z, Cryan J P, Marinelli A 2020 Nat. Photonics 14 30

    [14]

    Alqattan H, Hui D D, Pervak V, Hassan M Th 2022 APL Photonics 7 041301

    [15]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [16]

    Wang X W, Xiao F, Wang J C, Wang L, Zhang B, Liu J L, Zhao J, Zhao Z X 2024 Ultrafast Sci. 4 0080

    [17]

    Stooß V, Hartmann M, Birk P, Borisova G D, Ding T, Blättermann A, Ott C, Pfeifer T 2019 Rev. Sci. Instrum. 90 053108

    [18]

    Gaarde M B, Buth C, Tate J L, Schafer K J 2011 Phys. Rev. A 83 013419

    [19]

    Chen S H, Wu M X, Gaarde M B, Schafer K J 2013 Phys. Rev. A 88 033409

    [20]

    Santra R, Dunford R W, Young L 2006 Phys. Rev. A 74 043403

    [21]

    Santra R, Yakovlev V S, Pfeifer T, Loh Z 2011 Phys. Rev. A 83 033405

    [22]

    Wu M X, Chen S H, Camp S, Schafer K J, Gaarde M B 2016 J. Phys. B: At. Mol. Opt. Phys. 49 062003

    [23]

    Hollstein M, Santra R, Pfannkuche D 2017 Phys. Rev. A 95 053411

    [24]

    Timmers H, Zhu X L, Li Z, Kobayashi Y, Sabbar M, Hollstein M, Reduzzi M, Martínez T J, Neumark D M, Leone S R 2019 Nat. Commun. 10 3133

    [25]

    Bækhøj J E, Lévêque C, Madsen L B 2018 Phys. Rev. Lett. 121 023203

    [26]

    Mashiko H, Oguri K, Yamaguchi T, Suda A, Gotoh H 2016 Nat. Phys. 12 741

    [27]

    Zürch M, Chang H, Borja L J, Kraus P M, Cushing S K, Gandman A, Kaplan C J, Oh M H, Prell J S, Prendergast D, Pemmaraju C D, Neumark D M, Leone S R 2017 Nat. Commun. 8 15734

    [28]

    Schultze M, Bothschafter E M, Sommer A, Holzner S, Schweinberger W, Fiess M, Hofstetter M, Kienberger R, Apalkov V, Yakovlev V S, Stockman M I, Krausz F 2013 Nature 493 75

    [29]

    Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348

    [30]

    Volkov M, Sato S A, Schlaepfer F, Kasmi L, Hartmann N, Lucchini M, Gallmann L, Rubio A, Keller U 2019 Nat. Phys. 15 1145

    [31]

    Jager M F, Ott C, Kraus P M, Kaplan C J, Pouse W, Marvel R E, Haglund R F, Neumark D M, Leone S R 2017 Proc. Natl. Acad. Sci. U. S. A. 114 9558

    [32]

    Bernhardt B, Beck A R, Li X, Warrick E R, Bell M J, Haxton D J, McCurdy C W, Neumark D M, Leone S R 2014 Phys. Rev. A 89 023408

    [33]

    Wang H, Chini M, Chen S Y, Zhang C, He F, Cheng Y, Wu Y, Thumm U, Chang Z H 2010 Phys. Rev. Lett. 105 143002

    [34]

    Wang X W, Chini M, Cheng Y, Wu Y, Tong X, Chang Z H 2013 Phys. Rev. A 87 063413

    [35]

    Cao W, Warrick E R, Neumark D M, Leone S R 2016 New J. Phys. 18 013041

    [36]

    Beck A R, Bernhardt B, Warrick E R, Wu M, Chen S, Gaarde M B, Schafer K J, Neumark D M, Leone S R 2014 New J. Phys. 16 113016

    [37]

    Chini M, Wang X W, Cheng Y, Chang Z H 2014 J. Phys. B: At. Mol. Opt. Phys. 47 124009

    [38]

    Chen S H, Bell M J, Beck A R, Mashiko H, Wu M X, Pfeiffer A N, Gaarde M B, Neumark D M, Leone S R, Schafer K J 2012 Phys. Rev. A 86 063408

    [39]

    Wu M X, Chen S H, Gaarde M B, Schafer K J 2013 Phys. Rev. A 88 043416

    [40]

    Chini M, Wang X W, Cheng Y, Wu Y, Zhao D, Telnov D A, Chu S, Chang Z H 2013 Sci. Rep. 3 1105

    [41]

    Chini M, Zhao B Z, Wang H, Cheng Y, Hu S X, Chang Z H 2012 Phys. Rev. Lett. 109 073601

    [42]

    Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716

    [43]

    Drescher L, Reitsma G, Witting T, Patchkovskii S, Mikosch J, Vrakking M J J 2019 J. Phys. Chem. Lett. 10 265

    [44]

    Chen S H, Wu M X, Gaarde M B, Schafer K J 2013 Phys. Rev. A 87 033408

    [45]

    Kobayashi Y, Chang K F, Zeng T, Neumark D M, Leone S R 2019 Science 365 79

    [46]

    Zinchenko K S, Ardana-Lamas F, Seidu I, Neville S P, van der Veen J, Lanfaloni V U, Schuurman M S, Wörner H J 2021 Science 371 489

    [47]

    Chang K F, Reduzzi M, Wang H, Poullain S M, Kobayashi Y, Barreau L, Prendergast D, Neumark D M, Leone S R 2020 Nat. Commun. 11 4042

    [48]

    Kobayashi Y, Chang K F, Poullain S M, Scutelnic V, Zeng T, Neumark D M, Leone S R 2020 Phys. Rev. A 101 063414

    [49]

    Wei Z R, Li J L, Wang L, See S T, Jhon M H, Zhang Y F, Shi F, Yang M H, Loh Z 2017 Nat. Commun. 8 735

    [50]

    Wei Z R, Li J L, Zhang H M, Lu Y P, Yang M H, Loh Z 2019 J. Chem. Phys. 151 214308

    [51]

    Peng P, Marceau C, Hervé M, Corkum P B, Naumov A Y, Villeneuve D M 2019 Nat. Commun. 10 5269

    [52]

    Peng P, Mi Y H, Lytova M, Britton M, Ding X, Naumov A Yu, Corkum P B, Villeneuve D M 2022 Nat. Photonics 16 45

    [53]

    Holler M, Schapper F, Gallmann L, Keller U 2011 Phys. Rev. Lett. 106 123601

    [54]

    Sabbar M, Timmers H, Chen Y, Pymer A K, Loh Z, Sayres S G, Pabst S, Santra R, Leone S R 2017 Nat. Phys. 13 472

    [55]

    Golubev N V, Vaníček J, Kuleff A I 2021 Phys. Rev. Lett. 127 123001

    [56]

    Kobayashi Y, Neumark D M, Leone S R 2022 Opt. Express 30 5673

    [57]

    Lucchini M, Sato S A, Lucarelli G D, Moio B, Inzani G, Borrego-Varillas R, Frassetto F, Poletto L, Hübener H, De Giovannini U, Rubio A, Nisoli M 2021 Nat. Commun. 12 1021

    [58]

    Géneaux R, Kaplan C J, Yue L, Ross A D, Bækhøj J E, Kraus P M, Chang H, Guggenmos A, Huang M, Zürch M, Schafer K J, Neumark D M, Gaarde M B, Leone S R 2020 Phys. Rev. Lett. 124 207401

    [59]

    Kaplan C J, Kraus P M, Ross A D, Zürch M, Cushing S K, Jager M F, Chang H, Gullikson E M, Neumark D M, Leone S R 2018 Phys. Rev. B 97 205202

    [60]

    Li S, Lu L X, Bhattacharyya S, Pearce C, Li K, Nienhuis E T, Doumy G, Schaller R D, Moeller S, Lin M, Dakovski G, Hoffman D J, Garratt D, Larsen K A, Koralek J D, Hampton C Y, Cesar D, Duris J, Zhang Z, Sudar N, Cryan J P, Marinelli A, Li X S, Inhester L, Santra R, Young L 2024 Science 383 1118

    [61]

    Gutberlet T, Chang H, Zayko S, Sivis M, Ropers C 2023 Opt. Express 31 39757

    [62]

    Volkov M, Pupeikis J, Phillips C R, Schlaepfer F, Gallmann L, Keller U 2019 Opt. Express 27 7886

    [63]

    Géneaux R, Chang H, Schwartzberg A M, Marroux H J B 2021 Opt. Express 29 951

    [64]

    Faccialà D, Toulson B W, Gessner O 2021 Opt. Express 29 35135

    [65]

    Midorikawa K 2022 Nat. Photonics 16 267

    [66]

    Siegrist F, Gessner J A, Ossiander M, Denker C, Chang Y, Schröder M C, Guggenmos A, Cui Y, Walowski J, Martens U, Dewhurst J K, Kleineberg U, Münzenberg M, Sharma S, Schultze M 2019 Nature 571 240

    [67]

    Okino T, Furukawa Y, Nabekawa Y, Miyabe S, Amani Eilanlou A, Takahashi E J, Yamanouchi K, Midorikawa K 2015 Sci. Adv. 1 e1500356

    [68]

    Tzallas P, Skantzakis E, Nikolopoulos L A A, Tsakiris G D, Charalambidis D 2011 Nat. Phys. 7 781

    [69]

    Moulet A, Bertrand J B, Klostermann T, Guggenmos A, Karpowicz N, Goulielmakis E 2017 Science 357 1134

  • [1] 杨旭, 冯红梅, 刘佳南, 张向群, 何为, 成昭华. 超快自旋动力学: 从飞秒磁学到阿秒磁学. 物理学报, doi: 10.7498/aps.73.20240646
    [2] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究. 物理学报, doi: 10.7498/aps.71.20221298
    [3] 陈高. 利用三色组合脉冲激光获得孤立阿秒脉冲发射. 物理学报, doi: 10.7498/aps.71.20211502
    [4] 宋浩, 吕孝源, 朱若碧, 陈高. 利用脉宽10 fs偏振控制脉冲获得孤立阿秒脉冲. 物理学报, doi: 10.7498/aps.68.20190392
    [5] 吕孝源, 朱若碧, 宋浩, 苏宁, 陈高. 基于正交偏振场的双光学控制方案获得孤立阿秒脉冲产生. 物理学报, doi: 10.7498/aps.68.20190847
    [6] 陈基根, 曾思良, 杨玉军, 程超. 三色激光控制量子路径生成短于30阿秒的孤立脉冲. 物理学报, doi: 10.7498/aps.61.123201
    [7] 陆莹瑛, 曾志男, 郑颖辉, 邹璞, 刘灿东, 龚成, 李儒新, 徐至展. 双色光场驱动产生单个阿秒脉冲过程中的宏观效应. 物理学报, doi: 10.7498/aps.60.103202
    [8] 李伟, 王国利, 周效信. 啁啾激光与半周期脉冲形成的组合场驱动原子产生单个阿秒脉冲. 物理学报, doi: 10.7498/aps.60.123201
    [9] 潘慧玲, 李鹏程, 周效信. 利用两束同色激光场和半周期脉冲驱动原子产生单个阿秒脉冲. 物理学报, doi: 10.7498/aps.60.043203
    [10] 陈基根, 杨玉军, 陈漾. 附加谐波脉冲生成强的39阿秒孤立脉冲. 物理学报, doi: 10.7498/aps.60.033202
    [11] 罗牧华, 张秋菊, 闫春燕. 超相对论激光和稠密等离子体作用产生阿秒脉冲的优化. 物理学报, doi: 10.7498/aps.59.8559
    [12] 洪伟毅, 杨振宇, 兰鹏飞, 张庆斌, 李钱光, 陆培祥. 非平行偏振双色场驱动产生脉宽稳定的单个宽谱阿秒脉冲. 物理学报, doi: 10.7498/aps.58.4914
    [13] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲. 物理学报, doi: 10.7498/aps.58.1579
    [14] 张庆斌, 洪伟毅, 兰鹏飞, 杨振宇, 陆培祥. 利用调制的偏振态门控制阿秒脉冲的产生. 物理学报, doi: 10.7498/aps.57.7848
    [15] 洪伟毅, 杨振宇, 兰鹏飞, 陆培祥. 利用低频场控制轨道直接产生低于50阿秒的单个脉冲. 物理学报, doi: 10.7498/aps.57.5853
    [16] 郑颖辉, 曾志男, 李儒新, 徐至展. 极紫外阿秒脉冲在高次谐波产生过程中引起的非偶极效应. 物理学报, doi: 10.7498/aps.56.2243
    [17] 曹 伟, 兰鹏飞, 陆培祥. 利用43飞秒的强激光脉冲实现单个阿秒脉冲输出的新机理. 物理学报, doi: 10.7498/aps.56.1608
    [18] 曹 伟, 兰鹏飞, 陆培祥. 紧聚焦激光束作用于电子实现单个阿秒脉冲输出. 物理学报, doi: 10.7498/aps.55.2115
    [19] 郑 君, 盛政明, 张 杰. 高能电子与超强激光束作用产生的阿秒脉冲列. 物理学报, doi: 10.7498/aps.54.2638
    [20] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲. 物理学报, doi: 10.7498/aps.53.2316
计量
  • 文章访问数:  45
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-20

/

返回文章
返回