-
阿秒瞬态吸收光谱是一种全光学泵浦-探测光谱技术. 该技术利用阿秒脉冲(极紫外至软X射线区间)激发或探测应用体系, 实时追踪电子跃迁、量子态演化及能量传递等过程, 为揭示电子和核相关超快动力学机制提供了前沿研究手段. 其核心优势在于: 1)同时具备超快时间(亚飞秒级)和精细光谱(meV级)分辨能力; 2)宽谱阿秒脉冲同时激发多个量子态, 实现多能级并行探测; 3)内壳层-价态跃迁的元素与位点特异性, 使其能够解析电荷转移、自旋态变化及局域结构演化. 目前, 阿秒瞬态吸收光谱已在原子分子物理、电子相干动力学及强场物理等研究领域取得重要突破. 本文系统地阐述了阿秒瞬态吸收光谱的技术原理, 重点分析其在气相和凝聚相体系的应用进展, 展望其在超快物理化学和量子材料等领域的应用前景. 同时, 针对阿秒激光发展趋势和探测技术特点, 探讨了阿秒瞬态吸收光谱技术未来发展方向.Attosecond transient absorption spectroscopy (ATAS) is an all‐optical pump-probe technique that employs attosecond pulses (from the extreme ultraviolet to soft X-ray) to excite or probe a system, enabling real‐time tracking of electronic transitions, quantum state evolution, and energy transfer processes. This approach possesses some key advantages: 1) ultrafast temporal resolution (sub‐femtosecond) combined with high spectral resolution (millielectronvolt level); 2) broadband excitation of multiple quantum states, allowing simultaneous detection of multiple energy levels; and 3) element- and site-specific insights provided by the measurements of inner-shell to valence transition reveal charge transfer dynamics, spin state changes, and local structural evolution. To date, significant breakthroughs have been achieved in atomic/molecular physics, electronic coherent dynamics, and strong-field physics by using ATAS. This paper systematically reviews the technical principles and theoretical models related to ATAS by using medium intensity near-infrared pulses, analyzes the recent progress of the applications in gas-phase systems and condensed-phase systems, and explores their future prospects in ultrafast physical chemistry and quantum materials. In gas-phase environments, the ATAS has demonstrated significant capabilities in probing energy level shifts and population transfers in atomic systems, as well as capturing nonadiabatic dynamics and charge migration in diatomic and polyatomic molecules. While in condensed-phase systems, this technique has been effectively used to study the ultrafast dynamics of carriers in semiconductors and to examine the interaction dynamics of localized electrons in insulators and transition metals. Given the rapid evolution of attosecond laser technologies and the unique advantages of the ATAS detection method, this paper also outlines potential future directions. These prospects are expected to further expand the frontiers of ultrafast spectroscopy and drive advancements in a range of disciplines in basic research and technological applications.
-
图 1 ATAS实验装置示意图(HHG, 高次谐波产生; MCP, 微通道板). 其中, 金属箔(铝箔、铟箔、锆箔等, 根据探测的光谱范围选择)用于阻挡驱动光; 轮胎镜用于将阿秒脉冲聚焦到样品靶上; 空芯镜用于将飞秒光与阿秒脉冲合束
Fig. 1. Schematic of the ATAS setup (HHG, high-order harmonic generation; MCP, Microchannel Plate). Metal foils (e.g., aluminum, indium, or zirconium, chosen by spectral range) block the driving light. A toroidal mirror focuses the attosecond pulses onto the sample, and a hole mirror combines the femtosecond beam with the attosecond pulses.
图 2 (a) LISs态能级示意图(出自文献[38], 已获得授权). 黑色虚线为LISs, LISs通过吸收一个XUV光子(紫色)和吸收或发射一个NIR光子(红色)将基态耦合到1 sns和1 snd态; (b) He原子的ATAS图(出自文献[40], 已获得授权). 图中观察到AT分裂和LISs时间延迟依赖的吸收特征(+代表辐射NIR光子, –代表吸收NIR光子)
Fig. 2. (a) Schematic energy level diagram of light-induced states (LISs). Reproduced with permission from Ref. [38]. The black dashed line indicates the LISs, which couple the ground state to the 1 sns and 1 snd states via absorption of one XUV photon (purple) and absorption or emission of one NIR photon (red); (b) ATAS spectrum of He, showing AT splitting and time-delay-dependent absorption features of the LISs. Here, “+” denotes NIR photon emission and “–” denotes NIR photon absorption. Reproduced with permission from Ref.[40]
图 3 (a) CH3I的ATAS图: 顶部标尺中σ*代表价态, 6 pe, 6 pa1, 7 p代表Rydberg态, 53—57 eV处吸收线型变为类Fano线型. 出自文献[43], 已获得授权. Ne原子的(b)原始和(c)间接路径消除后的ATAS. 出自文献, 已获得授权[34]
Fig. 3. (a) ATAS spectrum of CH3I: the top scale marks the valence state (σ*) and Rydberg states (6 pe, 6 pa1, 7 p); the absorption profile between 53–57 eV turns Fano-like. Reproduced with permission from Ref. [43]. (b) The original ATAS and (c) ATAS after indirect path elimination of Ne atom. Reproduced with permission from Ref. [34].
图 4 (a) R-I势能曲线示意图; (b) i-C3H7I在–4—160 fs延迟处的吸收光谱图. 光谱以灰色颜色绘制, 随着延迟的增加, 光谱向蓝色演化, 虚线表示碘原子跃迁对应的位置; (c) i-C3H7I的ATAS图, 根据图(a)中介绍的Region 1—3标记方案, 对状态特异性分子特征及其向原子跃迁的收敛(箭头所示)进行标记. 出自文献[47], 已获得授权
Fig. 4. (a) Schematic of the R-I potential energy curve; (b) absorption spectrum of i-C3H7I between –4 and 160 fs delay: gray curves shift toward blue with delay, the dashed line marks the iodine transition; (c) ATAS spectrum of i-C3H7I with state-specific molecular features and their convergence toward atomic transitions (arrows) labeled using the Region 1–3 scheme. Reproduced with permission from Ref. [47].
图 6 (a) Si带隙动力学的阿秒探测原理(出自文献[29], 已获得授权); (b) 100.35 e V处XUV透射率的时间演化图(出自文献[29], 已获得授权), 内插图显示了对阶跃上升时间的拟合; (c)绝缘相动力学行为的双组分拟合(出自文献[31], 已获得授权); (d)自由载流子屏蔽介导的Mott相变示意图, 库仑力的驱动下载流子在空间上重新分配以屏蔽离子核(t0—t0 + τscreening). 出自文献[31], 已获得授权
Fig. 6. (a) Principle of attosecond probing of band-gap dynamics in Si. Reproduced with permission from Ref. [29]. (b) XUV transmission at 100.35 eV over time; the inset illustrates a fit for the step rise time. Reproduced with permission from Ref. [29]. (c) A two-component fit for the dynamics behavior of insulating phase. Reproduced with permission from Ref.[31]. (d) Schematic of free-carrier screening-mediated Mott transition, coulomb forces drive the carriers redistribute spatially to screen the ion cores (t0–t0 + τscreening). Reproduced with permission from Ref.[31].
-
[1] Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 6909
[2] Li M X, Xie M, Wang H Y, Jia L J, Li J L, Wang W T, Cai J A, Hong X C, Shi X S, Lv Y, Zhao X N, Luo S Z, Jiang W, Peng L, Ding D J 2024 Phys. Rev. Lett. 133 253201
Google Scholar
[3] Tao Z S, Chen C, Szilvási T, Keller M, Mavrikakis M, Kapteyn H, Murnane M 2016 Science 353 62
Google Scholar
[4] Sansone G, Kelkensberg F, Pérez-Torres J F, Morales F, Kling M F, Siu W, Ghafur O, Johnsson P, Swoboda M, Benedetti E, Ferrari F, Lépine F, Sanz-Vicario J L, Zherebtsov S, Znakovskaya I, L’Huillier A, Ivanov M Y, Nisoli M, Martín F, Vrakking M J J 2010 Nature 465 763
Google Scholar
[5] Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martín F, Keller U 2018 Nat. Phys. 14 733
Google Scholar
[6] Borrego-Varillas R, Lucchini M, Nisoli M 2022 Rep. Prog. Phys. 85 066401
Google Scholar
[7] Goulielmakis E, Loh Z, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739
Google Scholar
[8] Beck A R, Neumark D M, Leone S R 2015 Chem. Phys. Lett. 624 119
Google Scholar
[9] Ramasesha K, Leone S R, Neumark D M 2016 Annu. Rev. Phys. Chem. 67 41
Google Scholar
[10] Di Palo N, Inzani G, Dolso G L, Talarico M, Bonetti S, Lucchini M 2024 APL Photonics 9 020901
Google Scholar
[11] Kobayashi Y, Leone S R 2022 J. Chem. Phys. 157 180901
Google Scholar
[12] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509
Google Scholar
[13] Duris J, Li S Q, Driver T, Champenois E G, MacArthur J P, Lutman A A, Zhang Z, Rosenberger P, Aldrich J W, Coffee R, Coslovich G, Decker F, Glownia J M, Hartmann G, Helml W, Kamalov A, Knurr J, Krzywinski J, Lin M, Marangos J P, Nantel M, Natan A, O’Neal J T, Shivaram N, Walter P, Wang A L, Welch J J, Wolf T J A, Xu J Z, Kling M F, Bucksbaum P H, Zholents A, Huang Z, Cryan J P, Marinelli A 2020 Nat. Photonics 14 30
[14] Alqattan H, Hui D D, Pervak V, Hassan M Th 2022 APL Photonics 7 041301
Google Scholar
[15] Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163
Google Scholar
[16] Wang X W, Xiao F, Wang J C, Wang L, Zhang B, Liu J L, Zhao J, Zhao Z X 2024 Ultrafast Sci. 4 0080
Google Scholar
[17] Stooß V, Hartmann M, Birk P, Borisova G D, Ding T, Blättermann A, Ott C, Pfeifer T 2019 Rev. Sci. Instrum. 90 053108
Google Scholar
[18] Gaarde M B, Buth C, Tate J L, Schafer K J 2011 Phys. Rev. A 83 013419
Google Scholar
[19] Chen S H, Wu M X, Gaarde M B, Schafer K J 2013 Phys. Rev. A 88 033409
Google Scholar
[20] Santra R, Dunford R W, Young L 2006 Phys. Rev. A 74 043403
Google Scholar
[21] Santra R, Yakovlev V S, Pfeifer T, Loh Z 2011 Phys. Rev. A 83 033405
Google Scholar
[22] Wu M X, Chen S H, Camp S, Schafer K J, Gaarde M B 2016 J. Phys. B: At. Mol. Opt. Phys. 49 062003
Google Scholar
[23] Hollstein M, Santra R, Pfannkuche D 2017 Phys. Rev. A 95 053411
Google Scholar
[24] Timmers H, Zhu X L, Li Z, Kobayashi Y, Sabbar M, Hollstein M, Reduzzi M, Martínez T J, Neumark D M, Leone S R 2019 Nat. Commun. 10 3133
Google Scholar
[25] Bækhøj J E, Lévêque C, Madsen L B 2018 Phys. Rev. Lett. 121 023203
Google Scholar
[26] Mashiko H, Oguri K, Yamaguchi T, Suda A, Gotoh H 2016 Nat. Phys. 12 741
Google Scholar
[27] Zürch M, Chang H, Borja L J, Kraus P M, Cushing S K, Gandman A, Kaplan C J, Oh M H, Prell J S, Prendergast D, Pemmaraju C D, Neumark D M, Leone S R 2017 Nat. Commun. 8 15734
Google Scholar
[28] Schultze M, Bothschafter E M, Sommer A, Holzner S, Schweinberger W, Fiess M, Hofstetter M, Kienberger R, Apalkov V, Yakovlev V S, Stockman M I, Krausz F 2013 Nature 493 75
Google Scholar
[29] Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348
Google Scholar
[30] Volkov M, Sato S A, Schlaepfer F, Kasmi L, Hartmann N, Lucchini M, Gallmann L, Rubio A, Keller U 2019 Nat. Phys. 15 1145
Google Scholar
[31] Jager M F, Ott C, Kraus P M, Kaplan C J, Pouse W, Marvel R E, Haglund R F, Neumark D M, Leone S R 2017 Proc. Natl. Acad. Sci. U. S. A. 114 9558
Google Scholar
[32] Bernhardt B, Beck A R, Li X, Warrick E R, Bell M J, Haxton D J, McCurdy C W, Neumark D M, Leone S R 2014 Phys. Rev. A 89 023408
Google Scholar
[33] Wang H, Chini M, Chen S Y, Zhang C, He F, Cheng Y, Wu Y, Thumm U, Chang Z H 2010 Phys. Rev. Lett. 105 143002
Google Scholar
[34] Wang X W, Chini M, Cheng Y, Wu Y, Tong X, Chang Z H 2013 Phys. Rev. A 87 063413
Google Scholar
[35] Cao W, Warrick E R, Neumark D M, Leone S R 2016 New J. Phys. 18 013041
Google Scholar
[36] Beck A R, Bernhardt B, Warrick E R, Wu M, Chen S, Gaarde M B, Schafer K J, Neumark D M, Leone S R 2014 New J. Phys. 16 113016
Google Scholar
[37] Chini M, Wang X W, Cheng Y, Chang Z H 2014 J. Phys. B: At. Mol. Opt. Phys. 47 124009
Google Scholar
[38] Chen S H, Bell M J, Beck A R, Mashiko H, Wu M X, Pfeiffer A N, Gaarde M B, Neumark D M, Leone S R, Schafer K J 2012 Phys. Rev. A 86 063408
Google Scholar
[39] Wu M X, Chen S H, Gaarde M B, Schafer K J 2013 Phys. Rev. A 88 043416
Google Scholar
[40] Chini M, Wang X W, Cheng Y, Wu Y, Zhao D, Telnov D A, Chu S, Chang Z H 2013 Sci. Rep. 3 1105
Google Scholar
[41] Chini M, Zhao B Z, Wang H, Cheng Y, Hu S X, Chang Z H 2012 Phys. Rev. Lett. 109 073601
Google Scholar
[42] Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716
[43] Drescher L, Reitsma G, Witting T, Patchkovskii S, Mikosch J, Vrakking M J J 2019 J. Phys. Chem. Lett. 10 265
Google Scholar
[44] Chen S H, Wu M X, Gaarde M B, Schafer K J 2013 Phys. Rev. A 87 033408
Google Scholar
[45] Kobayashi Y, Chang K F, Zeng T, Neumark D M, Leone S R 2019 Science 365 79
Google Scholar
[46] Zinchenko K S, Ardana-Lamas F, Seidu I, Neville S P, van der Veen J, Lanfaloni V U, Schuurman M S, Wörner H J 2021 Science 371 489
Google Scholar
[47] Chang K F, Reduzzi M, Wang H, Poullain S M, Kobayashi Y, Barreau L, Prendergast D, Neumark D M, Leone S R 2020 Nat. Commun. 11 4042
Google Scholar
[48] Kobayashi Y, Chang K F, Poullain S M, Scutelnic V, Zeng T, Neumark D M, Leone S R 2020 Phys. Rev. A 101 063414
Google Scholar
[49] Wei Z R, Li J L, Wang L, See S T, Jhon M H, Zhang Y F, Shi F, Yang M H, Loh Z 2017 Nat. Commun. 8 735
Google Scholar
[50] Wei Z R, Li J L, Zhang H M, Lu Y P, Yang M H, Loh Z 2019 J. Chem. Phys. 151 214308
Google Scholar
[51] Peng P, Marceau C, Hervé M, Corkum P B, Naumov A Y, Villeneuve D M 2019 Nat. Commun. 10 5269
Google Scholar
[52] Peng P, Mi Y H, Lytova M, Britton M, Ding X, Naumov A Yu, Corkum P B, Villeneuve D M 2022 Nat. Photonics 16 45
Google Scholar
[53] Holler M, Schapper F, Gallmann L, Keller U 2011 Phys. Rev. Lett. 106 123601
Google Scholar
[54] Sabbar M, Timmers H, Chen Y, Pymer A K, Loh Z, Sayres S G, Pabst S, Santra R, Leone S R 2017 Nat. Phys. 13 472
Google Scholar
[55] Golubev N V, Vaníček J, Kuleff A I 2021 Phys. Rev. Lett. 127 123001
Google Scholar
[56] Kobayashi Y, Neumark D M, Leone S R 2022 Opt. Express 30 5673
Google Scholar
[57] Lucchini M, Sato S A, Lucarelli G D, Moio B, Inzani G, Borrego-Varillas R, Frassetto F, Poletto L, Hübener H, De Giovannini U, Rubio A, Nisoli M 2021 Nat. Commun. 12 1021
Google Scholar
[58] Géneaux R, Kaplan C J, Yue L, Ross A D, Bækhøj J E, Kraus P M, Chang H, Guggenmos A, Huang M, Zürch M, Schafer K J, Neumark D M, Gaarde M B, Leone S R 2020 Phys. Rev. Lett. 124 207401
Google Scholar
[59] Kaplan C J, Kraus P M, Ross A D, Zürch M, Cushing S K, Jager M F, Chang H, Gullikson E M, Neumark D M, Leone S R 2018 Phys. Rev. B 97 205202
Google Scholar
[60] Li S, Lu L X, Bhattacharyya S, Pearce C, Li K, Nienhuis E T, Doumy G, Schaller R D, Moeller S, Lin M, Dakovski G, Hoffman D J, Garratt D, Larsen K A, Koralek J D, Hampton C Y, Cesar D, Duris J, Zhang Z, Sudar N, Cryan J P, Marinelli A, Li X S, Inhester L, Santra R, Young L 2024 Science 383 1118
Google Scholar
[61] Gutberlet T, Chang H, Zayko S, Sivis M, Ropers C 2023 Opt. Express 31 39757
Google Scholar
[62] Volkov M, Pupeikis J, Phillips C R, Schlaepfer F, Gallmann L, Keller U 2019 Opt. Express 27 7886
Google Scholar
[63] Géneaux R, Chang H, Schwartzberg A M, Marroux H J B 2021 Opt. Express 29 951
Google Scholar
[64] Faccialà D, Toulson B W, Gessner O 2021 Opt. Express 29 35135
Google Scholar
[65] Midorikawa K 2022 Nat. Photonics 16 267
Google Scholar
[66] Siegrist F, Gessner J A, Ossiander M, Denker C, Chang Y, Schröder M C, Guggenmos A, Cui Y, Walowski J, Martens U, Dewhurst J K, Kleineberg U, Münzenberg M, Sharma S, Schultze M 2019 Nature 571 240
Google Scholar
[67] Okino T, Furukawa Y, Nabekawa Y, Miyabe S, Amani Eilanlou A, Takahashi E J, Yamanouchi K, Midorikawa K 2015 Sci. Adv. 1 e1500356
Google Scholar
[68] Tzallas P, Skantzakis E, Nikolopoulos L A A, Tsakiris G D, Charalambidis D 2011 Nat. Phys. 7 781
Google Scholar
[69] Moulet A, Bertrand J B, Klostermann T, Guggenmos A, Karpowicz N, Goulielmakis E 2017 Science 357 1134
Google Scholar
计量
- 文章访问数: 434
- PDF下载量: 28
- 被引次数: 0