搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超快自旋动力学: 从飞秒磁学到阿秒磁学

杨旭 冯红梅 刘佳南 张向群 何为 成昭华

引用本文:
Citation:

超快自旋动力学: 从飞秒磁学到阿秒磁学

杨旭, 冯红梅, 刘佳南, 张向群, 何为, 成昭华

Ultrafast spin dynamics: From femtosecond magnetism to attosecond magnetism

Yang Xu, Feng Hong-Mei, Liu Jia-Nan, Zhang Xiang-Qun, He Wei, Cheng Zhao-Hua
PDF
HTML
导出引用
  • 超快自旋动力学是研究材料受到外场激发后, 在皮秒至阿秒时间尺度下其自旋的运动行为. 随着激光技术的不断提升, 1996年开始的飞秒磁学为以电子自旋属性为载体的自旋电子学器件, 在向更快响应的追求上带来了全新的发展. 尽管已有几十年的历史, 飞秒磁学依旧存在着非常多的物理问题尚未解决, 而理解这些问题需要研究更快时间尺度下的自旋动力学过程. 利用阿秒激光脉冲与磁性材料的相互作用, 可研究亚飞秒乃至阿秒时间尺度下、元素分辨的自旋动力学行为, 即阿秒磁学. 本文介绍了超快自旋动力学近年来的一些重要研究进展以及存在的问题, 阿秒磁学研究的机遇与挑战, 并对超快自旋动力学的未来发展趋势及前景进行分析与展望.
    Ultrafast spin dynamics is the study of the evolution of spin degrees of freedom on a time scale from picoseconds to attoseconds after being excited by an external field. With the development of laser technology, ultrafast spin dynamics has presented new opportunities for realizing ultrafast spintronic devices since 1996. However, despite decades of development, many aspects of femtosecond magnetism remain unclear. Understanding the parameters of these ultrafast spin dynamics processes requires experiments on an even faster timescale. Attosecond magnetism and the interaction of attosecond laser pulses with magnetic materials can reveal spin dynamics on a sub-femtosecond to attosecond time scale. In this review, we first introduce the significant research progress, including the mechanisms of ultrafast demagnetization, all-optical switching, ultrafast spin currents, and terahertz waves. Secondly, we analyze the problems in ultrafast spin dynamics, such as the unclear physical mechanisms of ultrafast demagnetization, the uncertain relationship between magnetic damping and ultrafast demagnetization time, and the unexplored anisotropic ultrafast demagnetization. Thirdly, we discuss the opportunities and challenges in attosecond magnetism. Finally, we analyze and discuss the future development and prospects of ultrafast spin dynamics.
  • 图 1  超快自旋动力学不同时间区域 (a) Ni薄膜的超快退磁现象[5]; (b) 超快自旋动力学3个过程, I为超快退磁, II为磁矩恢复, III为磁矩进动[32]; (c) 激光与铁磁性金属相互作用的热力学库; (d) Ni的三温度模型得到的电子、晶格、自旋的温度变化[5]

    Fig. 1.  Different time regimes of the ultrafast spin dynamics: (a) The ultrafast demagnetization of Ni thin film[5]; (b) the three-time regimes of Fe/MgO, I represents ultrafast demagnetization, II represents magnetic moment recovery, and III represents magnetic moment precession[32]; (c) the interaction between the laser pulse and the three thermalized reservoirs of electrons, lattice, and spin; (d) the temperature changes of electrons, lattice, and spin with time[5].

    图 2  拓扑表面态增强的Fe/Bi2Se3的超快自旋动力学行为 (a), (b)分别为9 QL和3 QL的Bi2Se3能带结构; (c) 异质结阻尼因子随温度的变化; (d) Fe/Bi2Se3 (9 QL 和3 QL)表面态对超快退磁的影响[57]

    Fig. 2.  Topological surface state enhanced ultrafast spin dynamics of Fe/Bi2Se3 heterostructures: (a), (b) The band structures of Bi2Se3 with the thickness of 9 QL and 3 QL; (c) temperature dependence of damping; (d) ultrafast demagnetization curves of different samples[57].

    图 3  可产生Skyrmions的FeGe材料中Type I-Type II超快退磁的转变 (a), (b) 分别为温度、磁场相关的FeGe薄膜的超快退磁行为; (c), (d)分别为第1步退磁与第2步退磁的退磁时间、退磁量的比值, 其中(c)插图为50 ps内的示例曲线; (e), (f)分别为磁性测量的FeGe磁相图, 灰色线为磁相转变区, 椭圆形区域为Skyrmions出现区域, 不同的颜色代表(c)和(d)的数值, 白色虚线为Type I到Type II转变的边界, 黑色点为测量TR-MOKE的条件, 红色点为(a)和(b)的测量条件[59]

    Fig. 3.  Transition of Type I-Type II ultrafast demagnetization in FeGe materials capable of generating Skyrmions. (a), (b) The dependence of the ultrafast demagnetization of FeGe film on the ambient temperature scenario and field scenario. (c), (d) The demagnetization times and amplitude ratios between the second and first step obtained by bi-exponential function. Inset in (c) is an example curve shown up to 50 ps. (e), (f) The magnetic phase diagrams of FeGe obtained by magnetization measurements. Gray solid lines are the boundaries of magnetic phases. Elliptic shadow is a reference skyrmion region. Color map in (e), (f) represents the data in (c), (d), respectively. The white dashed line is the boundary between Type-I and Type-II demagnetization. Black dots are all the TRMOKE measurement points; red dots are the data points shown in (a), (b)[59].

    图 4  圆偏振的飞秒激光脉冲全光学磁记录[6]

    Fig. 4.  All-optical magnetic recording by the circular femtosecond laser pulse[6].

    图 5  (a)超快激光脉冲激发下基于逆Rashba-Edelstein效应的太赫兹发射原理图[27]; (b) Fe/Ag/Bi薄膜的频域太赫兹信号[27]

    Fig. 5.  (a) Schematic of THz emission via inverse Rashba-Edelstein effect upon excitation of ultrafast laser pulses[27]; (b) the frequency-domain THz signal of Fe/Ag/Bi[27].

    图 6  费米面呼吸以及冒泡模型 (a)描述不同时刻的费米面的形状, 费米面呼吸膜型; (b) 带间跃迁和带内跃迁[76]

    Fig. 6.  Fermi surface breathing model and bubbling model: (a) A sketch of the Fermi surface at different times; (b) the intraband and interband transition[76].

    图 7  超快退磁时间与阻尼因子的关系 (a) Co/Ni双层膜的超快退磁时间与阻尼因子的正比关系[78]; (b) FeGa/IrMn双层膜的超快退磁时间与阻尼因子的反比关系[79]

    Fig. 7.  Relationship between the ultrafast demagnetization time and damping: (a) The ultrafast demagnetization time is in direct proportion to the damping in the Co/Ni bilayer[78]; (b) the ultrafast demagnetization time is inversely proportional to the damping in the FeGa/IrMn bilayer[79].

    图 8  (a) Co薄膜中的各向异性超快自旋动力学[80]; (b), (c) Fe/GeTe (30 nm)的各向异性阻尼因子与各向异性能带结构; (d), (e) Fe/GeTe (5 nm)的各向同性阻尼因子以及各向同性的能带劈裂[81]

    Fig. 8.  (a) Anisotropic ultrafast spin dynamics in Co thin film[80]; (b), (c) the anisotropic damping and splitting band structures of Fe/GeTe (30 nm); (d), (e) the isotropic damping and band structure of Fe/GeTe (5 nm)[81].

    图 9  高次谐波的准经典三步模型[89]

    Fig. 9.  Quasi-classical three-step model of higher harmonics[89]

    图 10  RABBITT方法实现阿秒时间分辨的电子动力学 (a)利用RABBITT实现阿秒时间分辨的光电子能谱装置[97]; (b) RABBITT的过程示意图[97]

    Fig. 10.  Attosecond time resolution electrons dynamics by RABBITT method (a) Schematic illustration of the photoemission spectrum with attosecond time resolution by RABBITT method[97]; (b) schematic representation of the three steps of RABBITT[97].

    图 11  高次谐波的典型特征

    Fig. 11.  Typical character of the high Harmonic generation.

    表 1  常见的3 d过度族元素的M2, 3边的能量

    Table 1.  The M2, 3 energies for 3 d elements.

    元素M2, 3 边能量/eV元素M2, 3 边能量/eV
    Sc32Fe54
    Ti35Co60
    V38Ni68
    Cr42Cu74
    Mn49Zn87
    下载: 导出CSV
  • [1]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731Google Scholar

    [2]

    Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901Google Scholar

    [3]

    Farle M 1998 Rep. Prog. Phys. 61 755Google Scholar

    [4]

    Kambersky V J C J o P B 1976 Czech. J. Phys. B 26 1366Google Scholar

    [5]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [6]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [7]

    Lambert C H, Mangin S, Varaprasad B S D C S, Takahashi Y K, Hehn M, Cinchetti M, Malinowski G, Hono K, Fainman Y, Aeschlimann M, Fullerton E E 2014 Science 345 1337Google Scholar

    [8]

    Igarashi J, Zhang W, Remy Q, Diaz E, Lin J X, Hohlfeld J, Hehn M, Mangin S, Gorchon J, Malinowski G 2023 Nat. Mater. 22 725Google Scholar

    [9]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blugel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455Google Scholar

    [10]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [11]

    Ferray M, L'Huillier A, Li X F, Lomprk L A, Mainfray G, Manus C 1988 J. Phys. B-At. Mol. Opt. 21 L31Google Scholar

    [12]

    Nisoli M, Sansone G 2009 Prog. Quant. Electron. 33 17Google Scholar

    [13]

    Siegrist F, Gessner J A, Ossiander M, Denker C, Chang Y P, Schroder M C, Guggenmos A, Cui Y, Walowski J, Martens U, Dewhurst J K, Kleineberg U, Munzenberg M, Sharma S, Schultze M 2019 Nature 571 240Google Scholar

    [14]

    Li Y, Li Y, Liu Q, Xie Z K, Vetter E, Yuan Z, He W, Liu H L, Sun D L, Xia K, Yu W, Sun Y B, Zhao J J, Zhang X Q, Cheng Z H 2019 New J. Phys. 21 103040Google Scholar

    [15]

    Tserkovnyak Y, Brataas A, Bauer G E 2002 Phys. Rev. Lett. 88 117601Google Scholar

    [16]

    Katine J A, Albert F J, Buhrman R A 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [17]

    Ralph D C, Stiles M D 2008 J. Magn. Magn. Mater. 320 1190Google Scholar

    [18]

    Soumyanarayanan A, Reyren N, Fert A, Panagopoulos C 2016 Nature 539 509Google Scholar

    [19]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [20]

    Yang S A 2016 Spin 06 1640003Google Scholar

    [21]

    Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2009 Science 325 178Google Scholar

    [22]

    Di Sante D, Barone P, Bertacco R, Picozzi S 2013 Adv. Mater. 25 509Google Scholar

    [23]

    Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871Google Scholar

    [24]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev Mod Phys 87 1213Google Scholar

    [25]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boni P 2009 Phys. Rev. Lett. 102 186602Google Scholar

    [26]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar

    [27]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [28]

    Zutic I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323Google Scholar

    [29]

    Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472Google Scholar

    [30]

    Binasch G, Grunberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B Condens. Matter. 39 4828Google Scholar

    [31]

    Hashimoto S, Ochiai Y 1990 J. Magn. Magn. Mater. 88 211Google Scholar

    [32]

    Cheng Z H, He W, Zhang X Q, Sun D L, Du H F, Wu Q, Ye J, Fang Y P, Liu H L 2015 Chin. Phys. B 24 077505Google Scholar

    [33]

    Walowski J, Muller G, Djordjevic M, Munzenberg M, Klaui M, Vaz C A, Bland J A 2008 Phys. Rev. Lett. 101 237401Google Scholar

    [34]

    Radu I, Woltersdorf G, Kiessling M, Melnikov A, Bovensiepen U, Thiele J U, Back C H 2009 Phys. Rev. Lett. 102 117201Google Scholar

    [35]

    Guidoni L, Beaurepaire E, Bigot J Y 2002 Phys. Rev. Lett. 89 017401Google Scholar

    [36]

    Graves C E, Reid A H, Wang T, Wu B, de Jong S, Vahaplar K, Radu I, Bernstein D P, Messerschmidt M, Muller L, Coffee R, Bionta M, Epp S W, Hartmann R, Kimmel N, Hauser G, Hartmann A, Holl P, Gorke H, Mentink J H, Tsukamoto A, Fognini A, Turner J J, Schlotter W F, Rolles D, Soltau H, Struder L, Acremann Y, Kimel A V, Kirilyuk A, Rasing T, Stohr J, Scherz A O, Durr H A 2013 Nat. Mater. 12 293Google Scholar

    [37]

    Bartelt A F, Comin A, Feng J, Nasiatka J R, Eimüller T, Ludescher B, Schütz G, Padmore H A, Young A T, Scholl A 2007 Appl. Phys. Lett. 90 162503Google Scholar

    [38]

    Li Y, Zhang W, Li N, Sun R, Tang J, Gong Z Z, Li Y, Yang X, Xie Z K, Gul Q, Zhang X Q, He W, Cheng Z H 2019 J. Phys. Condens. Mat. 31 305802Google Scholar

    [39]

    Zhang Q, Nurmikko A V, Miao G X, Xiao G, Gupta A 2006 Phys. Rev. B 74 064414Google Scholar

    [40]

    Muller G M, Walowski J, Djordjevic M, Miao G X, Gupta A, Ramos A V, Gehrke K, Moshnyaga V, Samwer K, Schmalhorst J, Thomas A, Hutten A, Reiss G, Moodera J S, Munzenberg M 2009 Nat. Mater. 8 56Google Scholar

    [41]

    Lu X Y, Lin Z Y, Pi H Q, Zhang T, Li G Q, Gong Y T, Yan Y, Ruan X Z, Li Y, Zhang H, Li L, He L, Wu J, Zhang R, Weng H M, Zeng C G, Xu Y B 2024 Nat. Commun. 15 2410Google Scholar

    [42]

    Lichtenberg T, Schippers C F, van Kooten S C P, Evers S G F, Barcones B, Guimarães M H D, Koopmans B 2022 2D Mater. 10 015008

    [43]

    Wu N, Zhang S J, Chen D Q, Wang Y X, Meng S 2024 Nat. Commun. 15 2804Google Scholar

    [44]

    Khela M, Da Browski M, Khan S, Keatley P S, Verzhbitskiy I, Eda G, Hicken R J, Kurebayashi H, Santos E J G 2023 Nat. Commun. 14 1378Google Scholar

    [45]

    Sun T, Zhou C, Jiang Z Z, Li X M, Qiu K, Xiao R C, Liu C X, Ma Z W, Luo X, Sun Y P, Sheng Z G 2021 2D Mater. 8 045040Google Scholar

    [46]

    Da Browski M, Guo S, Strungaru M, Keatley P S, Withers F, Santos E J G, Hicken R J 2022 Nat. Commun. 13 5976Google Scholar

    [47]

    Lee W J, Fernandez-Mulligan S, Tan H X, Yan C H, Guan Y D, Lee S H, Mei R B, Liu C X, Yan B H, Mao Z Q, Yang S L 2023 Nat. Phys. 19 950Google Scholar

    [48]

    Padmanabhan H, Stoica V A, Kim P K, Poore M, Yang T N, Shen X Z, Reid A H, Lin M F, Park S, Yang J, Wang H Y, Koocher N Z, Puggioni D, Georgescu A B, Min L J, Lee S H, Mao Z Q, Rondinelli J M, Lindenberg A M, Chen L Q, Wang X J, Averitt R D, Freeland J W, Gopalan V 2022 Adv. Mater. 34 2202841Google Scholar

    [49]

    Bartram F M, Leng Y C, Wang Y, Liu L, Chen X, Peng H, Li H, Yu P, Wu Y, Lin M L, Zhang J, Tan P H, Yang L 2022 npj Quantum. Mater. 7 84Google Scholar

    [50]

    Evans R F L, Fan W J, Chureemart P, Ostler T A, Ellis M O A, Chantrell R W 2014 J. Phys. Condens. Matter. 26 103202Google Scholar

    [51]

    Atxitia U, Chubykalo-Fesenko O 2011 Phys. Rev. B 84 144414Google Scholar

    [52]

    Koopmans B, Ruigrok J J, Longa F D, de Jonge W J 2005 Phys. Rev. Lett. 95 267207Google Scholar

    [53]

    Koopmans B, Malinowski G, Dalla Longa F, Steiauf D, Fahnle M, Roth T, Cinchetti M, Aeschlimann M 2010 Nat. Mater. 9 259Google Scholar

    [54]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [55]

    Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008 Nat. Phys. 4 855Google Scholar

    [56]

    Schellekens A J, Kuiper K C, de Wit R R J C, Koopmans B 2014 Nat. Commun. 5 4333Google Scholar

    [57]

    Li N, Sun Y B, Sun R, Yang X, Zhang W, Xie Z K, Liu J N, Li Y, Li Y, Gong Z Z, Zhang X Q, He W, Cheng Z H 2022 Phys. Rev. B 105 144415Google Scholar

    [58]

    Hou Y S, Wu R Q 2019 Phys. Rev. Appl. 11 054032Google Scholar

    [59]

    Gong Z H, Zhang W, Liu J N, Xie Z K, Yang X, Tang J, Du H F, Li N, Zhang X Q, He W, Cheng Z H 2023 Phys. Rev. B 107 144429Google Scholar

    [60]

    Zhang X C, Shkurinov A, Zhang Y 2017 Nat. Photonics 11 16Google Scholar

    [61]

    Pawar A Y, Sonawane D D, Erande K B, Derle D V 2013 Drug. Invent. Today 5 157Google Scholar

    [62]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [63]

    Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910Google Scholar

    [64]

    Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S, Saitoh E 2008 Phys. Rev. Lett. 101 036601Google Scholar

    [65]

    Rojas-Sanchez J C, Reyren N, Laczkowski P, Savero W, Attane J P, Deranlot C, Jamet M, George J M, Vila L, Jaffres H 2014 Phys. Rev. Lett. 112 106602Google Scholar

    [66]

    Sun R, Yang S J, Yang X, Vetter E, Sun D L, Li N, Su L, Li Y, Li Y, Gong Z Z, Xie Z K, Hou K Y, Gul Q, He W, Zhang X Q, Cheng Z H 2019 Nano Lett. 19 4420Google Scholar

    [67]

    Sun R, Yang S J, Yang X, Kumar A, Vetter E, Xue W H, Li Y, Li N, Li Y, Zhang S H, Ge B H, Zhang X Q, He W, Kemper A F, Sun D, Cheng Z H 2020 Adv. Mater. 32 2005315Google Scholar

    [68]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Notzold J, Mahrlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blugel S, Wolf M, Radu I, Oppeneer P M, Munzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [69]

    Tang J, Ke Y J, He W, Zhang X Q, Zhang W, Li N, Zhang Y S, Li Y, Cheng Z H 2018 Adv. Mater. 30 1706439Google Scholar

    [70]

    Walowski J, Müller G, Djordjevic M, Münzenberg M, Kläui M, Vaz C A F, Bland J A C 2008 Phys. Rev. Lett. 101 237401Google Scholar

    [71]

    Kuiper K C, Roth T, Schellekens A J, Schmitt O, Koopmans B, Cinchetti M, Aeschlimann M 2014 Appl. Phys. Lett. 105 202402Google Scholar

    [72]

    Tauchert S R, Volkov M, Ehberger D, Kazenwadel D, Evers M, Lange H, Donges A, Book A, Kreuzpaintner W, Nowak U, Baum P 2022 Nature 602 73Google Scholar

    [73]

    Ren Y, Zuo Y L, Si M S, Zhang Z Z, Jin Q Y, Zhou S M 2013 Ieee T. Magn. 49 3159Google Scholar

    [74]

    Zhang Z, Wu D, Luan Z, Yuan H, Zhang Z, Zhao J, Zhao H, Chen L 2015 IEEE Magn. Lett. 6 1

    [75]

    Woltersdorf G, Kiessling M, Meyer G, Thiele J U, Back C H 2009 Phys. Rev. Lett. 102 257602Google Scholar

    [76]

    Gilmore K, Stiles M D, Seib J, Steiauf D, Fahnle M 2010 Phys. Rev. B 81 174414Google Scholar

    [77]

    Xia H, Zhao Z R, Zeng F L, Zhao H C, Shi J Y, Zheng Z, Shen X, He J, Ni G, Wu Y Z, Chen L Y, Zhao H B 2021 Phys. Rev. B 104 024404

    [78]

    Zhang W, He W, Zhang X Q, Cheng Z H, Teng J, Fähnle M 2017 Phys. Rev. B 96 220415Google Scholar

    [79]

    Zhang W, Liu Q, Yuan Z, Xia K, He W, Zhan Q F, Zhang X Q, Cheng Z H 2019 Phys. Rev. B 100 104412Google Scholar

    [80]

    Unikandanunni V, Medapalli R, Fullerton E E, Carva K, Oppeneer P M, Bonetti S 2021 Appl. Phys. Lett. 118 232404Google Scholar

    [81]

    Yang X, Qiu L, Li Y, Xue H P, Liu J N, Sun R, Yang Q L, Gai X S, Wei Y S, Comstock A H, Sun D, Zhang X Q, He W, Hou Y, Cheng Z H 2023 Phys. Rev. Lett. 131 186703Google Scholar

    [82]

    Waldrop M M 2016 Nature 530 144Google Scholar

    [83]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614Google Scholar

    [84]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Worner H J 2017 Opt. Express 25 27506Google Scholar

    [85]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012 Opt. Lett. 37 3891Google Scholar

    [86]

    Midorikawa K 2022 Nat. Photonics 16 267Google Scholar

    [87]

    Xue B, Tamaru Y, Fu Y, Yuan H, Lan P, Mücke O D, Suda A, Midorikawa K, Takahashi E J 2020 Sci. Adv. 6 eaay2802Google Scholar

    [88]

    Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010 Nat. Photonics 4 875Google Scholar

    [89]

    Corkum P B, Krausz F 2007 Nat. Phys. 3 381Google Scholar

    [90]

    Popmintchev T, Chen M-C, Arpin P, Murnane M M, Kapteyn H C 2010 Nat. Photonics 4 822Google Scholar

    [91]

    Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, Kapteyn H C 2012 Science 336 1287Google Scholar

    [92]

    Li S, Wang R, Frauenheim T, He J 2024 Arxiv 2401 04038

    [93]

    Tao Z, Chen C, Szilvási T, Keller M, Mavrikakis M, Kapteyn H, Murnane M 2016 Science 353 62Google Scholar

    [94]

    Hofherr M, Häuser S, Dewhurst J K, Tengdin P, Sakshath S, Nembach H T, Weber S T, Shaw J M, Silva T J, Kapteyn H C, Cinchetti M, Rethfeld B, Murnane M M, Steil D, Stadtmüller B, Sharma S, Aeschlimann M, Mathias S 2020 Sci. Adv. 6 eaay8717Google Scholar

    [95]

    Ryan S a A, Johnsen P C, Elhanoty M F, Grafov A, Li N, Delin A, Markou A, Lesne E, Felser C, Eriksson O, Kapteyn H C, Grånäs O, Murnane M M 2023 Sci. Adv. 9 eadi1428Google Scholar

    [96]

    Tengdin P, Gentry C, Blonsky A, Zusin D, Gerrity M, Hellbrück L, Hofherr M, Shaw J, Kvashnin Y, Delczeg-Czirjak E K, Arora M, Nembach H, Silva T J, Mathias S, Aeschlimann M, Kapteyn H C, Thonig D, Koumpouras K, Eriksson O, Murnane M M 2020 Sci. Adv. 6 eaaz1100Google Scholar

    [97]

    Locher R, Castiglioni L, Lucchini M, Greif M, Gallmann L, Osterwalder J, Hengsberger M, Keller U 2015 Optica 2 405Google Scholar

    [98]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [99]

    Chainani A, Yokoya T, Kiss T, Shin S 2000 Phys. Rev. Lett. 85 1966Google Scholar

    [100]

    Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515Google Scholar

  • [1] 陈高. 利用三色组合脉冲激光获得孤立阿秒脉冲发射. 物理学报, doi: 10.7498/aps.71.20211502
    [2] 宋浩, 吕孝源, 朱若碧, 陈高. 利用脉宽10 fs偏振控制脉冲获得孤立阿秒脉冲. 物理学报, doi: 10.7498/aps.68.20190392
    [3] 吕孝源, 朱若碧, 宋浩, 苏宁, 陈高. 基于正交偏振场的双光学控制方案获得孤立阿秒脉冲产生. 物理学报, doi: 10.7498/aps.68.20190847
    [4] 黄峰, 李鹏程, 周效信. 利用两色组合激光场驱动氦原子产生单个阿秒脉冲. 物理学报, doi: 10.7498/aps.61.233203
    [5] 陈基根, 曾思良, 杨玉军, 程超. 三色激光控制量子路径生成短于30阿秒的孤立脉冲. 物理学报, doi: 10.7498/aps.61.123201
    [6] 陆莹瑛, 曾志男, 郑颖辉, 邹璞, 刘灿东, 龚成, 李儒新, 徐至展. 双色光场驱动产生单个阿秒脉冲过程中的宏观效应. 物理学报, doi: 10.7498/aps.60.103202
    [7] 潘慧玲, 李鹏程, 周效信. 利用两束同色激光场和半周期脉冲驱动原子产生单个阿秒脉冲. 物理学报, doi: 10.7498/aps.60.043203
    [8] 李伟, 王国利, 周效信. 啁啾激光与半周期脉冲形成的组合场驱动原子产生单个阿秒脉冲. 物理学报, doi: 10.7498/aps.60.123201
    [9] 陈基根, 杨玉军, 陈漾. 附加谐波脉冲生成强的39阿秒孤立脉冲. 物理学报, doi: 10.7498/aps.60.033202
    [10] 罗牧华, 张秋菊, 闫春燕. 超相对论激光和稠密等离子体作用产生阿秒脉冲的优化. 物理学报, doi: 10.7498/aps.59.8559
    [11] 洪伟毅, 杨振宇, 兰鹏飞, 张庆斌, 李钱光, 陆培祥. 非平行偏振双色场驱动产生脉宽稳定的单个宽谱阿秒脉冲. 物理学报, doi: 10.7498/aps.58.4914
    [12] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲. 物理学报, doi: 10.7498/aps.58.1579
    [13] 李钱光, 兰鹏飞, 洪伟毅, 张庆斌, 陆培祥. 阿秒电离门调控宽带超连续谱的传播特性. 物理学报, doi: 10.7498/aps.58.5679
    [14] 洪伟毅, 杨振宇, 兰鹏飞, 陆培祥. 利用低频场控制轨道直接产生低于50阿秒的单个脉冲. 物理学报, doi: 10.7498/aps.57.5853
    [15] 张庆斌, 洪伟毅, 兰鹏飞, 杨振宇, 陆培祥. 利用调制的偏振态门控制阿秒脉冲的产生. 物理学报, doi: 10.7498/aps.57.7848
    [16] 郑颖辉, 曾志男, 李儒新, 徐至展. 极紫外阿秒脉冲在高次谐波产生过程中引起的非偶极效应. 物理学报, doi: 10.7498/aps.56.2243
    [17] 曹 伟, 兰鹏飞, 陆培祥. 利用43飞秒的强激光脉冲实现单个阿秒脉冲输出的新机理. 物理学报, doi: 10.7498/aps.56.1608
    [18] 曹 伟, 兰鹏飞, 陆培祥. 紧聚焦激光束作用于电子实现单个阿秒脉冲输出. 物理学报, doi: 10.7498/aps.55.2115
    [19] 郑 君, 盛政明, 张 杰. 高能电子与超强激光束作用产生的阿秒脉冲列. 物理学报, doi: 10.7498/aps.54.2638
    [20] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲. 物理学报, doi: 10.7498/aps.53.2316
计量
  • 文章访问数:  194
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 修回日期:  2024-06-13
  • 上网日期:  2024-06-20

/

返回文章
返回