-
随着激光冷却原子分子技术和全空间电子离子成像技术的日益成熟与发展, 运用动量成像技术研究冷原子特征属性和碰撞动力学是一个新兴方向, 并且发展了一系列高分辨的电子离子探测装置, 在冷分子反应、里德伯原子、核衰变、玻色-爱因斯坦凝聚光电离与冷等离子体、冷原子与离子/电子碰撞、冷原子相干控制、强场超快等研究方向取得一系列创新成果. 本文综述了相关领域具有代表性的仪器以及相应的重要成果, 最后对成像技术在冷原子上述各相关研究领域中的应用进行相应的总结, 并展望了未来的发展趋势.
-
关键词:
- 电子/离子成像 /
- 冷原子 /
- 磁光阱速度成像谱仪 /
- 磁光阱反应显微成像谱仪
With the continuous advancement and maturation of laser cooling techniques for atoms and molecules and full-dimensional electron and ion imaging technology, using momentum imaging techniques to investigate the characteristic properties of cold atoms and collision dynamics has emerged as a burgeoning research direction. This progress has driven the development of a series of high-resolution electron and ion detection devices, leading to innovative breakthroughs in fields such as cold molecule reactions, Rydberg atoms, nuclear decay, photoionization of Bose-Einstein condensates (BECs) and cold plasmas, collisions between cold atoms and ions/electrons, coherent control of cold atoms, and strong-field ultrafast physics. This article reviews representative instruments and their corresponding seminal achievements in the following domains: In cold molecular/cold chemical reactions, imaging technology has revealed new insights into reaction mechanisms; For cold Rydberg atom interactions, it demonstrates high-precision quantum state manipulation capabilities, advancing quantum information processing; In nuclear decay research, it provides ultra-sensitive detection methods, deepening understanding of decay processes; For BEC photoionization and cold plasma control, it can precisely monitor and manipulate microscopic processes; In cold atomic collision studies, it reveals new details in collision dynamics, refining collision theories; Regarding coherent control of cold atoms, it achieves accurate quantum state manipulation and interference; In strong-field ultrafast processes, it elucidates complex electron dynamics under intense fields, providing innovative methods for ultrafast laser control. Furthermore, this article summarizes the applications of imaging technologies in the aforementioned research areas involving cold atoms, and provides prospects for future developments in this evolving field.-
Keywords:
- electron/ion imaging /
- cold atoms /
- magneto-optical trap velocity map imaging /
- magneto-optical trap reaction microscope
-
图 1 (a) 6Li2基态分子的PA方案和多光子电离能级图; (b)扩展了光学偶极阱的MOTREMI装置示意图, 橙色为光学偶极阱的光束与PA光束共束[17]
Fig. 1. (a) PA scheme and multiphoton ionization energy level diagram for the ground state of 6Li2 molecules; (b) schematic diagram of the MOTREMI apparatus with an expanded optical dipole trap, where the orange represents the optical dipole trap beam coinciding with the PA beam[17].
图 2 (a) KRb分子的吸收图像, 色标指示了KRb云的光学深度, 其中CCD为电荷耦合器件; (b)冷分子在VMI中被电离, 经过离子透镜聚焦, 最终被成像, 其中B为磁场; (c)记录的飞行时间谱示例; (d)记录的对应不同离子的速度图成像; (e)冷 KRb 分子双分子反应的能级图(出自文献[18], 已获得授权)
Fig. 2. (a) Absorption image of KRb molecules. The color scale indicates the optical depth of the KRb cloud. CCD, charge-coupled device. (b) Cold molecules are ionized in VMI, focused through ion lenses, and finally imaged. B, magnetic field. (c) An example of a recorded time-of-flight spectrum. (d) Recorded velocity map imaging corresponding to different ions. (e) Energetics of the bimolecular reactions of cold KRb molecules (reproduced with permission from Ref.[18]).
图 4 上图是Simion 8.1模拟的带电粒子从MOT中出来后, 在电场作用下最终打到探测器上的飞行轨迹;下图是装置的CAD模型, 包括激光束、成像装置电极和探测器(出自文献[34], 已获得授权)
Fig. 4. The upper image shows the flight trajectory of charged particles coming out of the MOT, which are ultimately detected by the detector under the influence of an electric field, simulated by Simion 8.1; the lower image is the CAD model of the device, including the laser beam, imaging device electrodes, and detector (reproduced with permission from Ref. [34]).
图 5 (a)装置整体结构; (b)在μm级尺寸的圆柱形区域内电离大量原子, 形成带电粒子群; (c)在511 nm波长下, 87Rb电离能级图; (d)在±Uext = 300 V的情况下, 模拟的电子探测器信号[44]
Fig. 5. (a) Overall structure of the device; (b) ionization of a large number of atoms within a cylindrical region at the micrometer level, forming a charged particle cloud; (c) ionization energy level diagram of 87Rb at a wavelength of 511 nm; (d) simulated electron detector signal with ±Uext = 300 V[44].
图 7 (a) Rb-MOTREMI装置示意图, 红色箭头代表 780 nm 冷却激光, 蓝色箭头代表电离用的飞秒激光; (b) Rb原子电离过程能级图(出自文献[63], 已获得授权)
Fig. 7. (a) Schematic diagram of the Rb-MOTREMI apparatusred arrow represents the 780 nm cooling laser, and the blue arrow represents the femtosecond laser used for ionization (b) level diagram of the ionization process of Rb atoms (reproduced with permission from Ref.[63]).
图 9 (a)只保留一束冷却光n1的装置示意图; (b) Rb原子的激发和电离通道; (c)实验测得的光电子动量分布; (d)理论计算的光电子动量分布; (e)实验提取的光电子角分布; (f)理论提取的光电子角分布(出自文献[72], 已获得授权)
Fig. 9. (a) Schematic diagram of the device retaining only one beam of cooling light n1; (b) excitation and ionization channels of Rb atoms; (c) measured photoelectron momentum distribution; (d) theoretically calculated photoelectron momentum distribution; (e) experimentally extracted photoelectron angular distribution; (f) theoretically extracted photoelectron angular distribution (reproduced with permission from Ref. [72]).
图 12 不同激光强度下获得的铷离子(Rb+)的二维反冲离子动量分布(RIMD)(出自文献[63], 已获得授权) (a) 3×109 W/cm2; (b) 1.5×1011 W/cm2; (c) 3×1011 W/cm2; (d) 1.5×1012 W/cm2; (e) 3×1012 W/cm2; (f) 4.5×1012 W/cm2
Fig. 12. Two-dimensional recoil ion momentum distribution (RIMD) of rubidium ions (Rb+) obtained at different laser intensities (Reproduced with permission from Ref. [63]): (a) 3×109 W/cm2; (b) 1.5×1011 W/cm2; (c) 3×1011 W/cm2; (d) 1.5×1012 W/cm2; (e) 3×1012 W/cm2; (f) 4.5×1012 W/cm2.
图 13 (a) 88Sr的相关能级及其部分激光冷却跃迁的示意图; (b)脉冲激光强度为3 TW/cm2时, 冷却激光功率分别为12 mW(黑线)和22 mW(红线)时的光电子能谱; (c)不同脉冲激光强度时的光电子能谱(出自文献[78], 已获得授权)
Fig. 13. (a) Schematic diagram of The energy levels of 88Sr and some laser cooling transitions; (b) photoelectron energy spectra at a pulse laser intensity of 3 TW/cm2 with cooling laser powers of 12 mW (black line) and 22 mW (red line); (c) photoelectron energy spectra at different pulse laser intensities (reproduced with permission from Ref. [78]).
-
[1] Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48
Google Scholar
[2] Raab E L, Prentiss M, Cable A, Chu S, Pritchard D E 1987 Phys. Rev. Lett. 59 2631
Google Scholar
[3] Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637
Google Scholar
[4] Vassen W, Cohen-Tannoudji C, Leduc M, Boiron D, Westbrook C I, Truscott A, Baldwin K, Birkl G, Cancio P, Trippenbach M 2012 Rev. Mod. Phys. 84 175
Google Scholar
[5] Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477
Google Scholar
[6] Parker D H, Eppink A T J B 1997 J. Chem. Phys. 107 2357
Google Scholar
[7] Eppink A T J B, Parker D H 1999 J. Chem. Phys. 110 832
Google Scholar
[8] Pengel D, Kerbstadt S, Johannmeyer D, Englert L, Bayer T, Wollenhaupt M 2017 Phys. Rev. Lett. 118 053003
Google Scholar
[9] Dörner R, Mergel V, Bräuning H, Achler M, Weber T, Khayyat K, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Azuma Y, Prior M H, Cocke C L, Schmidt-Böcking H 1998 AIP Conf. Proc. 443 334
[10] Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95
Google Scholar
[11] Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463
Google Scholar
[12] Fang F, Zhou W C, Li Y F, Qian D B, Luo C J, Zhao D M, Ma X W, Yang J 2021 Rev. Sci. Instrum. 92 043103
Google Scholar
[13] Gorshkov A V, Manmana S R, Chen G, Ye J, Demler E, Lukin M D, Rey A M 2011 Phys. Rev. Lett. 107 115301
Google Scholar
[14] DeMille D 2002 Phys. Rev. Lett. 88 067901
Google Scholar
[15] DeMille D, Cahn S B, Murphree D, Rahmlow D A, Kozlov M G 2008 Phys. Rev. Lett. 100 023003
Google Scholar
[16] Zelevinsky T, Kotochigova S, Ye J 2008 Phys. Rev. Lett. 100 043201
Google Scholar
[17] Kurz N, Fischer D, Pfeifer T, Dorn A 2021 Rev. Sci. Instrum. 92 123202
Google Scholar
[18] Hu M G, Liu Y, Grimes D D, Lin Y W, Gheorghe A H, Vexiau R, Bouloufa-Maafa N, Dulieu O, Rosenband T, Ni K K 2019 Science 366 1111
Google Scholar
[19] Christianen A, Karman T, Groenenboom G C 2019 Phys. Rev. A 100 032708
Google Scholar
[20] Gao B 2010 Phys. Rev. Lett. 105 263203
Google Scholar
[21] Croft J F E, Makrides C, Li M, Petrov A, Kendrick B K, Balakrishnan N, Kotochigova S 2017 Nat. Commun. 8 15897
Google Scholar
[22] Salzmann W, Mullins T, Eng J, Albert M, Wester R, Weidemüller M, Merli A, Weber S M, Sauer F, Plewicki M, Weise F, Wöste L, Lindinger A 2008 Phys. Rev. Lett. 100 233003
Google Scholar
[23] Eimer F, Weise F, Merli A, Birkner S, Sauer F, Wöste L, Lindinger A, Aǧanoǧlu R, Koch C P, Salzmann W, Mullins T, Götz S, Wester R, Weidemüller M 2009 Eur. Phys. J. D 54 711
Google Scholar
[24] Ghosal S, Doyle R J, Koch C P, Hutson J M 2009 New J. Phys. 11 055011
Google Scholar
[25] Hu M G, Liu Y X, Nichols M A, Zhu L, Quéméner G, Dulieu O, Ni K K 2021 Nat. Chem. 13 435
Google Scholar
[26] Liu Y X, Zhu L, Luke J, Houwman J J A, Babin M C, Hu M G, Ni K K 2024 Science 384 1117
Google Scholar
[27] Saffman M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 202001
Google Scholar
[28] Labuhn H, Barredo D, Ravets S, de Léséleuc S, Macrì T, Lahaye T, Browaeys A 2016 Nature 534 667
Google Scholar
[29] Li W, Mourachko I, Noel M W, Gallagher T F 2003 Phys. Rev. A 67 052502
Google Scholar
[30] Stecker M, Schefzyk H, Fortágh J, Günther A 2017 New J. Phys. 19 043020
Google Scholar
[31] Stecker M, Nold R, Steinert L-M, Grimmel J, Petrosyan D, Fortágh J, Günther A 2020 Phys. Rev. Lett. 125 103602
Google Scholar
[32] Madjarov I S, Covey J P, Shaw A L, Choi J, Kale A, Cooper A, Pichler H, Schkolnik V, Williams J R, Endres M 2020 Nat. Phys. 16 857
Google Scholar
[33] Barredo D, Lienhard V, Scholl P, de Léséleuc S, Boulier T, Browaeys A, Lahaye T 2020 Phys. Rev. Lett. 124 023201
Google Scholar
[34] Ohayon B, Rahangdale H, Parnes E, Perelman G, Heber O, Ron G 2020 Phys. Rev. C 101 035501
Google Scholar
[35] Hong R, Leredde A, Bagdasarova Y, Fléchard X, García A, Knecht A, Müller P, Naviliat-Cuncic O, Pedersen J, Smith E, Sternberg M, Storm D W, Swanson H E, Wauters F, Zumwalt D 2017 Phys. Rev. A 96 053411
Google Scholar
[36] Schulhoff E E, Drake G W F 2015 Phys. Rev. A 92 050701
Google Scholar
[37] Fenker B, Gorelov A, Melconian D, Behr J A, Anholm M, Ashery D, Behling R S, Cohen I, Craiciu I, Gwinner G, McNeil J, Mehlman M, Olchanski K, Shidling P D, Smale S, Warner C L 2018 Phys. Rev. Lett. 120 062502
Google Scholar
[38] Müller P, Bagdasarova Y, Hong R, Leredde A, Bailey K G, Fléchard X, García A, Graner B, Knecht A, Naviliat-Cuncic O, O’Connor T P, Sternberg M G, Storm D W, Swanson H E, Wauters F, Zumwalt D W 2022 Phys. Rev. Lett. 129 182502
Google Scholar
[39] Killian T C, Kulin S, Bergeson S D, Orozco L A, Orzel C, Rolston S L 1999 Phys. Rev. Lett. 83 4776
Google Scholar
[40] Simien C E, Chen Y C, Gupta P, Laha S, Martinez Y N, Mickelson P G, Nagel S B, Killian T C 2004 Phys. Rev. Lett. 92 143001
Google Scholar
[41] Cummings E A, Daily J E, Durfee D S, Bergeson S D 2005 Phys. Rev. Lett. 95 235001
Google Scholar
[42] Mazets I E 1998 Quantum Semiclass. Opt. 10 675
Google Scholar
[43] Guthrie J M, Jiang P, Roberts J L 2024 J. Plasma Phys. 90 935900104
Google Scholar
[44] Kroker T, Großmann M, Sengstock K, Drescher M, Wessels-Staarmann P, Simonet J 2021 Nat. Commun. 12 596
Google Scholar
[45] Killian T C, McQuillen P, O’Neil T M, Castro J 2012 Phys. Plasmas 19 055701
Google Scholar
[46] Lyon M, Bergeson S D, Diaw A, Murillo M S 2015 Phys. Rev. E 91 033101
Google Scholar
[47] Smoll E J, Jana I, Frank J H, Chandler D W 2023 Phys. Rev. A 108 L041301
Google Scholar
[48] Schulz M, Moshammer R, Fischer D, Kollmus H, Madison D H, Jones S, Ullrich J 2003 Nature 422 48
Google Scholar
[49] Fischer D, Globig D, Goullon J, Grieser M, Hubele R, de Jesus V L B, Kelkar A, LaForge A, Lindenblatt H, Misra D, Najjari B, Schneider K, Schulz M, Sell M, Wang X 2012 Phys. Rev. Lett. 109 113202
Google Scholar
[50] van der Poel M, Nielsen C V, Gearba M A, Andersen N 2001 Phys. Rev. Lett. 87 123201
Google Scholar
[51] Turkstra J W, Hoekstra R, Knoop S, Meyer D, Morgenstern R, Olson R E 2001 Phys. Rev. Lett. 87 123202
Google Scholar
[52] Flechard X, Nguyen H, Wells E, Ben-Itzhak I, DePaola B D 2001 Phys. Rev. Lett. 87 123203
Google Scholar
[53] Huang M T, Wong W W, Inokuti M, Southworth S H, Young L 2003 Phys. Rev. Lett. 90 163201
Google Scholar
[54] Knoop S, Morgenstern R, Hoekstra R 2004 Phys. Rev. A 70 050702
Google Scholar
[55] Knoop S, Hasan V G, Morgenstern R, Hoekstra R 2006 Europhys. Lett. 74 992
Google Scholar
[56] Hubele R, LaForge A, Schulz M, Goullon J, Wang X, Najjari B, Ferreira N, Grieser M, de Jesus V L B, Moshammer R, Schneider K, Voitkiv A B, Fischer D 2013 Phys. Rev. Lett. 110 133201
Google Scholar
[57] Śpiewanowski M D, Gulyás L, Horbatsch M, Goullon J, Ferreira N, Hubele R, de Jesus V L B, Lindenblatt H, Schneider K, Schulz M, Schuricke M, Song Z, Zhang S, Fischer D, Kirchner T 2015 J. Phys. : Conf. Ser. 601 012010
Google Scholar
[58] Ghanbari-Adivi E, Fischer D, Ferreira N, Goullon J, Hubele R, LaForge A, Schulz M, Madison D 2017 J. Phys. B: At. Mol. Opt. Phys. 50 215202
Google Scholar
[59] Muller H G 2002 Appl. Phys. B 74 s17
Google Scholar
[60] Yin Y Y, Chen C, Elliott D S, Smith A V 1992 Phys. Rev. Lett. 69 2353
Google Scholar
[61] He P L, Zhang Z H, He F 2020 Phys. Rev. Lett. 124 163201
Google Scholar
[62] Li R Y, Yuan J Y, Wang X C, Hou X Y, Zhang S, Zhu Z Y, Ma Y X, Gao Q, Wang Z Y, Yan T M, Qin C C, Li S, Zhang Y Z, Weidemüller M, Jiang Y H 2019 J. Instrum. 14 P02022
Google Scholar
[63] Ma H Y, Wang X C, Zhang L X, Zou Z H, Yuan J Y, Ma Y X, Lv R J, Shen Z J, Yan T M, Weidemüller M, Ye D F, Jiang Y H 2023 Phys. Rev. A 107 033114
Google Scholar
[64] Zhu G, Schuricke M, Steinmann J, Albrecht J, Ullrich J, Ben-Itzhak I, Zouros T J M, Colgan J, Pindzola M S, Dorn A 2009 Phys. Rev. Lett. 103 103008
Google Scholar
[65] Schuricke M, Bartschat K, Grum-Grzhimailo A N, Zhu G, Steinmann J, Moshammer R, Ullrich J, Dorn A 2013 Phys. Rev. A 88 023427
Google Scholar
[66] Pursehouse J, Murray A J, Wätzel J, Berakdar J 2019 Phys. Rev. Lett. 122 053204
Google Scholar
[67] Acharya B P, Dubey S, Romans K L, De Silva A H N C, Foster K, Russ O, Bartschat K, Douguet N, Fischer D 2022 Phys. Rev. A 106 023113
Google Scholar
[68] Thini F, Romans K L, Acharya B P, de Silva A H N C, Compton K, Foster K, Rischbieter C, Russ O, Sharma S, Dubey S, Fischer D 2020 J. Phys. B: At. Mol. Opt. Phys. 53 095201
Google Scholar
[69] Acharya B P, Dodson M, Dubey S, Romans K L, De Silva A H N C, Foster K, Russ O, Bartschat K, Douguet N, Fischer D 2021 Phys. Rev. A 104 053103
Google Scholar
[70] De Silva A H N C, Atri-Schuller D, Dubey S, Acharya B P, Romans K L, Foster K, Russ O, Compton K, Rischbieter C, Douguet N, Bartschat K, Fischer D 2021 Phys. Rev. Lett. 126 023201
Google Scholar
[71] Mežinska S, Dorn A, Pfeifer T, Bartschat K 2024 Phys. Rev. A 110 013116
Google Scholar
[72] Ma H Y, Zhang L X, Wang X C, Zou Z H, Lv R J, Shen Z J, Chen A H, Weidemüller M, Ueda K, Ye D F, Jiang Y H 2025 Phys. Rev. Lett. 134 123204
Google Scholar
[73] Zhang Y, Wei Q 2020 J. Chem. Phys. 152 204302
Google Scholar
[74] Wessels P, Ruff B, Kroker T, Kazansky A K, Kabachnik N M, Sengstock K, Drescher M, Simonet J 2018 Commun. Phys. 1 32
Google Scholar
[75] Ruan S S, Yu X L, Shen Z J, Wang X C, Liu J, Wu Z X, Tan C Z, Chen P, Yan T M, Ren X G, Weidemüller M, Zhu B, Jiang Y H 2024 Phys. Rev. A 109 023118
Google Scholar
[76] Schuricke M, Zhu G, Steinmann J, Simeonidis K, Ivanov I, Kheifets A, Grum-Grzhimailo A N, Bartschat K, Dorn A, Ullrich J 2011 Phys. Rev. A 83 023413
Google Scholar
[77] Yuan J Y, Liu S W, Wang X C, Shen Z J, Ma Y X, Ma H Y, Meng Q X, Yan T M, Zhang Y Z, Dorn A, Weidemüller M, Ye D F, Jiang Y H 2020 Phys. Rev. A 102 043112
Google Scholar
[78] Ruan S S, Han Y Y, Shen Z J, Yu X L, Fang Y K, Wang X C, Chen A, Liu J, Wu Z X, Ueda K, Weidemüller M, Zhu B, Peng L Y, Jiang Y H 2024 Phys. Rev. A 110 033114
Google Scholar
计量
- 文章访问数: 255
- PDF下载量: 8
- 被引次数: 0