搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子/离子成像技术在冷原子分子及相关领域中的应用

刘洋 沈镇捷 王新成 江玉海

引用本文:
Citation:

电子/离子成像技术在冷原子分子及相关领域中的应用

刘洋, 沈镇捷, 王新成, 江玉海

Electron/ion imaging technology and its applications in cold atoms, molecules, and related fields

LIU Yang, SHEN Zhenjie, WANG Xincheng, JIANG Yuhai
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 随着激光冷却原子分子技术和全空间电子离子成像技术的日益成熟与发展, 运用动量成像技术研究冷原子特征属性和碰撞动力学是一个新兴方向, 并且发展了一系列高分辨的电子离子探测装置, 在冷分子反应、里德伯原子、核衰变、玻色-爱因斯坦凝聚光电离与冷等离子体、冷原子与离子/电子碰撞、冷原子相干控制、强场超快等研究方向取得一系列创新成果. 本文综述了相关领域具有代表性的仪器以及相应的重要成果, 最后对成像技术在冷原子上述各相关研究领域中的应用进行相应的总结, 并展望了未来的发展趋势.
    With the continuous advancement and maturation of laser cooling techniques for atoms and molecules and full-dimensional electron and ion imaging technology, using momentum imaging techniques to investigate the characteristic properties of cold atoms and collision dynamics has emerged as a burgeoning research direction. This progress has driven the development of a series of high-resolution electron and ion detection devices, leading to innovative breakthroughs in fields such as cold molecule reactions, Rydberg atoms, nuclear decay, photoionization of Bose-Einstein condensates (BECs) and cold plasmas, collisions between cold atoms and ions/electrons, coherent control of cold atoms, and strong-field ultrafast physics. This article reviews representative instruments and their corresponding seminal achievements in the following domains: In cold molecular/cold chemical reactions, imaging technology has revealed new insights into reaction mechanisms; For cold Rydberg atom interactions, it demonstrates high-precision quantum state manipulation capabilities, advancing quantum information processing; In nuclear decay research, it provides ultra-sensitive detection methods, deepening understanding of decay processes; For BEC photoionization and cold plasma control, it can precisely monitor and manipulate microscopic processes; In cold atomic collision studies, it reveals new details in collision dynamics, refining collision theories; Regarding coherent control of cold atoms, it achieves accurate quantum state manipulation and interference; In strong-field ultrafast processes, it elucidates complex electron dynamics under intense fields, providing innovative methods for ultrafast laser control. Furthermore, this article summarizes the applications of imaging technologies in the aforementioned research areas involving cold atoms, and provides prospects for future developments in this evolving field.
  • 图 1  (a) 6Li2基态分子的PA方案和多光子电离能级图; (b)扩展了光学偶极阱的MOTREMI装置示意图, 橙色为光学偶极阱的光束与PA光束共束[17]

    Fig. 1.  (a) PA scheme and multiphoton ionization energy level diagram for the ground state of 6Li2 molecules; (b) schematic diagram of the MOTREMI apparatus with an expanded optical dipole trap, where the orange represents the optical dipole trap beam coinciding with the PA beam[17].

    图 2  (a) KRb分子的吸收图像, 色标指示了KRb云的光学深度, 其中CCD为电荷耦合器件; (b)冷分子在VMI中被电离, 经过离子透镜聚焦, 最终被成像, 其中B为磁场; (c)记录的飞行时间谱示例; (d)记录的对应不同离子的速度图成像; (e)冷 KRb 分子双分子反应的能级图(出自文献[18], 已获得授权)

    Fig. 2.  (a) Absorption image of KRb molecules. The color scale indicates the optical depth of the KRb cloud. CCD, charge-coupled device. (b) Cold molecules are ionized in VMI, focused through ion lenses, and finally imaged. B, magnetic field. (c) An example of a recorded time-of-flight spectrum. (d) Recorded velocity map imaging corresponding to different ions. (e) Energetics of the bimolecular reactions of cold KRb molecules (reproduced with permission from Ref.[18]).

    图 3  可运用于冷里德伯原子的高分辨率离子显微镜示意图[30]

    Fig. 3.  Schematic diagram of a high-resolution ion microscope applicable to cold Rydberg atoms[30].

    图 4  上图是Simion 8.1模拟的带电粒子从MOT中出来后, 在电场作用下最终打到探测器上的飞行轨迹;下图是装置的CAD模型, 包括激光束、成像装置电极和探测器(出自文献[34], 已获得授权)

    Fig. 4.  The upper image shows the flight trajectory of charged particles coming out of the MOT, which are ultimately detected by the detector under the influence of an electric field, simulated by Simion 8.1; the lower image is the CAD model of the device, including the laser beam, imaging device electrodes, and detector (reproduced with permission from Ref. [34]).

    图 5  (a)装置整体结构; (b)在μm级尺寸的圆柱形区域内电离大量原子, 形成带电粒子群; (c)在511 nm波长下, 87Rb电离能级图; (d)在±Uext = 300 V的情况下, 模拟的电子探测器信号[44]

    Fig. 5.  (a) Overall structure of the device; (b) ionization of a large number of atoms within a cylindrical region at the micrometer level, forming a charged particle cloud; (c) ionization energy level diagram of 87Rb at a wavelength of 511 nm; (d) simulated electron detector signal with ±Uext = 300 V[44].

    图 6  依托于TSR的MOTREMI结构图(出自文献[49], 已获得授权)

    Fig. 6.  MOTREMI structure diagram based on TSR (reproduced with permission from Ref.[49]).

    图 7  (a) Rb-MOTREMI装置示意图, 红色箭头代表 780 nm 冷却激光, 蓝色箭头代表电离用的飞秒激光; (b) Rb原子电离过程能级图(出自文献[63], 已获得授权)

    Fig. 7.  (a) Schematic diagram of the Rb-MOTREMI apparatusred arrow represents the 780 nm cooling laser, and the blue arrow represents the femtosecond laser used for ionization (b) level diagram of the ionization process of Rb atoms (reproduced with permission from Ref.[63]).

    图 8  双光子量子干涉过程示意图(出自文献[66], 已获得授权)

    Fig. 8.  Schematic diagram of two-photon quantum interference process (reproduced with permission from Ref.[66]).

    图 9  (a)只保留一束冷却光n1的装置示意图; (b) Rb原子的激发和电离通道; (c)实验测得的光电子动量分布; (d)理论计算的光电子动量分布; (e)实验提取的光电子角分布; (f)理论提取的光电子角分布(出自文献[72], 已获得授权)

    Fig. 9.  (a) Schematic diagram of the device retaining only one beam of cooling light n1; (b) excitation and ionization channels of Rb atoms; (c) measured photoelectron momentum distribution; (d) theoretically calculated photoelectron momentum distribution; (e) experimentally extracted photoelectron angular distribution; (f) theoretically extracted photoelectron angular distribution (reproduced with permission from Ref. [72]).

    图 10  (a) Sr-MOTREMI装置示意图; (b)激光冷却途径的相关能级示意图(出自文献[75], 已获得授权)

    Fig. 10.  (a) Schematic diagram of the Sr-MOTREMI apparatus; (b) schematic diagram of the relevant energy levels for the laser cooling pathway (reproduced with permission from Ref.[75]).

    图 11  偏振平面内的, 不同椭偏度(ε)下的多重电离反冲离子动量分布(RIMD)[77] (出自文献[77], 已获得授权)

    Fig. 11.  Multiple ionization recoil ion momentum distributions (RIMD) within the polarization plane for different ellipticities (ε) (reproduced with permission from Ref.[77]).

    图 12  不同激光强度下获得的铷离子(Rb+)的二维反冲离子动量分布(RIMD)(出自文献[63], 已获得授权) (a) 3×109 W/cm2; (b) 1.5×1011 W/cm2; (c) 3×1011 W/cm2; (d) 1.5×1012 W/cm2; (e) 3×1012 W/cm2; (f) 4.5×1012 W/cm2

    Fig. 12.  Two-dimensional recoil ion momentum distribution (RIMD) of rubidium ions (Rb+) obtained at different laser intensities (Reproduced with permission from Ref. [63]): (a) 3×109 W/cm2; (b) 1.5×1011 W/cm2; (c) 3×1011 W/cm2; (d) 1.5×1012 W/cm2; (e) 3×1012 W/cm2; (f) 4.5×1012 W/cm2.

    图 13  (a) 88Sr的相关能级及其部分激光冷却跃迁的示意图; (b)脉冲激光强度为3 TW/cm2时, 冷却激光功率分别为12 mW(黑线)和22 mW(红线)时的光电子能谱; (c)不同脉冲激光强度时的光电子能谱(出自文献[78], 已获得授权)

    Fig. 13.  (a) Schematic diagram of The energy levels of 88Sr and some laser cooling transitions; (b) photoelectron energy spectra at a pulse laser intensity of 3 TW/cm2 with cooling laser powers of 12 mW (black line) and 22 mW (red line); (c) photoelectron energy spectra at different pulse laser intensities (reproduced with permission from Ref. [78]).

  • [1]

    Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48Google Scholar

    [2]

    Raab E L, Prentiss M, Cable A, Chu S, Pritchard D E 1987 Phys. Rev. Lett. 59 2631Google Scholar

    [3]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [4]

    Vassen W, Cohen-Tannoudji C, Leduc M, Boiron D, Westbrook C I, Truscott A, Baldwin K, Birkl G, Cancio P, Trippenbach M 2012 Rev. Mod. Phys. 84 175Google Scholar

    [5]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477Google Scholar

    [6]

    Parker D H, Eppink A T J B 1997 J. Chem. Phys. 107 2357Google Scholar

    [7]

    Eppink A T J B, Parker D H 1999 J. Chem. Phys. 110 832Google Scholar

    [8]

    Pengel D, Kerbstadt S, Johannmeyer D, Englert L, Bayer T, Wollenhaupt M 2017 Phys. Rev. Lett. 118 053003Google Scholar

    [9]

    Dörner R, Mergel V, Bräuning H, Achler M, Weber T, Khayyat K, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Azuma Y, Prior M H, Cocke C L, Schmidt-Böcking H 1998 AIP Conf. Proc. 443 334

    [10]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [11]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [12]

    Fang F, Zhou W C, Li Y F, Qian D B, Luo C J, Zhao D M, Ma X W, Yang J 2021 Rev. Sci. Instrum. 92 043103Google Scholar

    [13]

    Gorshkov A V, Manmana S R, Chen G, Ye J, Demler E, Lukin M D, Rey A M 2011 Phys. Rev. Lett. 107 115301Google Scholar

    [14]

    DeMille D 2002 Phys. Rev. Lett. 88 067901Google Scholar

    [15]

    DeMille D, Cahn S B, Murphree D, Rahmlow D A, Kozlov M G 2008 Phys. Rev. Lett. 100 023003Google Scholar

    [16]

    Zelevinsky T, Kotochigova S, Ye J 2008 Phys. Rev. Lett. 100 043201Google Scholar

    [17]

    Kurz N, Fischer D, Pfeifer T, Dorn A 2021 Rev. Sci. Instrum. 92 123202Google Scholar

    [18]

    Hu M G, Liu Y, Grimes D D, Lin Y W, Gheorghe A H, Vexiau R, Bouloufa-Maafa N, Dulieu O, Rosenband T, Ni K K 2019 Science 366 1111Google Scholar

    [19]

    Christianen A, Karman T, Groenenboom G C 2019 Phys. Rev. A 100 032708Google Scholar

    [20]

    Gao B 2010 Phys. Rev. Lett. 105 263203Google Scholar

    [21]

    Croft J F E, Makrides C, Li M, Petrov A, Kendrick B K, Balakrishnan N, Kotochigova S 2017 Nat. Commun. 8 15897Google Scholar

    [22]

    Salzmann W, Mullins T, Eng J, Albert M, Wester R, Weidemüller M, Merli A, Weber S M, Sauer F, Plewicki M, Weise F, Wöste L, Lindinger A 2008 Phys. Rev. Lett. 100 233003Google Scholar

    [23]

    Eimer F, Weise F, Merli A, Birkner S, Sauer F, Wöste L, Lindinger A, Aǧanoǧlu R, Koch C P, Salzmann W, Mullins T, Götz S, Wester R, Weidemüller M 2009 Eur. Phys. J. D 54 711Google Scholar

    [24]

    Ghosal S, Doyle R J, Koch C P, Hutson J M 2009 New J. Phys. 11 055011Google Scholar

    [25]

    Hu M G, Liu Y X, Nichols M A, Zhu L, Quéméner G, Dulieu O, Ni K K 2021 Nat. Chem. 13 435Google Scholar

    [26]

    Liu Y X, Zhu L, Luke J, Houwman J J A, Babin M C, Hu M G, Ni K K 2024 Science 384 1117Google Scholar

    [27]

    Saffman M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 202001Google Scholar

    [28]

    Labuhn H, Barredo D, Ravets S, de Léséleuc S, Macrì T, Lahaye T, Browaeys A 2016 Nature 534 667Google Scholar

    [29]

    Li W, Mourachko I, Noel M W, Gallagher T F 2003 Phys. Rev. A 67 052502Google Scholar

    [30]

    Stecker M, Schefzyk H, Fortágh J, Günther A 2017 New J. Phys. 19 043020Google Scholar

    [31]

    Stecker M, Nold R, Steinert L-M, Grimmel J, Petrosyan D, Fortágh J, Günther A 2020 Phys. Rev. Lett. 125 103602Google Scholar

    [32]

    Madjarov I S, Covey J P, Shaw A L, Choi J, Kale A, Cooper A, Pichler H, Schkolnik V, Williams J R, Endres M 2020 Nat. Phys. 16 857Google Scholar

    [33]

    Barredo D, Lienhard V, Scholl P, de Léséleuc S, Boulier T, Browaeys A, Lahaye T 2020 Phys. Rev. Lett. 124 023201Google Scholar

    [34]

    Ohayon B, Rahangdale H, Parnes E, Perelman G, Heber O, Ron G 2020 Phys. Rev. C 101 035501Google Scholar

    [35]

    Hong R, Leredde A, Bagdasarova Y, Fléchard X, García A, Knecht A, Müller P, Naviliat-Cuncic O, Pedersen J, Smith E, Sternberg M, Storm D W, Swanson H E, Wauters F, Zumwalt D 2017 Phys. Rev. A 96 053411Google Scholar

    [36]

    Schulhoff E E, Drake G W F 2015 Phys. Rev. A 92 050701Google Scholar

    [37]

    Fenker B, Gorelov A, Melconian D, Behr J A, Anholm M, Ashery D, Behling R S, Cohen I, Craiciu I, Gwinner G, McNeil J, Mehlman M, Olchanski K, Shidling P D, Smale S, Warner C L 2018 Phys. Rev. Lett. 120 062502Google Scholar

    [38]

    Müller P, Bagdasarova Y, Hong R, Leredde A, Bailey K G, Fléchard X, García A, Graner B, Knecht A, Naviliat-Cuncic O, O’Connor T P, Sternberg M G, Storm D W, Swanson H E, Wauters F, Zumwalt D W 2022 Phys. Rev. Lett. 129 182502Google Scholar

    [39]

    Killian T C, Kulin S, Bergeson S D, Orozco L A, Orzel C, Rolston S L 1999 Phys. Rev. Lett. 83 4776Google Scholar

    [40]

    Simien C E, Chen Y C, Gupta P, Laha S, Martinez Y N, Mickelson P G, Nagel S B, Killian T C 2004 Phys. Rev. Lett. 92 143001Google Scholar

    [41]

    Cummings E A, Daily J E, Durfee D S, Bergeson S D 2005 Phys. Rev. Lett. 95 235001Google Scholar

    [42]

    Mazets I E 1998 Quantum Semiclass. Opt. 10 675Google Scholar

    [43]

    Guthrie J M, Jiang P, Roberts J L 2024 J. Plasma Phys. 90 935900104Google Scholar

    [44]

    Kroker T, Großmann M, Sengstock K, Drescher M, Wessels-Staarmann P, Simonet J 2021 Nat. Commun. 12 596Google Scholar

    [45]

    Killian T C, McQuillen P, O’Neil T M, Castro J 2012 Phys. Plasmas 19 055701Google Scholar

    [46]

    Lyon M, Bergeson S D, Diaw A, Murillo M S 2015 Phys. Rev. E 91 033101Google Scholar

    [47]

    Smoll E J, Jana I, Frank J H, Chandler D W 2023 Phys. Rev. A 108 L041301Google Scholar

    [48]

    Schulz M, Moshammer R, Fischer D, Kollmus H, Madison D H, Jones S, Ullrich J 2003 Nature 422 48Google Scholar

    [49]

    Fischer D, Globig D, Goullon J, Grieser M, Hubele R, de Jesus V L B, Kelkar A, LaForge A, Lindenblatt H, Misra D, Najjari B, Schneider K, Schulz M, Sell M, Wang X 2012 Phys. Rev. Lett. 109 113202Google Scholar

    [50]

    van der Poel M, Nielsen C V, Gearba M A, Andersen N 2001 Phys. Rev. Lett. 87 123201Google Scholar

    [51]

    Turkstra J W, Hoekstra R, Knoop S, Meyer D, Morgenstern R, Olson R E 2001 Phys. Rev. Lett. 87 123202Google Scholar

    [52]

    Flechard X, Nguyen H, Wells E, Ben-Itzhak I, DePaola B D 2001 Phys. Rev. Lett. 87 123203Google Scholar

    [53]

    Huang M T, Wong W W, Inokuti M, Southworth S H, Young L 2003 Phys. Rev. Lett. 90 163201Google Scholar

    [54]

    Knoop S, Morgenstern R, Hoekstra R 2004 Phys. Rev. A 70 050702Google Scholar

    [55]

    Knoop S, Hasan V G, Morgenstern R, Hoekstra R 2006 Europhys. Lett. 74 992Google Scholar

    [56]

    Hubele R, LaForge A, Schulz M, Goullon J, Wang X, Najjari B, Ferreira N, Grieser M, de Jesus V L B, Moshammer R, Schneider K, Voitkiv A B, Fischer D 2013 Phys. Rev. Lett. 110 133201Google Scholar

    [57]

    Śpiewanowski M D, Gulyás L, Horbatsch M, Goullon J, Ferreira N, Hubele R, de Jesus V L B, Lindenblatt H, Schneider K, Schulz M, Schuricke M, Song Z, Zhang S, Fischer D, Kirchner T 2015 J. Phys. : Conf. Ser. 601 012010Google Scholar

    [58]

    Ghanbari-Adivi E, Fischer D, Ferreira N, Goullon J, Hubele R, LaForge A, Schulz M, Madison D 2017 J. Phys. B: At. Mol. Opt. Phys. 50 215202Google Scholar

    [59]

    Muller H G 2002 Appl. Phys. B 74 s17Google Scholar

    [60]

    Yin Y Y, Chen C, Elliott D S, Smith A V 1992 Phys. Rev. Lett. 69 2353Google Scholar

    [61]

    He P L, Zhang Z H, He F 2020 Phys. Rev. Lett. 124 163201Google Scholar

    [62]

    Li R Y, Yuan J Y, Wang X C, Hou X Y, Zhang S, Zhu Z Y, Ma Y X, Gao Q, Wang Z Y, Yan T M, Qin C C, Li S, Zhang Y Z, Weidemüller M, Jiang Y H 2019 J. Instrum. 14 P02022Google Scholar

    [63]

    Ma H Y, Wang X C, Zhang L X, Zou Z H, Yuan J Y, Ma Y X, Lv R J, Shen Z J, Yan T M, Weidemüller M, Ye D F, Jiang Y H 2023 Phys. Rev. A 107 033114Google Scholar

    [64]

    Zhu G, Schuricke M, Steinmann J, Albrecht J, Ullrich J, Ben-Itzhak I, Zouros T J M, Colgan J, Pindzola M S, Dorn A 2009 Phys. Rev. Lett. 103 103008Google Scholar

    [65]

    Schuricke M, Bartschat K, Grum-Grzhimailo A N, Zhu G, Steinmann J, Moshammer R, Ullrich J, Dorn A 2013 Phys. Rev. A 88 023427Google Scholar

    [66]

    Pursehouse J, Murray A J, Wätzel J, Berakdar J 2019 Phys. Rev. Lett. 122 053204Google Scholar

    [67]

    Acharya B P, Dubey S, Romans K L, De Silva A H N C, Foster K, Russ O, Bartschat K, Douguet N, Fischer D 2022 Phys. Rev. A 106 023113Google Scholar

    [68]

    Thini F, Romans K L, Acharya B P, de Silva A H N C, Compton K, Foster K, Rischbieter C, Russ O, Sharma S, Dubey S, Fischer D 2020 J. Phys. B: At. Mol. Opt. Phys. 53 095201Google Scholar

    [69]

    Acharya B P, Dodson M, Dubey S, Romans K L, De Silva A H N C, Foster K, Russ O, Bartschat K, Douguet N, Fischer D 2021 Phys. Rev. A 104 053103Google Scholar

    [70]

    De Silva A H N C, Atri-Schuller D, Dubey S, Acharya B P, Romans K L, Foster K, Russ O, Compton K, Rischbieter C, Douguet N, Bartschat K, Fischer D 2021 Phys. Rev. Lett. 126 023201Google Scholar

    [71]

    Mežinska S, Dorn A, Pfeifer T, Bartschat K 2024 Phys. Rev. A 110 013116Google Scholar

    [72]

    Ma H Y, Zhang L X, Wang X C, Zou Z H, Lv R J, Shen Z J, Chen A H, Weidemüller M, Ueda K, Ye D F, Jiang Y H 2025 Phys. Rev. Lett. 134 123204Google Scholar

    [73]

    Zhang Y, Wei Q 2020 J. Chem. Phys. 152 204302Google Scholar

    [74]

    Wessels P, Ruff B, Kroker T, Kazansky A K, Kabachnik N M, Sengstock K, Drescher M, Simonet J 2018 Commun. Phys. 1 32Google Scholar

    [75]

    Ruan S S, Yu X L, Shen Z J, Wang X C, Liu J, Wu Z X, Tan C Z, Chen P, Yan T M, Ren X G, Weidemüller M, Zhu B, Jiang Y H 2024 Phys. Rev. A 109 023118Google Scholar

    [76]

    Schuricke M, Zhu G, Steinmann J, Simeonidis K, Ivanov I, Kheifets A, Grum-Grzhimailo A N, Bartschat K, Dorn A, Ullrich J 2011 Phys. Rev. A 83 023413Google Scholar

    [77]

    Yuan J Y, Liu S W, Wang X C, Shen Z J, Ma Y X, Ma H Y, Meng Q X, Yan T M, Zhang Y Z, Dorn A, Weidemüller M, Ye D F, Jiang Y H 2020 Phys. Rev. A 102 043112Google Scholar

    [78]

    Ruan S S, Han Y Y, Shen Z J, Yu X L, Fang Y K, Wang X C, Chen A, Liu J, Wu Z X, Ueda K, Weidemüller M, Zhu B, Peng L Y, Jiang Y H 2024 Phys. Rev. A 110 033114Google Scholar

  • [1] 翟晨杰, 王晶, 周俊杰, 王毓, 唐晓明, 周寅, 张灿, 李瑞, 舒晴, 王凯楠, 王双全, 金子骍, 华珊, 孙羿人, 王正豪, 马志祥, 蔡铭豪, 王肖隆, 吴彬, 林强. 基于量子重力仪的航空绝对重力测量. 物理学报, doi: 10.7498/aps.74.20241621
    [2] 成永军, 董猛, 孙雯君, 吴翔民, 张亚飞, 贾文杰, 冯村, 张瑞芳. 基于7Li冷原子操控的超高真空测量. 物理学报, doi: 10.7498/aps.73.20241215
    [3] 刘岩鑫, 王志辉, 管世军, 王勤霞, 张鹏飞, 李刚, 张天才. 光学阱中Λ增强型灰色黏团冷却辅助原子装载. 物理学报, doi: 10.7498/aps.73.20240182
    [4] 翟荟. 基于冷原子的非平衡量子多体物理研究. 物理学报, doi: 10.7498/aps.72.20231375
    [5] 张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军. 基于磁光阱中6Li冷原子的真空度测量. 物理学报, doi: 10.7498/aps.71.20212204
    [6] 王凯楠, 程冰, 周寅, 陈佩军, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于1560 nm外腔式激光器的拉曼光锁相技术. 物理学报, doi: 10.7498/aps.70.20210432
    [7] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量. 物理学报, doi: 10.7498/aps.70.20201522
    [8] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量. 物理学报, doi: 10.7498/aps.69.20191765
    [9] 何天琛, 李吉. 利用Kapitza-Dirac脉冲操控简谐势阱中冷原子测量重力加速度. 物理学报, doi: 10.7498/aps.68.20190749
    [10] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量. 物理学报, doi: 10.7498/aps.67.20181121
    [11] 魏春华, 颜树华, 杨俊, 王国超, 贾爱爱, 罗玉昆, 胡青青. 基于87Rb原子的大失谐光晶格的设计与操控. 物理学报, doi: 10.7498/aps.66.010701
    [12] 袁园, 芦小刚, 白金海, 李建军, 吴令安, 傅盘铭, 王如泉, 左战春. 多模1064nm光纤激光器实现一维远失谐光晶格. 物理学报, doi: 10.7498/aps.65.043701
    [13] 田晓, 王叶兵, 卢本全, 刘辉, 徐琴芳, 任洁, 尹默娟, 孔德欢, 常宏, 张首刚. 锶玻色子的“魔术”波长光晶格装载实验研究. 物理学报, doi: 10.7498/aps.64.130601
    [14] 王强, 叶冲. 人工规范势下三阱玻色-爱因斯坦凝聚系统的动力学研究. 物理学报, doi: 10.7498/aps.61.230304
    [15] 熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生. 对抛式冷原子陀螺仪中原子运动轨迹的控制. 物理学报, doi: 10.7498/aps.60.113201
    [16] 邱 英, 何 军, 王彦华, 王 婧, 张天才, 王军民. 三维光学晶格中铯原子的装载与冷却. 物理学报, doi: 10.7498/aps.57.6227
    [17] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间. 物理学报, doi: 10.7498/aps.55.6606
    [18] 江开军, 李 可, 王 谨, 詹明生. Rb原子磁光阱中囚禁原子数目与实验参数的依赖关系. 物理学报, doi: 10.7498/aps.55.125
    [19] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量. 物理学报, doi: 10.7498/aps.54.5104
    [20] 罗有华, 黄整, 王育竹. 冷原子在静电势阱中的量子力学效应. 物理学报, doi: 10.7498/aps.51.1706
计量
  • 文章访问数:  255
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-31
  • 修回日期:  2025-05-31
  • 上网日期:  2025-06-06

/

返回文章
返回