搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁光阱中6Li冷原子的真空度测量

张苏钊 孙雯君 董猛 武海斌 李睿 张雪姣 张静怡 成永军

引用本文:
Citation:

基于磁光阱中6Li冷原子的真空度测量

张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军

Vacuum pressure measurement based on 6Li cold atoms in a magneto-optical trap

Zhang Su-Zhao, Sun Wen-Jun, Dong Meng, Wu Hai-Bin, Li Rui, Zhang Xue-Jiao, Zhang Jing-Yi, Cheng Yong-Jun
PDF
HTML
导出引用
  • 2018年第26届国际计量大会召开后, 伴随着国际单位制的重新定义, 真空量值加速了其量子化进程. 在超高/极高真空测量领域, 可基于囚禁在磁光阱中的冷原子与背景气体碰撞的损失率以及损失率系数反演真空度. 本文从磁光阱中冷原子真空测量的基本原理出发, 基于量子散射理论小角近似和冲激近似计算了6Li冷原子与背景气体碰撞的损失率系数, 并利用光缔合法测定了在一定磁场和光场条件下的磁光阱阱深, 基于两级磁光阱装置通过拟合冷原子数的衰减曲线精确提取出了碰撞损失率. 最后在1 × 10–8—5 × 10–6 Pa压强范围内将真空反演量值与电离计示数对比, 分析了制约测量精度提高的因素并提出了改进措施.
    Ultra-high vacuum measurement and extremely high vacuum (UHV/XHV) measurement play an important role in high-tech fields such as deep space exploration, particle accelerators, and nanoscience; with the continuous extension of the lower limit of measurement, especially when it reaches the order of 10–10 Pa, higher requirements are placed on the accuracy of the measurement. At present, in the field of UHV/XHV measurement, ionization gauges based on the principle of neutral gas ionization are commonly applied to the vacuum measurement. However, traditional ionization vacuum gauges during use can create electronic excitation desorption effects, soft X-rays, and the effect of hot cathode outgassing, thereby affecting the accuracy of measurement and limiting the lower limit of measurement. Compared with the traditional measurement technology, this method uses the relationship between the loss rate and pressure caused by the collision of cold atoms trapped in the trap depth with the background gas to calculate the gas density and inversely calculate the vacuum pressure. Based on the intrinsic quantum mechanical properties of cold atom collisions, this method is expected to be developed into a new vacuum traceability standard. In this paper, based on the small-angle approximation and impulse approximation under the quantum scattering theory, the loss rate coefficient of the collision of 6Li cold atoms with background gas molecules is calculated. According to the ideal gas equation, the pressure inversion formula is obtained. The collision loss rate is extracted by accurately fitting the loss curve of the cold atom. In order to improve the accuracy of vacuum inversion and reduce the influence of quantum diffractive collision on loss rate measurement, the trap depth under the conditions of a certain cooling laser intensity, detuning, and magnetic field gradient is determined by the photoassociation method. Finally, in a range of 1 × 10–8–5 × 10–6 Pa, the inverted pressure value is compared with the measured value of the ionization meter, proving that this method has good accuracy and reliability in the inversion of vacuum pressure. At present, the main factor restricting the improvement of accuracy is the influence of the collision between the excited atoms in the magneto-optical trap and the background gas on the loss rate measurement. In the future, with the proportion of excited atoms and the excited state C6 coefficient to be precisely determined, the uncertainty of vacuum pressure measurement can be further reduced.
      通信作者: 成永军, chyj750418@163.com
    • 基金项目: 国家自然科学基金(批准号: 61901203)资助的课题
      Corresponding author: Cheng Yong-Jun, chyj750418@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61901203)
    [1]

    Gibney E 2017 Nature 551 18Google Scholar

    [2]

    范栋, 习振华, 贾文杰, 成永军, 李得天 2021 物理学报 70 040602Google Scholar

    Fan D, Xi Z H, Jia W J, Cheng Y J, Li D T 2021 Acta Phys. Sin. 70 040602Google Scholar

    [3]

    Scherschligt J, Fedchak J A, Ahmed Z, Barker D S, Douglass K, Eckel S, Hanson E, Hendricks J, Klimov N, Purdy T, Ricker J, Singh R, Stone J 2018 J. Vac. Sci. Technol., A 36 040801Google Scholar

    [4]

    Calcatelli A 2013 Measurement 46 1029Google Scholar

    [5]

    李得天, 成永军, 习振华 2018 宇航计测技术 38 1Google Scholar

    Li D T, Cheng Y J, Xi Z H 2018 J. Astronaut. Metrol. Meas. 38 1Google Scholar

    [6]

    Raab E L, Prentiss M, Cable A, Chu S, Pritchard D E 1987 Phys. Rev. Lett. 59 2631Google Scholar

    [7]

    Prentiss M, Cable A, Bjorkholm J E, Chu S, Raab E L 1988 Opt. Lett. 13 452Google Scholar

    [8]

    Bjorkholm J E 1988 Phys. Rev. A 38 1599Google Scholar

    [9]

    Arpornthip T, Sackett C A, Hughes K J 2012 Phys. Rev. A 85 033420Google Scholar

    [10]

    Yuan J P, Ji Z H, Zhao Y T, Chang X F, Xiao L T, Jia S T 2013 Appl. Opt. 52 6195Google Scholar

    [11]

    Xiang J F, Cheng H N, Peng X K, Wang X W, Ren W, Ji J W, Liu K K, Zhao J B, Li L, Qu Q Z, Li T, Wang B, Ye M F, Zhao X, Yao Y Y, Lü D S, Liu L 2018 Chin. Phys. B 27 073701Google Scholar

    [12]

    Scherschligt J, Fedchak J A, Barker D S, Eckel S, Klimov N, Makrides C, Tiesinga E 2017 Metrologia 54 125Google Scholar

    [13]

    Eckel S, Barker D S, Fedchak J A, Klimov N N, Norrgard E, Scherschligt J, Makrides C, Tiesinga E 2018 Metrologia 55 182Google Scholar

    [14]

    Barker D S, Klimov N N, Tiesinga E, Fedchak J A, Scherschligt J, Eckel S 2021 Measurement: Sensors 18 100229

    [15]

    Makhalov V B, Martiyanov K A, Turlapov A V 2016 Metrologia 53 1287Google Scholar

    [16]

    Makhalov V B, Turlapov A V 2017 Quantum Electron. 47 431Google Scholar

    [17]

    Booth J L, Shen P R, Krems R V, Madison K W 2019 New J. Phys. 21 102001Google Scholar

    [18]

    Shen P R, Madison K W, Booth J L 2020 Metrologia 57 025015Google Scholar

    [19]

    Shen P R, Madison K W, Booth J L 2021 Metrologia 58 022101Google Scholar

    [20]

    Makrides C, Barker D S, Fedchak J A, Scherschligt J, Eckel S, Tiesinga E 2019 Phys. Rev. A 99 042704Google Scholar

    [21]

    Bali S, O’Hara K M, Gehm M E, Granade S R, Thomas J E 1999 Phys. Rev. A 60 R29Google Scholar

    [22]

    Zhu C, Dalgarno A, Derevianko 2002 Phys. Rev. A 65 034708Google Scholar

    [23]

    武跃龙, 李睿, 芮扬, 姜海峰, 武海斌 2018 物理学报 67 163201Google Scholar

    Wu Y L, Li R, Rui Y, Jiang H F, Wu H B 2018 Acta Phys. Sin. 67 163201Google Scholar

    [24]

    Tiecke T G, Gensemer S D, Ludewig A, Walraven J T M 2009 Phys. Rev. A 80 013409Google Scholar

    [25]

    Hoffmann D, Bali S, Walker T 1996 Phys. Rev. A 54 1030Google Scholar

    [26]

    Dongen J V, Zhu C, Clement D, Dufour G, Booth J L, Madison K W 2011 Phys. Rev. A 84 022708Google Scholar

    [27]

    Hong S S, Shin Y H, Kim J T 2008 Measurement 41 1026Google Scholar

    [28]

    李得天 2003 真空与低温 9 85Google Scholar

    Li D T 2003 Vac. Cryogenics 9 85Google Scholar

  • 图 1  测量系统示意图

    Fig. 1.  Schematic diagram of measurement apparatus.

    图 2  6Li原子的能级结构及光路设计示意图

    Fig. 2.  Schematic diagram of energy level and optical path design of 6Li.

    图 3  t = 0时刻关闭磁光阱装载后冷原子数的衰减曲线及拟合线

    Fig. 3.  Decay curve of the number of cold atoms and corresponding fitting curve after switching off magneto optical trap (MOT) loading dynamics at time t = 0.

    图 4  在3种不同催化激光失谐量ΔK随占空比d的变化及线性拟合

    Fig. 4.  Variation of K with duty factor d and the corresponding linear fitting under three different detunings Δ of catalysis laser.

    图 5  与催化激光诱导的损失率成正比的${{\beta _{{\text{cat}}}}{{\bar n}_{\text{s}}}} / $$ {({{{\varGamma}}_1} + \beta {{\bar n}_{\text{s}}})}$随催化激光失谐量Δ的变化 (a) 对应磁光阱冷却光失谐量Δ3Dc = –12 MHz, 总光功率7.36 mW/cm2; (b) 对应磁光阱冷却光失谐量Δ3Dc = –12 MHz, 总光功率20.9 mW/cm2

    Fig. 5.  Quantity $ {{{\beta _{{\text{cat}}}}{{\bar n}_{\text{s}}}} / {({{{\varGamma}}_1} + \beta {{\bar n}_{\text{s}}})}} $, proportional to the photoassociation induced loss rate, measured as a function of the catalysis laser detuning, Δ. The data of (a) correspond to a MOT with a cooling laser detuning of Δ3Dc = –12 MHz and a total pump laser intensity of 7.36 mW/cm2. The data of (b) correspond to a MOT with a cooling laser detuning of Δ3Dc = –12 MHz and a total pump laser intensity of 20.9 mW/cm2.

    图 6  (a) 电离计测量的H2压力值Pgauge与冷原子反演真空度Patom对比图; (b) 电离计测量的N2压力值Pgauge与冷原子反演真空度Patom对比图

    Fig. 6.  (a) Comparison of the H2 pressure measured by ionization gauge and by trapped cold atoms; (b) comparison of the N2 pressure measured by ionization gauge and by trapped cold atoms.

  • [1]

    Gibney E 2017 Nature 551 18Google Scholar

    [2]

    范栋, 习振华, 贾文杰, 成永军, 李得天 2021 物理学报 70 040602Google Scholar

    Fan D, Xi Z H, Jia W J, Cheng Y J, Li D T 2021 Acta Phys. Sin. 70 040602Google Scholar

    [3]

    Scherschligt J, Fedchak J A, Ahmed Z, Barker D S, Douglass K, Eckel S, Hanson E, Hendricks J, Klimov N, Purdy T, Ricker J, Singh R, Stone J 2018 J. Vac. Sci. Technol., A 36 040801Google Scholar

    [4]

    Calcatelli A 2013 Measurement 46 1029Google Scholar

    [5]

    李得天, 成永军, 习振华 2018 宇航计测技术 38 1Google Scholar

    Li D T, Cheng Y J, Xi Z H 2018 J. Astronaut. Metrol. Meas. 38 1Google Scholar

    [6]

    Raab E L, Prentiss M, Cable A, Chu S, Pritchard D E 1987 Phys. Rev. Lett. 59 2631Google Scholar

    [7]

    Prentiss M, Cable A, Bjorkholm J E, Chu S, Raab E L 1988 Opt. Lett. 13 452Google Scholar

    [8]

    Bjorkholm J E 1988 Phys. Rev. A 38 1599Google Scholar

    [9]

    Arpornthip T, Sackett C A, Hughes K J 2012 Phys. Rev. A 85 033420Google Scholar

    [10]

    Yuan J P, Ji Z H, Zhao Y T, Chang X F, Xiao L T, Jia S T 2013 Appl. Opt. 52 6195Google Scholar

    [11]

    Xiang J F, Cheng H N, Peng X K, Wang X W, Ren W, Ji J W, Liu K K, Zhao J B, Li L, Qu Q Z, Li T, Wang B, Ye M F, Zhao X, Yao Y Y, Lü D S, Liu L 2018 Chin. Phys. B 27 073701Google Scholar

    [12]

    Scherschligt J, Fedchak J A, Barker D S, Eckel S, Klimov N, Makrides C, Tiesinga E 2017 Metrologia 54 125Google Scholar

    [13]

    Eckel S, Barker D S, Fedchak J A, Klimov N N, Norrgard E, Scherschligt J, Makrides C, Tiesinga E 2018 Metrologia 55 182Google Scholar

    [14]

    Barker D S, Klimov N N, Tiesinga E, Fedchak J A, Scherschligt J, Eckel S 2021 Measurement: Sensors 18 100229

    [15]

    Makhalov V B, Martiyanov K A, Turlapov A V 2016 Metrologia 53 1287Google Scholar

    [16]

    Makhalov V B, Turlapov A V 2017 Quantum Electron. 47 431Google Scholar

    [17]

    Booth J L, Shen P R, Krems R V, Madison K W 2019 New J. Phys. 21 102001Google Scholar

    [18]

    Shen P R, Madison K W, Booth J L 2020 Metrologia 57 025015Google Scholar

    [19]

    Shen P R, Madison K W, Booth J L 2021 Metrologia 58 022101Google Scholar

    [20]

    Makrides C, Barker D S, Fedchak J A, Scherschligt J, Eckel S, Tiesinga E 2019 Phys. Rev. A 99 042704Google Scholar

    [21]

    Bali S, O’Hara K M, Gehm M E, Granade S R, Thomas J E 1999 Phys. Rev. A 60 R29Google Scholar

    [22]

    Zhu C, Dalgarno A, Derevianko 2002 Phys. Rev. A 65 034708Google Scholar

    [23]

    武跃龙, 李睿, 芮扬, 姜海峰, 武海斌 2018 物理学报 67 163201Google Scholar

    Wu Y L, Li R, Rui Y, Jiang H F, Wu H B 2018 Acta Phys. Sin. 67 163201Google Scholar

    [24]

    Tiecke T G, Gensemer S D, Ludewig A, Walraven J T M 2009 Phys. Rev. A 80 013409Google Scholar

    [25]

    Hoffmann D, Bali S, Walker T 1996 Phys. Rev. A 54 1030Google Scholar

    [26]

    Dongen J V, Zhu C, Clement D, Dufour G, Booth J L, Madison K W 2011 Phys. Rev. A 84 022708Google Scholar

    [27]

    Hong S S, Shin Y H, Kim J T 2008 Measurement 41 1026Google Scholar

    [28]

    李得天 2003 真空与低温 9 85Google Scholar

    Li D T 2003 Vac. Cryogenics 9 85Google Scholar

  • [1] 刘岩鑫, 王志辉, 管世军, 王勤霞, 张鹏飞, 李刚, 张天才. 光学阱中Λ增强型灰色黏团冷却辅助原子装载. 物理学报, 2024, 73(11): 113701. doi: 10.7498/aps.73.20240182
    [2] 成永军, 董猛, 孙雯君, 吴翔民, 张亚飞, 贾文杰, 冯村, 张瑞芳. 基于7Li冷原子操控的超高真空测量. 物理学报, 2024, 73(22): 220601. doi: 10.7498/aps.73.20241215
    [3] 王云飞, 周颖, 王英, 颜辉, 朱诗亮. 量子存储性能及应用分析. 物理学报, 2023, 72(20): 206701. doi: 10.7498/aps.72.20231203
    [4] 翟荟. 基于冷原子的非平衡量子多体物理研究. 物理学报, 2023, 72(23): 230701. doi: 10.7498/aps.72.20231375
    [5] 罗雨晨, 李晓鹏. 相互作用费米子的量子模拟. 物理学报, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [6] 王凯楠, 程冰, 周寅, 陈佩军, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于1560 nm外腔式激光器的拉曼光锁相技术. 物理学报, 2021, 70(17): 170303. doi: 10.7498/aps.70.20210432
    [7] 李沫, 陈飞良, 罗小嘉, 杨丽君, 张健. 原子芯片的基本原理、关键技术及研究进展. 物理学报, 2021, 70(2): 023701. doi: 10.7498/aps.70.20201561
    [8] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量. 物理学报, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [9] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量. 物理学报, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [10] 何天琛, 李吉. 利用Kapitza-Dirac脉冲操控简谐势阱中冷原子测量重力加速度. 物理学报, 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [11] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量. 物理学报, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [12] 魏春华, 颜树华, 杨俊, 王国超, 贾爱爱, 罗玉昆, 胡青青. 基于87Rb原子的大失谐光晶格的设计与操控. 物理学报, 2017, 66(1): 010701. doi: 10.7498/aps.66.010701
    [13] 袁园, 芦小刚, 白金海, 李建军, 吴令安, 傅盘铭, 王如泉, 左战春. 多模1064nm光纤激光器实现一维远失谐光晶格. 物理学报, 2016, 65(4): 043701. doi: 10.7498/aps.65.043701
    [14] 田晓, 王叶兵, 卢本全, 刘辉, 徐琴芳, 任洁, 尹默娟, 孔德欢, 常宏, 张首刚. 锶玻色子的“魔术”波长光晶格装载实验研究. 物理学报, 2015, 64(13): 130601. doi: 10.7498/aps.64.130601
    [15] 熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生. 对抛式冷原子陀螺仪中原子运动轨迹的控制. 物理学报, 2011, 60(11): 113201. doi: 10.7498/aps.60.113201
    [16] 邱 英, 何 军, 王彦华, 王 婧, 张天才, 王军民. 三维光学晶格中铯原子的装载与冷却. 物理学报, 2008, 57(10): 6227-6232. doi: 10.7498/aps.57.6227
    [17] 江开军, 李 可, 王 谨, 詹明生. Rb原子磁光阱中囚禁原子数目与实验参数的依赖关系. 物理学报, 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [18] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间. 物理学报, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [19] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量. 物理学报, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] 罗有华, 黄整, 王育竹. 冷原子在静电势阱中的量子力学效应. 物理学报, 2002, 51(8): 1706-1710. doi: 10.7498/aps.51.1706
计量
  • 文章访问数:  5801
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2022-01-16
  • 上网日期:  2022-02-02
  • 刊出日期:  2022-05-05

/

返回文章
返回