搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高峰值功率Nd:YLF/BaWO4正交偏振双波长拉曼激光器

樊莉 向柯赟 沈君 朱骏

引用本文:
Citation:

高峰值功率Nd:YLF/BaWO4正交偏振双波长拉曼激光器

樊莉, 向柯赟, 沈君, 朱骏

High-peak-power orthogonally-polarized dual-wavelength Nd:YLF/BaWO4 Raman laser

Fan Li, Xiang Ke-Yun, Shen Jun, Zhu Jun
PDF
HTML
导出引用
  • 正交偏振双波长激光在精密测量、太赫兹产生、差分雷达、光谱分析等领域有着重要的应用前景. Nd:YLF晶体具有两个发射截面相近的正交偏振发射峰, 加上优异的储能性能和热性能, 是适合产生正交偏振双波长激光的优良增益介质. 本文采用低掺杂浓度的Nd:YLF晶体作为激光增益介质产生1047 nm和1053 nm的正交偏振双波长基频光, 通过适当增大抽运光斑降低Nd:YLF晶体热裂的风险, 利用BaWO4晶体的腔内拉曼频移, 实现了高峰值功率的1159.9 nm和1167.1 nm正交偏振双波长脉冲拉曼激光输出. 在40 W的总入射抽运功率和5 kHz的脉冲重复频率下, 获得平均输出功率为2.67 W的双波长拉曼激光输出, 相应的光光转换效率为6.7%. 1159.9 nm和1167.1 nm拉曼激光输出功率分别为1.31 W和1.36 W, 最窄脉冲宽度分别为1.50 ns和1.53 ns, 对应的峰值功率分别高达174.7 kW和177.8 kW. 结果表明, 降低掺杂浓度和增大抽运光斑可有效解决Nd:YLF晶体在高抽运功率下发生热裂的问题, Nd:YLF/BaWO4是实现正交偏振双波长拉曼激光输出的一种较有前途的晶体组合.
    Orthogonally-polarized dual-wavelength laser has significant practical applications in various fields, such as precision metrology, terahertz radiation generation, differential radar, spectral analysis. The Nd:YLF crystal has two orthogonally-polarized emission peaks with comparable emission cross sections, high-energy storage capability and relatively weak thermal lens effect. Owing to these properties, it has been recognized as a suitable gain medium for generating orthogonally-polarized dual-wavelength laser. In this paper, the Nd:YLF crystal with low doping concentration is employed as a laser gain medium to produce 1047 nm and 1053 nm dual-wavelength fundamental lasers with orthogonal polarizations, and the risk of thermal cracking of Nd:YLF crystal is reduced by appropriately increasing the pump spots. Using the intracavity Raman frequency shift in BaWO4 crystal, orthogonally-polarized dual-wavelength Raman lasers at 1159.9 nm and 1167.1 nm are achieved to have high peak power. Under the total incident pump power of 40 W and a pulse repetition rate of 5 kHz, the maximum dual-wavelength Raman output power is obtained to be 2.67 W. The corresponding total optical conversion efficiency is 6.7%. For 1159.9 nm and 1167.1 nm Raman laser, their maximum average output power values are 1.31 W and 1.36 W, respectively. Their narrowest pulse widths are 1.50 ns and 1.53 ns, and the corresponding peak power values are as high as 174.7 kW and 177.8 kW, respectively. The results show that the problem of thermal cracking of Nd:YLF crystal at high pump power can be solved by reducing the doping concentration and increasing the pump spot. The Nd:YLF/BaWO4 is a promising crystal combination for realizing orthogonally-polarized dual-wavelength Raman laser.
      通信作者: 樊莉, fanli@yzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774301)资助的课题
      Corresponding author: Fan Li, fanli@yzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774301)
    [1]

    Wu B, Jiang P P, Yang D Z, Chen T, Kong J, Shen Y H 2009 Opt. Express 17 6004Google Scholar

    [2]

    Zhao P, Ragam S, Ding Y J, Zotova I B 2010 Opt. Lett. 35 3979Google Scholar

    [3]

    Zhao P, Ragam S, Ding Y J, Zotova I B 2011 Opt. Lett. 36 4818Google Scholar

    [4]

    Zuo Z Y, Dai S B, Zhu S Q, Yin H, Li Z, Chen Z Q 2018 Opt. Lett. 43 4578Google Scholar

    [5]

    Tu Z H, Dai S B, Zhu S Q, Yin H, Li Z, Ji E C, Chen Z Q 2019 Opt. Express 27 32949Google Scholar

    [6]

    Huang Y P, Cho C Y, Huang Y J, Chen Y F 2012 Opt. Express 20 5644Google Scholar

    [7]

    Lv Y F, Xia J, Fu X H, Zhang A F, Liu H L, Zhang J 2014 J. Opt. Soc. Am. B 31 898Google Scholar

    [8]

    Lv Y F, Xia J, Zhang J, Fu X H, Liu H L 2014 Appl. Opt. 53 5141Google Scholar

    [9]

    Sun G C, Lee Y D, Zao Y D, Xu L J, Wang J B, Chen G B, Lu J 2013 Laser Phys. 23 045001Google Scholar

    [10]

    Lin B, Xiao K, Zhang Q L, Zhang D X, Feng B H, Li Q N, He J L 2016 Appl. Opt. 55 1844Google Scholar

    [11]

    Lv Y F, Zhang J, Xia J, Liu H L 2014 IEEE Photonics Technol. Lett. 26 656Google Scholar

    [12]

    Xu B, Wang Y, Lin Z, Cui S W, Cheng Y J, Xu H Y, Cai Z P 2016 Appl. Opt. 55 42Google Scholar

    [13]

    Li H Q, Zhang R, Tang Y L, Wang S W, Xu J Q, Zhang P X, Zhao C C, Hang Y, Zhang S Y 2013 Opt. Lett. 38 4425Google Scholar

    [14]

    Chen H B, Huang Y S, Li B X, Liao W B, Zhang G, Lin Z B 2015 Opt. Lett. 40 4659Google Scholar

    [15]

    Brenier A 2011 Laser Phys. Lett. 8 520Google Scholar

    [16]

    Xu J L, Ji Y X, Wang Y Q, You Z Y, Wang H Y, Tu C Y 2014 Opt. Express 22 6577Google Scholar

    [17]

    You Z Y, Zhu Z J, Sun Y J, Huang Y S, Lee C K, Wang Y, Li J F, Tu C Y, Lin Z B 2017 Opt. Mater. Express 7 2760Google Scholar

    [18]

    Zhang X L, Zhang S, Wang C Y, Li L, Zhao J Q, Cui J H 2013 Opt. Express 21 22699Google Scholar

    [19]

    Murray J T, Austin W L, Powell R C 1999 Opt. Mater. 11 353Google Scholar

    [20]

    Huang H T, Shen D Y, He J L 2012 Opt. Express 20 27838Google Scholar

    [21]

    Liu Y, Liu Z J, Cong Z H, Li Y F, Xia J B, Lu Q M, Zhang S S, Men S J 2014 Opt. Express 22 21879Google Scholar

    [22]

    Sun Y J, Lee C K, Zhu Z J, Wang Y Q, Xia H P, Wang X H, Xu J L, You Z Y, Tu C Y 2016 Opt. Mater. Express 6 3550Google Scholar

    [23]

    Zhang Z L, Liu Q, Nie M M, Ji E C, Gong M L 2015 Appl. Phys. B 120 689Google Scholar

    [24]

    Ryan J R, Beach R 1992 J. Opt. Soc. Am. B 9 1883Google Scholar

    [25]

    Fan L, Fan Y X, Li Y Q, Zhang H J, Wang Q, Wang J, Wang H T 2009 Opt. Lett. 34 1687Google Scholar

    [26]

    Sheng Q, Lee A, Spence D, Pask H 2018 Opt. Express 26 32145Google Scholar

    [27]

    Sheng Q, Li R, Lee A J, Spence D J, Pask H M 2019 Opt. Express 27 8540Google Scholar

    [28]

    Peng X Y, Xu L, Asundi A 2005 Appl. Opt. 44 800Google Scholar

    [29]

    Hsiao J Q, Huang Y J, Lee C C, Yu Y T, Tsou C H, Liang H C, Chen Y F 2021 Opt. Lett. 46 2063Google Scholar

    [30]

    Pollnau M, Hardman P J, Kern M A, Clarkson W A, Hanna D C 1998 Phys. Rev. B 58 16076Google Scholar

  • 图 1  主动调Q正交偏振双波长拉曼激光器装置图

    Fig. 1.  Schematic of actively Q-switched orthogonally polarized dual-wavelength Raman laser.

    图 2  不同曲率半径输出镜下(a) 1160 nm和(b) 1167 nm拉曼激光的平均输出功率随抽运功率的变化

    Fig. 2.  Average output power at (a) 1160 nm and (b) 1167 nm versus the incident pump power for output couplers with different radii of curvature.

    图 3  不同曲率半径输出镜下, 腔内不同位置处基频和拉曼激光光斑半径

    Fig. 3.  Cavity mode radius of fundamental and Raman laser at different positions inside the cavity for output couplers with different radii of curvature.

    图 4  抽运光斑直径为1200和800 μm时, 1160 nm和1167 nm拉曼激光的(a)平均输出功率和(b)脉冲宽度随抽运功率的变化

    Fig. 4.  (a) Average output powers and (b) pulse widths of 1160 nm and 1167 nm Raman lasers versus the incident pump power with pump spot diameter of 1200 and 800 μm.

    图 5  重复频率为5 kHz以及40 W抽运功率下, 双波长拉曼激光的(a)脉冲列图和(b)脉冲波形图

    Fig. 5.  (a) Actively Q-switched laser pulse train and (b) single pulse profiles of the dual-wavelength Raman laser pulses at the full pump power of 40 W and PRF of 5 kHz.

    图 6  在40 W 抽运功率下的双波长拉曼激光输出光谱图, 插图为激光二维光束强度分布图和放大的斯托克斯光谱

    Fig. 6.  Optical spectrum of the dual-wavelength Raman laser at the full pump power of 40 W (the insets are the two-dimensional beam intensity profiles and zoomed Stokes spectrum).

    表 1  Nd:YLF/BaWO4正交偏振双波长拉曼激光输出性能对比

    Table 1.  Comparison of performances of orthogonally polarized Nd:YLF/BaWO4 Raman lasers.

    增益介质输出拉曼
    波长/nm
    注入功率/W重复频率/kHz输出功率拉曼转换
    效率
    脉宽/ns峰值功率
    /kW
    文献
    Nd:YLF
    BaWO4
    1159.9
    1167.1
    20
    20
    51.31 W
    1.36 W
    6.6%
    6.8%
    1.50
    1.53
    174.7
    177.8
    This work
    Nd:YLF
    BaWO4
    1159.4
    1166.8
    5.73
    4.85
    6423 mW
    332 mW
    7.4%
    6.8%
    12
    9.3
    5.88
    5.95
    [21]
    下载: 导出CSV
  • [1]

    Wu B, Jiang P P, Yang D Z, Chen T, Kong J, Shen Y H 2009 Opt. Express 17 6004Google Scholar

    [2]

    Zhao P, Ragam S, Ding Y J, Zotova I B 2010 Opt. Lett. 35 3979Google Scholar

    [3]

    Zhao P, Ragam S, Ding Y J, Zotova I B 2011 Opt. Lett. 36 4818Google Scholar

    [4]

    Zuo Z Y, Dai S B, Zhu S Q, Yin H, Li Z, Chen Z Q 2018 Opt. Lett. 43 4578Google Scholar

    [5]

    Tu Z H, Dai S B, Zhu S Q, Yin H, Li Z, Ji E C, Chen Z Q 2019 Opt. Express 27 32949Google Scholar

    [6]

    Huang Y P, Cho C Y, Huang Y J, Chen Y F 2012 Opt. Express 20 5644Google Scholar

    [7]

    Lv Y F, Xia J, Fu X H, Zhang A F, Liu H L, Zhang J 2014 J. Opt. Soc. Am. B 31 898Google Scholar

    [8]

    Lv Y F, Xia J, Zhang J, Fu X H, Liu H L 2014 Appl. Opt. 53 5141Google Scholar

    [9]

    Sun G C, Lee Y D, Zao Y D, Xu L J, Wang J B, Chen G B, Lu J 2013 Laser Phys. 23 045001Google Scholar

    [10]

    Lin B, Xiao K, Zhang Q L, Zhang D X, Feng B H, Li Q N, He J L 2016 Appl. Opt. 55 1844Google Scholar

    [11]

    Lv Y F, Zhang J, Xia J, Liu H L 2014 IEEE Photonics Technol. Lett. 26 656Google Scholar

    [12]

    Xu B, Wang Y, Lin Z, Cui S W, Cheng Y J, Xu H Y, Cai Z P 2016 Appl. Opt. 55 42Google Scholar

    [13]

    Li H Q, Zhang R, Tang Y L, Wang S W, Xu J Q, Zhang P X, Zhao C C, Hang Y, Zhang S Y 2013 Opt. Lett. 38 4425Google Scholar

    [14]

    Chen H B, Huang Y S, Li B X, Liao W B, Zhang G, Lin Z B 2015 Opt. Lett. 40 4659Google Scholar

    [15]

    Brenier A 2011 Laser Phys. Lett. 8 520Google Scholar

    [16]

    Xu J L, Ji Y X, Wang Y Q, You Z Y, Wang H Y, Tu C Y 2014 Opt. Express 22 6577Google Scholar

    [17]

    You Z Y, Zhu Z J, Sun Y J, Huang Y S, Lee C K, Wang Y, Li J F, Tu C Y, Lin Z B 2017 Opt. Mater. Express 7 2760Google Scholar

    [18]

    Zhang X L, Zhang S, Wang C Y, Li L, Zhao J Q, Cui J H 2013 Opt. Express 21 22699Google Scholar

    [19]

    Murray J T, Austin W L, Powell R C 1999 Opt. Mater. 11 353Google Scholar

    [20]

    Huang H T, Shen D Y, He J L 2012 Opt. Express 20 27838Google Scholar

    [21]

    Liu Y, Liu Z J, Cong Z H, Li Y F, Xia J B, Lu Q M, Zhang S S, Men S J 2014 Opt. Express 22 21879Google Scholar

    [22]

    Sun Y J, Lee C K, Zhu Z J, Wang Y Q, Xia H P, Wang X H, Xu J L, You Z Y, Tu C Y 2016 Opt. Mater. Express 6 3550Google Scholar

    [23]

    Zhang Z L, Liu Q, Nie M M, Ji E C, Gong M L 2015 Appl. Phys. B 120 689Google Scholar

    [24]

    Ryan J R, Beach R 1992 J. Opt. Soc. Am. B 9 1883Google Scholar

    [25]

    Fan L, Fan Y X, Li Y Q, Zhang H J, Wang Q, Wang J, Wang H T 2009 Opt. Lett. 34 1687Google Scholar

    [26]

    Sheng Q, Lee A, Spence D, Pask H 2018 Opt. Express 26 32145Google Scholar

    [27]

    Sheng Q, Li R, Lee A J, Spence D J, Pask H M 2019 Opt. Express 27 8540Google Scholar

    [28]

    Peng X Y, Xu L, Asundi A 2005 Appl. Opt. 44 800Google Scholar

    [29]

    Hsiao J Q, Huang Y J, Lee C C, Yu Y T, Tsou C H, Liang H C, Chen Y F 2021 Opt. Lett. 46 2063Google Scholar

    [30]

    Pollnau M, Hardman P J, Kern M A, Clarkson W A, Hanna D C 1998 Phys. Rev. B 58 16076Google Scholar

  • [1] 段延敏, 周玉明, 孙瑛璐, 李志红, 张耀举, 王鸿雁, 朱海永. 声光调Q Nd:YVO4晶体级联拉曼倍频窄脉宽657 nm激光器. 物理学报, 2021, 70(22): 224209. doi: 10.7498/aps.70.20210695
    [2] 刘鸿志, 王宇恒, 郑浩, 赵云峰, 于永吉, 金光勇. 双端泵浦Nd3+掺杂MgO:LiNbO3正交偏振双波长连续激光调控. 物理学报, 2021, 70(18): 184203. doi: 10.7498/aps.70.20210449
    [3] 孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强. 基于氧化石墨烯的瓦级调Q锁模Tm: LuAG激光器. 物理学报, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [4] 吕孝源, 朱若碧, 宋浩, 苏宁, 陈高. 基于正交偏振场的双光学控制方案获得孤立阿秒脉冲产生. 物理学报, 2019, 68(21): 214201. doi: 10.7498/aps.68.20190847
    [5] 程秋虎, 王石语, 过振, 蔡德芳, 李兵斌. 超高斯光束抽运调Q固体激光器仿真模型研究. 物理学报, 2017, 66(18): 180204. doi: 10.7498/aps.66.180204
    [6] 张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉. 波长锁定激光二极管共振泵浦Nd:YVO4晶体连续波自拉曼激光器的设计与研究. 物理学报, 2017, 66(19): 194203. doi: 10.7498/aps.66.194203
    [7] 刘杨, 刘兆军, 丛振华, 徐晓东, 徐军, 门少杰, 夏金宝, 张飒飒. Nd:LuYAG混晶1123 nm被动调Q激光器. 物理学报, 2015, 64(17): 174203. doi: 10.7498/aps.64.174203
    [8] 乔亮, 羊富贵, 武永华, 柯友刚, 夏忠朝. Tm,Ho双掺调Q激光系统理论与实验研究. 物理学报, 2014, 63(21): 214205. doi: 10.7498/aps.63.214205
    [9] 张进, 周新星, 罗海陆, 文双春. 涡旋光束在反射中的正交偏振特性研究. 物理学报, 2013, 62(17): 174202. doi: 10.7498/aps.62.174202
    [10] 陈旭东, 石锦卫, 刘娟, 刘宝, 许艳霞, 史久林, 刘大禾. 同轴正交偏振双脉冲序列受激布里渊散射抽运放大的实现方法. 物理学报, 2010, 59(2): 1047-1051. doi: 10.7498/aps.59.1047
    [11] 张玉萍, 张会云, 钟凯, 王鹏, 李喜福, 姚建铨. 高效高稳定高光束质量声光调Q绿光激光器的研究. 物理学报, 2009, 58(5): 3193-3197. doi: 10.7498/aps.58.3193
    [12] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究. 物理学报, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [13] 林燕凤, 张戈, 朱海永, 黄呈辉, 李爱红, 魏勇. Nd:YAG调Q激光器双波长振荡机理分析. 物理学报, 2009, 58(6): 3909-3914. doi: 10.7498/aps.58.3909
    [14] 赵宏明, 楼祺洪, 周 军, 董景星, 魏运荣, 王之江. 不同腔结构下的声光调Q双包层光纤激光器特性研究. 物理学报, 2008, 57(6): 3525-3530. doi: 10.7498/aps.57.3525
    [15] 张秋琳, 苏红新, 孙 江, 郭庆林, 付广生. LD抽运被动调Q固体激光器的脉冲稳定性. 物理学报, 2007, 56(10): 5818-5820. doi: 10.7498/aps.56.5818
    [16] 薄 勇, 耿爱丛, 毕 勇, 孙志培, 杨晓东, 李瑞宁, 崔大复, 许祖彦. 高平均功率调Q准连续Nd:YAG激光器. 物理学报, 2006, 55(3): 1171-1175. doi: 10.7498/aps.55.1171
    [17] 张新陆, 王月珠. 能量传递上转换对Tm,Ho:YLF调Q激光器上能级寿命的影响. 物理学报, 2006, 55(3): 1160-1164. doi: 10.7498/aps.55.1160
    [18] 柳强, 巩马理, 闫平, 贾维溥, 崔瑞祯, 王东生. GaAs被动调Q兼输出耦合Nd∶YVO4激光特性研究. 物理学报, 2002, 51(12): 2756-2760. doi: 10.7498/aps.51.2756
    [19] 林文雄, 沈鸿元. 一种新型结构的Nd∶YAlO3双波长调Q脉冲激光器. 物理学报, 1999, 48(4): 667-672. doi: 10.7498/aps.48.667
    [20] 李福利. 快开关调Q的四能级激光器的动力学. 物理学报, 1978, 27(2): 137-145. doi: 10.7498/aps.27.137
计量
  • 文章访问数:  3195
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-16
  • 修回日期:  2022-01-06
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-05-05

/

返回文章
返回