搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氧化石墨烯的瓦级调Q锁模Tm: LuAG激光器

孙锐 陈晨 令维军 张亚妮 康翠萍 许强

引用本文:
Citation:

基于氧化石墨烯的瓦级调Q锁模Tm: LuAG激光器

孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强

Watt-level passively Q-switched mode-locked Tm: LuAG laser with graphene oxide saturable absorber

Sun Rui, Chen Chen, Ling Wei-Jun, Zhang Ya-Ni, Kang Cui-Ping, Xu Qiang
PDF
HTML
导出引用
  • 在Tm: LuAG全固态激光器中实现了以氧化石墨烯可饱和吸收体为锁模启动元件的瓦级被动调Q锁模运转. 本实验装置以可调谐掺钛蓝宝石激光器作为泵浦源, 测得Tm: LuAG固态激光器出光阈值最低为325 mW, 当吸收抽运功率达到3420 mW时, 进入稳定的调Q锁模运行状态. 当抽运功率达到8.1 W时, 对应的最大输出功率为1740 mW, 中心波长为2023 nm, 重复频率为104.2 MHz, 最大单脉冲能量为16.7 nJ, 调制深度接近100%.
    A watt-level passive Q-switched mode-locked operation in Tm: LuAG all-solid-state laser is realized for the first time by using graphene oxide (GO) saturable absorber as a mode-locked starting element. The laser is pumped by a wavelength tunable Ti: sapphire laser operating at 794.2 nm. In this experiment, the maximum continuous-wave (CW) output power of 1440 mW, 2030 mW and 2610 mW are obtained by 1.5%, 3% and 5% output coupled (OC) mirrors respectively, in which the corresponding slope efficiencies are 22.3%, 32.6% and 40.6%, respectively. When the GO is inserted into the cavity, the laser bump threshold is further increased due to more intracavity loss. With a 1.5% OC mirror, the absorbed pump threshold is as low as 325 mW, the maximum output power is 787 mW, and the corresponding slope efficiency is 12.5%. With a 3% OC mirror, the absorbed bump threshold is 351 mW, the maximum output power is 1740 mW, and corresponding slope efficiency is 30.3%. With a 5% OC mirror, the QML operation is not realized due to the increase of intracavity loss. Although the laser pump threshold power of 3% OC mirror differs from that of 1.5% OC mirror by 26 mW, the output power is more than twice higher than that of 1.5% OC mirror. For these reasons, we use a 3% OC mirror in our experiment. In this case, a stable QML operation with a threshold of 3420 mW is obtained. When the pump power reaches 8.1 W, the corresponding maximum output power is 1740 mW, the central wavelength is 2023 nm, the repetition frequency is 104.2 MHz, the maximum single pulse energy is 16.7 nJ, and the modulation depth is close to 100%. According to the symmetrical shape of the mode locked pulse and considering the definition of rise time, we can assume that the duration of the pulse is approximately 1.25 times the pulse rise time. So the width of the mode locked pulse is estimated at about 923.8 ps. The results show that the GO is a promising high power saturable absorber in 2 μm wavelength for the QML solid-state laser. In the next stage, we will increase the pump power, optimize the quality of the GO material, and compensate for the dispersion in the cavity. It is expected to achieve a CW mode-locked operation and femtosecond pulse output.
      通信作者: 令维军, wjlingts@sina.com ; 张亚妮, yanizhang1@163.com
    • 基金项目: 国家自然科学基金(批准号: 61564008, 11774257, 11647008, 11504416)、陕西省国际科技合作与交流项目(批准号: 2018KW-016)和宝鸡市重大科技专项计划项目(批准号: 2015CXNL-1-3)资助的课题.
      Corresponding author: Ling Wei-Jun, wjlingts@sina.com ; Zhang Ya-Ni, yanizhang1@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61564008, 11774257, 11647008, 11504416), the International Science & Technology Cooperation and Exchanges Project of Shaanxi, China (Grant No. 2018KW-016), the Key Sciences and Technology Project of Baoji City, China (Grant No. 2015CXNL-1-3), and the Key Research Project of Shaanxi University of Science & Technology, China (Grant No. 2018WLXY-01-01).
    [1]

    Kaufmann R, Hibst R 1996 Lasers Surg. Med. 19 324Google Scholar

    [2]

    Sorokin E, Sorokina I T, Mandon J, Guelachvili G, Picqué N 2007 Opt. Express 15 16540Google Scholar

    [3]

    Li J, Luo H, Wang L, Liu Y, Yan Z, Zhou K, Zhang L, Turistsyn S K 2015 Sci. Rep. 5 10770Google Scholar

    [4]

    Yao B Q, Shen Y J, Duan X M, Dai T Y, Ju Y L, Wang Y Z 2014 Opt. Lett. 39 6589Google Scholar

    [5]

    Feng T, Yang K, Zhao J, Zhao S, Qiao W, Li T, Dekorsy T, He J, Zheng L, Wang Q 2015 Opt. Express 23 11819Google Scholar

    [6]

    令维军, 夏涛, 董忠, 左银艳, 李可, 刘勍, 路飞平, 赵小龙, 王勇刚 2008 物理学报 67 014201

    Ling W J, Xia T, Dong Z, Zuo Y Y, Li K, Liu Q, Lu F P, Zhao X L, Wang Y G 2008 Acta Phys. Sin. 67 014201

    [7]

    Cho W B, Schmidt A, Yim J H, Choi S Y, Lee S, Rotermund F, Griebner U, Steinmeyer G, Petrov V, Mateos X, Pujol M C, Carvajal J J, Aguiló M, Díaz F 2009 Opt. Express 17 11007Google Scholar

    [8]

    Zou X, Leng Y, Li Y, Feng Y, Zhang P, Hang Y, Wang J 2015 Chin. Opt. Lett. 13 081405

    [9]

    Kong L C, Xie G Q, Yuan P, Qian L J, Wang S X, Yu H H, Zhang H J 2015 Photon. Res. 3 A47Google Scholar

    [10]

    Li L, Jiang S, Wang Y, Wang X, Duan L, Mao D, Li Z, Man B, Si J 2015 Opt. Express 23 28698Google Scholar

    [11]

    Xu S C, Man B Y, Jiang S Z, Chen C S, Yang C, Liu M, Huang Q J, Zhang C, Bi D, Meng X, Liu F Y 2014 Opt. Laser Technol. 56 393Google Scholar

    [12]

    Ma J, Xie G Q, Lü P, Gao W L, Yuan P, Qian L J, Yu H H, Zhang H J, Wang J Y, Tang D Y 2012 Opt. Lett. 37 2085Google Scholar

    [13]

    Ma J, Xie G, Zhang J, Yuan P, Tang D, Qian L 2015 IEEE J. Sel. Top. Quantum Electron. 21 50Google Scholar

    [14]

    Zhu Y, Murali S, Cai W, Li X, Ji W S, Potts J R, Ruoff R S 2010 Adv. Mater. (Weinheim, Ger. ) 22 3906Google Scholar

    [15]

    Zhang L, Wang Y G, Yu H J, Zhang S B, Hou W, Lin X C, Li J M 2011 Laser Phys. 21 2072Google Scholar

    [16]

    Wang Y, Qu Z, Liu J, Tsang Y H 2012 J. Lightwave Technol. 30 3259Google Scholar

    [17]

    Liu J, Wang Y G, Qu Z S, Zheng L H, Su L B, Xu J 2012 Laser Phys. Lett. 9 15Google Scholar

    [18]

    Wu C, Ju Y, Li Y, Wang Z, Wang Y 2008 Chin. Opt. Lett. 6 415Google Scholar

    [19]

    周鼎 2017 博士学位论文 (上海: 上海大学)

    Zhou D 2007 Ph. D. Dissertation (Shanghai: Shanghai University) (in Chinese)

    [20]

    Wu C T, Ju Y L, Wang Q, Wang Z G, Chen F, Zhou R L, Wang Y Z 2009 Laser Phys. Lett. 6 707Google Scholar

    [21]

    Chen F, Wu C T, Ju Y L, Yao B Q, Wang Y Z 2012 Laser Phys. 22 371Google Scholar

    [22]

    Zeng H, Liu G B, Dai J, Yan Y, Zhu B, He R, Xie L, Xu S, Chen X, Yao W, Cui X 2013 Sci. Rep. 3 1608Google Scholar

    [23]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [24]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [25]

    Li Z Y, Zhang B T, Yang J F, He J L, Huang H T, Zuo C H, Xu J L, Yang X Q, Zhao S 2010 Laser Phys. 20 761Google Scholar

  • 图 1  氧化石墨烯可饱和吸收体 (a)拉曼光谱图; (b)扫描电镜图; (c)实物图

    Fig. 1.  (a) Raman spectrum of GO-SAs; (b) SEM of GO-SAs; (c) photograph of GO-SAs.

    图 2  Tm: LuAG被动锁模激光实验装置图

    Fig. 2.  The experimental setup of Tm: LuAG passively Q-switched mode locked laser.

    图 3  (a)晶体吸收变化图; (b)连续光和锁模输出功率随吸收抽运功率的变化

    Fig. 3.  (a) The change of crystal absorbed power; (b) Relation between average output power and absorbed pump power under continuous-wave and mode-locked operation.

    图 4  锁模脉冲信号的输出光谱

    Fig. 4.  The output spectrum of the mode locking signal pulse.

    图 5  扫描时间为1 ms, 100 μs, 2 μs和10 ns的锁模脉冲序列

    Fig. 5.  Mode-locked pulse trains recorded in 1 ms, 100 μs, 2 μs and 10 ns per division (div) timescales.

  • [1]

    Kaufmann R, Hibst R 1996 Lasers Surg. Med. 19 324Google Scholar

    [2]

    Sorokin E, Sorokina I T, Mandon J, Guelachvili G, Picqué N 2007 Opt. Express 15 16540Google Scholar

    [3]

    Li J, Luo H, Wang L, Liu Y, Yan Z, Zhou K, Zhang L, Turistsyn S K 2015 Sci. Rep. 5 10770Google Scholar

    [4]

    Yao B Q, Shen Y J, Duan X M, Dai T Y, Ju Y L, Wang Y Z 2014 Opt. Lett. 39 6589Google Scholar

    [5]

    Feng T, Yang K, Zhao J, Zhao S, Qiao W, Li T, Dekorsy T, He J, Zheng L, Wang Q 2015 Opt. Express 23 11819Google Scholar

    [6]

    令维军, 夏涛, 董忠, 左银艳, 李可, 刘勍, 路飞平, 赵小龙, 王勇刚 2008 物理学报 67 014201

    Ling W J, Xia T, Dong Z, Zuo Y Y, Li K, Liu Q, Lu F P, Zhao X L, Wang Y G 2008 Acta Phys. Sin. 67 014201

    [7]

    Cho W B, Schmidt A, Yim J H, Choi S Y, Lee S, Rotermund F, Griebner U, Steinmeyer G, Petrov V, Mateos X, Pujol M C, Carvajal J J, Aguiló M, Díaz F 2009 Opt. Express 17 11007Google Scholar

    [8]

    Zou X, Leng Y, Li Y, Feng Y, Zhang P, Hang Y, Wang J 2015 Chin. Opt. Lett. 13 081405

    [9]

    Kong L C, Xie G Q, Yuan P, Qian L J, Wang S X, Yu H H, Zhang H J 2015 Photon. Res. 3 A47Google Scholar

    [10]

    Li L, Jiang S, Wang Y, Wang X, Duan L, Mao D, Li Z, Man B, Si J 2015 Opt. Express 23 28698Google Scholar

    [11]

    Xu S C, Man B Y, Jiang S Z, Chen C S, Yang C, Liu M, Huang Q J, Zhang C, Bi D, Meng X, Liu F Y 2014 Opt. Laser Technol. 56 393Google Scholar

    [12]

    Ma J, Xie G Q, Lü P, Gao W L, Yuan P, Qian L J, Yu H H, Zhang H J, Wang J Y, Tang D Y 2012 Opt. Lett. 37 2085Google Scholar

    [13]

    Ma J, Xie G, Zhang J, Yuan P, Tang D, Qian L 2015 IEEE J. Sel. Top. Quantum Electron. 21 50Google Scholar

    [14]

    Zhu Y, Murali S, Cai W, Li X, Ji W S, Potts J R, Ruoff R S 2010 Adv. Mater. (Weinheim, Ger. ) 22 3906Google Scholar

    [15]

    Zhang L, Wang Y G, Yu H J, Zhang S B, Hou W, Lin X C, Li J M 2011 Laser Phys. 21 2072Google Scholar

    [16]

    Wang Y, Qu Z, Liu J, Tsang Y H 2012 J. Lightwave Technol. 30 3259Google Scholar

    [17]

    Liu J, Wang Y G, Qu Z S, Zheng L H, Su L B, Xu J 2012 Laser Phys. Lett. 9 15Google Scholar

    [18]

    Wu C, Ju Y, Li Y, Wang Z, Wang Y 2008 Chin. Opt. Lett. 6 415Google Scholar

    [19]

    周鼎 2017 博士学位论文 (上海: 上海大学)

    Zhou D 2007 Ph. D. Dissertation (Shanghai: Shanghai University) (in Chinese)

    [20]

    Wu C T, Ju Y L, Wang Q, Wang Z G, Chen F, Zhou R L, Wang Y Z 2009 Laser Phys. Lett. 6 707Google Scholar

    [21]

    Chen F, Wu C T, Ju Y L, Yao B Q, Wang Y Z 2012 Laser Phys. 22 371Google Scholar

    [22]

    Zeng H, Liu G B, Dai J, Yan Y, Zhu B, He R, Xie L, Xu S, Chen X, Yao W, Cui X 2013 Sci. Rep. 3 1608Google Scholar

    [23]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [24]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [25]

    Li Z Y, Zhang B T, Yang J F, He J L, Huang H T, Zuo C H, Xu J L, Yang X Q, Zhao S 2010 Laser Phys. 20 761Google Scholar

  • [1] 奚小明, 杨保来, 王鹏, 张汉伟, 王小林, 韩凯, 王泽锋, 许晓军, 陈金宝. 万瓦级光纤激光双色镜合成技术. 物理学报, 2023, 72(18): 184203. doi: 10.7498/aps.72.20230657
    [2] 李醒龙, 赵浩宇, 武文杰, 蒋卫峰, 郑加金, 张祖兴, 余柯涵, 韦玮. 氧化石墨烯修饰倾斜光纤光栅10–12级重金属离子传感. 物理学报, 2022, 71(5): 050702. doi: 10.7498/aps.71.20211315
    [3] 陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究. 物理学报, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [4] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [5] 莫佳伟, 裘银伟, 伊若冰, 吴俊, 王志坤, 赵丽华. 基于温度的亚稳态氧化石墨烯性能. 物理学报, 2019, 68(15): 156501. doi: 10.7498/aps.68.20190670
    [6] 乔志星, 秦成兵, 贺文君, 弓亚妮, 张晓荣, 张国峰, 陈瑞云, 高岩, 肖连团, 贾锁堂. 通过光致还原调制氧化石墨烯寿命并用于微纳图形制备. 物理学报, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [7] 王泽晖, 肖起榕, 王雪娇, 衣永青, 庞璐, 潘蓉, 黄昱升, 田佳丁, 李丹, 闫平, 巩马理. 国产光纤实现同带抽运3000 W激光输出. 物理学报, 2018, 67(2): 024205. doi: 10.7498/aps.67.20171676
    [8] 令维军, 夏涛, 董忠, 左银艳, 李可, 刘勍, 路飞平, 赵小龙, 王勇刚. 基于单壁碳纳米管调Q锁模低阈值Tm,Ho:LiLuF4激光器. 物理学报, 2018, 67(1): 014201. doi: 10.7498/aps.67.20171748
    [9] 程丽君, 杨苏辉, 赵长明, 张海洋. 高功率宽带射频调制连续激光源. 物理学报, 2018, 67(3): 034203. doi: 10.7498/aps.67.20172017
    [10] 陈浩, 彭同江, 刘波, 孙红娟, 雷德会. 还原温度对氧化石墨烯结构及室温下H2敏感性能的影响. 物理学报, 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [11] 令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚. 基于WS2可饱和吸收体的调Q锁模Tm,Ho:LLF激光器. 物理学报, 2017, 66(11): 114207. doi: 10.7498/aps.66.114207
    [12] 曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛. 氧化石墨烯基功能纸的简易制备和染料吸附性能. 物理学报, 2016, 65(14): 146802. doi: 10.7498/aps.65.146802
    [13] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [14] 袁忠才, 时家明. 高功率微波与等离子体相互作用理论和数值研究. 物理学报, 2014, 63(9): 095202. doi: 10.7498/aps.63.095202
    [15] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光. 氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究. 物理学报, 2014, 63(8): 084202. doi: 10.7498/aps.63.084202
    [16] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [17] 高岩, 陈瑞云, 吴瑞祥, 张国锋, 肖连团, 贾锁堂. 电场诱导氧化石墨烯的极化动力学特性研究. 物理学报, 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [18] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究. 物理学报, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [19] 赵振宇, 段开椋, 王建明, 赵 卫, 王屹山. 高功率光子晶体光纤放大器实验研究. 物理学报, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [20] 李惠青, 张 杰, 崔大复, 许祖彦, 宁永强, 晏长岭, 秦 莉, 刘 云, 王立军, 曹健林. 高功率垂直腔面发射半导体激光器优化设计研究. 物理学报, 2004, 53(9): 2986-2990. doi: 10.7498/aps.53.2986
计量
  • 文章访问数:  9018
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-19
  • 修回日期:  2019-03-15
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回