搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国产光纤实现同带抽运3000 W激光输出

王泽晖 肖起榕 王雪娇 衣永青 庞璐 潘蓉 黄昱升 田佳丁 李丹 闫平 巩马理

引用本文:
Citation:

国产光纤实现同带抽运3000 W激光输出

王泽晖, 肖起榕, 王雪娇, 衣永青, 庞璐, 潘蓉, 黄昱升, 田佳丁, 李丹, 闫平, 巩马理

3000 W tandem pumped all-fiber laser based on domestic fiber

Wang Ze-Hui, Xiao Qi-Rong, Wang Xue-Jiao, Yi Yong-Qing, Pang Lu, Pan Rong, Huang Yu-Sheng, Tian Jia-Ding, Li Dan, Yan Ping, Gong Ma-Li
PDF
导出引用
  • 同带抽运是目前实现高功率光纤激光器的有效手段.本文基于同带抽运方式,以国产25/250 m掺镱双包层光纤为增益光纤,构建了全光纤化的主控振荡器功率放大器.实验中采用的国产光纤是中国电子科技集团公司第四十六研究所采用化学气相沉积结合气相-液相复合掺杂工艺制备的,其Yb3+离子的分布更均匀,吸收截面更大,吸收系数更高.实验中,在种子光功率为67.8 W、抽运总功率为3511 W的条件下,实现了3079 W的激光输出,斜效率为85.9%,光束质量M2约为2.14,3 dB带宽为1.4 nm,这是目前基于国产光纤同带抽运方式实现的最高功率.理论和实验结果表明国产光纤制备技术不断成熟,已经具备承受高功率输出的能力.继续提高抽运功率,优化增益光纤长度,改良散热方式,国产光纤有望实现更高功率的激光输出.
    In recent years, high power fiber laser has received great attention, leading to wide applications in numerous fields such as industry, biology and relevant research. Nevertheless, the output power of typical diode pumped fiber laser is limited by the thermal effect and brightness of pump source. Owing to the low quantum deficit, the tandem pumping employing ytterbium-doped fiber lasers (YDFLs) as the pumping source can effectively reduce the thermal issue and achieve high power output. With the much lower absorption coefficient at 1018 nm than at 976 nm, longer gain fiber is necessary in tandem pumped configuration to sufficiently absorb pump light, which in turn induces a more severe nonlinear effect such as the stimulated Raman scattering, bringing in more challenges in laser configuration design. In this paper, we demonstrate an all-fiber laser under master oscillator power amplifier configuration based on tandem pumping with domestic gain fiber produced by China Electronics Technology Group Corporation No. 46 Research Institute. The diameters of the core and inner cladding of the Yb3+ doped double cladding fiber are 25 m and 250 m, respectively. The modified chemical vapor deposition method with gas-solution co-doping method is adopted so that the fiber has a more uniform distribution of Yb ions, larger absorption cross section and higher absorption coefficient (0.41 dB/m@1018 nm). In the amplifier stage, a 40-m-long gain fiber is pumped by fourteen 1018 nm fiber lasers with a maximum total output power of 3511 W. A 67.8 W 1080 nm seed is amplified to 3079 W with a corresponding slope efficiency of 85.9%. The beam quality factor M2 is measured to be 2.14. In addition, no stimulated Raman scattering is found in output spectrum and the 3 dB band width of output laser is measured to be 1.4 nm. To the best of our knowledge, this marks the highest result ever reported for tandem pumping based on domestic gain fiber. Taking stimulated Raman scattering into account, the rate equations are built to calculate the properties and power evolution in the fiber amplifier. The numerical results are in good agreement with the experiment results. Besides, based on heat conduction equation, heat power density in the fiber core is analyzed, showing that the tandem pumping has great advantages in heat management and a huge potential to reach a higher power compared with the method of direct pumping. The theoretical and experimental results show that with ever-maturing fiber manufacturing technology, domestic fiber is capable of withstanding laser power as high as 3 kilowatts. Meanwhile, domestic fiber may achieve a higher output power by increasing the pump power, optimizing the gain fiber length and improving the cooling condition.
      通信作者: 肖起榕, xiaoqirong08@gmail.com
    • 基金项目: 国家自然科学基金(批准号:61675114)和清华大学自主科研项目(批准号:20151080709)资助的课题.
      Corresponding author: Xiao Qi-Rong, xiaoqirong08@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61675114) and the Initiative Scientific Research Program of Tsinghua University (THU), China (Grant No. 20151080709).
    [1]

    Jeong Y, Sahu J K, Payne D N, Nilsson J 2004 Opt. Express 12 6088

    [2]

    Fang Q, Shi W, Qin Y G, Meng X J, Zhang Q H 2014 Laser Phys. Lett. 11 105102

    [3]

    Beier F, Hupel C, Nold J, Kuhn S, Hein S, Ihring J, Sattler B, Haarlammert N, Schreiber T, Eberhardt R, Tnnermann A 2016 Opt. Express 24 6011

    [4]

    Yan P, Yin S P, He J W, Fu C, Wang Y P, Gong M L 2011 IEEE Photon. Tech. L. 23 697

    [5]

    Khitrov V, Minelly J D, Tumminelli R, Petit V, Pooler E S 2014 Proc. SPIE San Francisco, California, United States, March 12, 2014 p89610V

    [6]

    Beier F, Hupel C, Kuhn S, Hein S, Nold J, Proske F, Sattler B, Liem A, Jauregui C, Limpert J 2017 Opt. Express 25 14892

    [7]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [8]

    Yan P, Wang X J, Li D, Huang Y S, Sun J Y, Xiao Q R, Gong M L 2017 Opt. Lett. 42 1193

    [9]

    Codemard C A, Sahu J K, Nilsson J 2010 IEEE J. Quantum Elect. 46 1860

    [10]

    Wu W M, Xiao H, Xu J M, Leng J Y, Zhou P, Guo S F 2011 Laser Optoelectr. Prog. 48 11 (in Chinese)[吴武明, 肖虎, 许将明, 冷进勇, 周朴, 郭少锋 2011 激光与光电子学进展 48 11]

    [11]

    Panbiharwala Y, Yang P, Nilsson J, Srinivasan B 2016 13th International Conference on Fiber Optics and Photonics Kanpur, India, December 4-8, 2016 Tu2E.3

    [12]

    Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quant. 20 219

    [13]

    Zhu J J, Zhou P, Ma Y X, Xu X J, Liu Z J 2011 Opt. Express 19 18645

    [14]

    Ferin A, Abramov M, O'Connor M, Fomin V, Gapontsev V 2009 Conference on Lasers and Electro-Optics Baltimore, Maryland, United States, May 31-June 5, 2009 CThA3

    [15]

    Ferin A, Gapontsev V, Fomin V, Abramov A, Abramov M, Mochalov D 2012 6th International Symposium on High-Power Fiber Lasers and Their Applications St.Petersburg, Russia, June 25-29, 2012 TuSY1-12

    [16]

    Xiao H, Leng J Y, Zhang H W, Huang L J, Xu J M, Zhou P 2015 Appl. Opt. 54 8166

    [17]

    Yang H N, Zhao W, Si J H, Zhao B Y, Zhu Y G 2016 J. Opt. 18 125801

    [18]

    Zhou P, Xiao H, Leng J Y, Xu J M, Chen Z L, Zhang H W, Liu Z J 2017 JOSA B 34 A29

    [19]

    Wang Y S, Sun Y H, Ma Y, Li T L, Gao Q S, Tang C, Zhang K 2014 Chin. J. Lasers 42 69 (in Chinese)[王岩山, 孙殷宏, 马毅, 李腾龙, 高清松, 唐淳, 张凯 2014 中国激光 42 69]

    [20]

    Zhang H W, Xiao H, Zhou P, Wang X L, Xu X J 2014 Opt. Express 22 10248

    [21]

    Xiao Q R, Yan P, Li D, Sun J Y, Wang X J, Huang Y S, Gong M L 2016 Opt. Express 24 6758

    [22]

    Churkin D V, Babin S A, Eltaher A E, Harper P, Kablukov S I, Karalekas V, Aniacastan J D, Podivilov E V, Turitsyn S K 2010 Phys. Rev. A 82 033828

    [23]

    Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204 (in Chinese)[王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜城, 莫琦, 衣永青, 潘蓉, 巩马理 2015 物理学报 64 164204]

    [24]

    Yang W Q, Hou J, Song R, Liu Z J 2011 Acta Phys. Sin. 60 084210 (in Chinese)[杨未强, 侯静, 宋锐, 刘泽金 2011 物理学报 60 084210]

    [25]

    Yan P, Wang X J, Huang Y S, Fu C, Sun J Y, Xiao Q R, Li D, Gong M L 2017 Chin. Phys. B 26 336

    [26]

    Zhu H T, Lou Q H, Zhou J, Qi Y F, Dong J X, Wei Y R 2008 Acta Phys. Sin. 57 4966 (in Chinese)[朱洪涛, 楼祺洪, 周军, 漆云凤, 董景星, 魏运荣 2008 物理学报 57 4966]

    [27]

    Lapointe M, Chatigny S, Pich M, Cain-Skaff M, Maran J 2009 Proc. SPIE San Jose, California, United States, February 19, 2009 71951U

    [28]

    Fan Y Y, He B, Zhou J, Zheng J T, Liu H K, Wei Y R, Dong J X, Lou Q H 2011 Opt. Express 19 15162

  • [1]

    Jeong Y, Sahu J K, Payne D N, Nilsson J 2004 Opt. Express 12 6088

    [2]

    Fang Q, Shi W, Qin Y G, Meng X J, Zhang Q H 2014 Laser Phys. Lett. 11 105102

    [3]

    Beier F, Hupel C, Nold J, Kuhn S, Hein S, Ihring J, Sattler B, Haarlammert N, Schreiber T, Eberhardt R, Tnnermann A 2016 Opt. Express 24 6011

    [4]

    Yan P, Yin S P, He J W, Fu C, Wang Y P, Gong M L 2011 IEEE Photon. Tech. L. 23 697

    [5]

    Khitrov V, Minelly J D, Tumminelli R, Petit V, Pooler E S 2014 Proc. SPIE San Francisco, California, United States, March 12, 2014 p89610V

    [6]

    Beier F, Hupel C, Kuhn S, Hein S, Nold J, Proske F, Sattler B, Liem A, Jauregui C, Limpert J 2017 Opt. Express 25 14892

    [7]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [8]

    Yan P, Wang X J, Li D, Huang Y S, Sun J Y, Xiao Q R, Gong M L 2017 Opt. Lett. 42 1193

    [9]

    Codemard C A, Sahu J K, Nilsson J 2010 IEEE J. Quantum Elect. 46 1860

    [10]

    Wu W M, Xiao H, Xu J M, Leng J Y, Zhou P, Guo S F 2011 Laser Optoelectr. Prog. 48 11 (in Chinese)[吴武明, 肖虎, 许将明, 冷进勇, 周朴, 郭少锋 2011 激光与光电子学进展 48 11]

    [11]

    Panbiharwala Y, Yang P, Nilsson J, Srinivasan B 2016 13th International Conference on Fiber Optics and Photonics Kanpur, India, December 4-8, 2016 Tu2E.3

    [12]

    Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quant. 20 219

    [13]

    Zhu J J, Zhou P, Ma Y X, Xu X J, Liu Z J 2011 Opt. Express 19 18645

    [14]

    Ferin A, Abramov M, O'Connor M, Fomin V, Gapontsev V 2009 Conference on Lasers and Electro-Optics Baltimore, Maryland, United States, May 31-June 5, 2009 CThA3

    [15]

    Ferin A, Gapontsev V, Fomin V, Abramov A, Abramov M, Mochalov D 2012 6th International Symposium on High-Power Fiber Lasers and Their Applications St.Petersburg, Russia, June 25-29, 2012 TuSY1-12

    [16]

    Xiao H, Leng J Y, Zhang H W, Huang L J, Xu J M, Zhou P 2015 Appl. Opt. 54 8166

    [17]

    Yang H N, Zhao W, Si J H, Zhao B Y, Zhu Y G 2016 J. Opt. 18 125801

    [18]

    Zhou P, Xiao H, Leng J Y, Xu J M, Chen Z L, Zhang H W, Liu Z J 2017 JOSA B 34 A29

    [19]

    Wang Y S, Sun Y H, Ma Y, Li T L, Gao Q S, Tang C, Zhang K 2014 Chin. J. Lasers 42 69 (in Chinese)[王岩山, 孙殷宏, 马毅, 李腾龙, 高清松, 唐淳, 张凯 2014 中国激光 42 69]

    [20]

    Zhang H W, Xiao H, Zhou P, Wang X L, Xu X J 2014 Opt. Express 22 10248

    [21]

    Xiao Q R, Yan P, Li D, Sun J Y, Wang X J, Huang Y S, Gong M L 2016 Opt. Express 24 6758

    [22]

    Churkin D V, Babin S A, Eltaher A E, Harper P, Kablukov S I, Karalekas V, Aniacastan J D, Podivilov E V, Turitsyn S K 2010 Phys. Rev. A 82 033828

    [23]

    Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204 (in Chinese)[王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜城, 莫琦, 衣永青, 潘蓉, 巩马理 2015 物理学报 64 164204]

    [24]

    Yang W Q, Hou J, Song R, Liu Z J 2011 Acta Phys. Sin. 60 084210 (in Chinese)[杨未强, 侯静, 宋锐, 刘泽金 2011 物理学报 60 084210]

    [25]

    Yan P, Wang X J, Huang Y S, Fu C, Sun J Y, Xiao Q R, Li D, Gong M L 2017 Chin. Phys. B 26 336

    [26]

    Zhu H T, Lou Q H, Zhou J, Qi Y F, Dong J X, Wei Y R 2008 Acta Phys. Sin. 57 4966 (in Chinese)[朱洪涛, 楼祺洪, 周军, 漆云凤, 董景星, 魏运荣 2008 物理学报 57 4966]

    [27]

    Lapointe M, Chatigny S, Pich M, Cain-Skaff M, Maran J 2009 Proc. SPIE San Jose, California, United States, February 19, 2009 71951U

    [28]

    Fan Y Y, He B, Zhou J, Zheng J T, Liu H K, Wei Y R, Dong J X, Lou Q H 2011 Opt. Express 19 15162

  • [1] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [2] 夏情感, 肖文波, 李军华, 金鑫, 叶国敏, 吴华明, 马国红. 光纤激光器中包层功率剥离器散热性能的优化. 物理学报, 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [3] 程丽君, 杨苏辉, 赵长明, 张海洋. 高功率宽带射频调制连续激光源. 物理学报, 2018, 67(3): 034203. doi: 10.7498/aps.67.20172017
    [4] 周子超, 王小林, 陶汝茂, 张汉伟, 粟荣涛, 周朴, 许晓军. 高功率梯度掺杂增益光纤温度特性理论研究. 物理学报, 2016, 65(10): 104204. doi: 10.7498/aps.65.104204
    [5] 王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜城, 莫琦, 衣永青, 潘蓉, 巩马理. 国产光纤实现直接抽运全光纤化3000 W级激光输出. 物理学报, 2015, 64(16): 164204. doi: 10.7498/aps.64.164204
    [6] 谢辰, 胡明列, 徐宗伟, 兀伟, 高海峰, 张大鹏, 秦鹏, 王艺森, 王清月. 光纤激光器直接输出的高功率贝塞尔超短脉冲. 物理学报, 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [7] 姜曼, 肖虎, 周朴, 王小林, 刘泽金. 高功率、低量子亏损同带抽运掺镱光纤放大器. 物理学报, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [8] 张大鹏, 胡明列, 谢辰, 柴路, 王清月. 基于非线性偏振旋转锁模的高功率光子晶体光纤飞秒激光振荡器. 物理学报, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [9] 董小林, 肖虎, 马阎星, 周朴, 郭少锋. 高功率全光纤保偏主振荡功率放大型光纤激光器的实验研究. 物理学报, 2012, 61(6): 064207. doi: 10.7498/aps.61.064207
    [10] 朱亚东, 肖虎, 王小林, 马阎星, 周朴. 利用全光纤结构Michelson腔实现两路高功率双包层光纤激光器相干合成. 物理学报, 2012, 61(5): 054210. doi: 10.7498/aps.61.054210
    [11] 肖虎, 冷进勇, 吴武明, 王小林, 马阎星, 周朴, 许晓军, 赵国民. 同带抽运高效率光纤放大器. 物理学报, 2011, 60(12): 124207. doi: 10.7498/aps.60.124207
    [12] 张远宪, 冯永利, 周丽, 普小云. 偏斜光线抽运下的回音壁模式光纤激光辐射特性. 物理学报, 2010, 59(3): 1802-1808. doi: 10.7498/aps.59.1802
    [13] 黄琳, 代志勇, 刘永智. 不同脉冲重复频率下抽运方式对全光纤声光调Q激光器性能的影响. 物理学报, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [14] 延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生. 基于偏振保持掺Er3+光纤的高稳定性单波长光纤激光器. 物理学报, 2009, 58(9): 6296-6299. doi: 10.7498/aps.58.6296
    [15] 王静, 郑凯, 李坚, 刘利松, 陈根祥, 简水生. 基于高双折射Sagnac环的可调环形腔掺铒光纤激光器理论与实验研究. 物理学报, 2009, 58(11): 7695-7701. doi: 10.7498/aps.58.7695
    [16] 延凤平, 魏淮, 傅永军, 王琳, 郑凯, 毛向桥, 刘鹏, 彭健, 刘利松, 简水生. 石英基掺Tm3+包层抽运光纤激光器. 物理学报, 2009, 58(9): 6300-6303. doi: 10.7498/aps.58.6300
    [17] 赵振宇, 段开椋, 王建明, 赵 卫, 王屹山. 高功率光子晶体光纤放大器实验研究. 物理学报, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [18] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
    [19] 刘艳格, 张春书, 孙婷婷, 鲁云飞, 王 志, 袁树忠, 开桂云, 董孝义. 输出平均功率大于2W的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器. 物理学报, 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
    [20] 李惠青, 张 杰, 崔大复, 许祖彦, 宁永强, 晏长岭, 秦 莉, 刘 云, 王立军, 曹健林. 高功率垂直腔面发射半导体激光器优化设计研究. 物理学报, 2004, 53(9): 2986-2990. doi: 10.7498/aps.53.2986
计量
  • 文章访问数:  4010
  • PDF下载量:  405
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-20
  • 修回日期:  2017-09-25
  • 刊出日期:  2019-01-20

国产光纤实现同带抽运3000 W激光输出

  • 1. 清华大学精密仪器系, 北京 100084;
  • 2. 中国电子科技集团公司第四十六研究所, 天津 300220
  • 通信作者: 肖起榕, xiaoqirong08@gmail.com
    基金项目: 国家自然科学基金(批准号:61675114)和清华大学自主科研项目(批准号:20151080709)资助的课题.

摘要: 同带抽运是目前实现高功率光纤激光器的有效手段.本文基于同带抽运方式,以国产25/250 m掺镱双包层光纤为增益光纤,构建了全光纤化的主控振荡器功率放大器.实验中采用的国产光纤是中国电子科技集团公司第四十六研究所采用化学气相沉积结合气相-液相复合掺杂工艺制备的,其Yb3+离子的分布更均匀,吸收截面更大,吸收系数更高.实验中,在种子光功率为67.8 W、抽运总功率为3511 W的条件下,实现了3079 W的激光输出,斜效率为85.9%,光束质量M2约为2.14,3 dB带宽为1.4 nm,这是目前基于国产光纤同带抽运方式实现的最高功率.理论和实验结果表明国产光纤制备技术不断成熟,已经具备承受高功率输出的能力.继续提高抽运功率,优化增益光纤长度,改良散热方式,国产光纤有望实现更高功率的激光输出.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回