搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于目标反射回光对高功率光纤激光器影响的理论模型和数值研究

段磊 徐润亲 宋云波 谭姝丹 梁成斌 徐帆江 刘朝晖

引用本文:
Citation:

基于目标反射回光对高功率光纤激光器影响的理论模型和数值研究

段磊, 徐润亲, 宋云波, 谭姝丹, 梁成斌, 徐帆江, 刘朝晖

Theoretical model and numerical study of effect of target reflected light on high-power fiber laser

Duan Lei, Xu Run-Qin, Song Yun-Bo, Tan Shu-Dan, Liang Cheng-Bin, Xu Fan-Jiang, Liu Zhao-Hui
PDF
HTML
导出引用
  • 在高功率光纤激光系统中, 常会出现激光照射到目标处产生的回光被重新耦合到激光器内部并得到放大, 从而损伤激光系统的现象. 对于高功率光谱合成光纤激光系统等缺乏有效回光防护的高功率激光系统, 该情况尤为严重. 为了解决上述问题, 有必要综合整个系统链路中的多种物理效应, 评估和分析反射回光对系统运转状态的影响, 在设计光纤激光器时优化光路布局和系统结构, 以尽量避免不必要的损失. 本文基于大气传输理论、光纤速率方程和介质热传导方程模型, 分析了反向回光对高功率光纤激光器的影响. 研究发现, 在大气条件一定的情况下, 回光功率与传输距离、光轴偏移角度、光束发散角和光束中心位置偏移量等因素有关, 并且会影响光纤激光器输出功率、光束质量因子、热效应和受激拉曼散射光谱信噪比. 研究结果对于优化高能光纤激光系统的外光路布局和激光器内部器件系统参数设计具有一定的指导意义.
    In a high-power fiber laser system, the reflected light generated when the laser hits the target may be recoupled to the laser and amplified by the laser, thereby damaging the laser system. This situation is particularly serious for a high-power laser system, such as spectral beam combining a high power fiber laser, which lacks effective light-return protection. In order to solve the above problems, it is necessary to integrate various physical effects in the whole system link, evaluate and analyze the influence of reflected light on the operating state of the system, so as to optimize the optical path layout and system structure in the beginning of the design of fiber laser to avoid unnecessary losses. Based on the atmospheric transmission theory, fiber rate equation and medium heat conduction equation model, the effect of reflected light on high-power fiber laser is analyzed. In this paper is conducted the numerical simulation of coupling efficiency of reflected light of high-power fiber laser. It is found that under certain atmospheric conditions, the reflected power is related to the transmission distance, the offset angle of optical axis, divergence angle, and the offset of center position of the beam, and will affect the output power, beam quality factor, thermal effect and the signal-to-noise ratio of the stimulated Raman scattering spectrum of the fiber laser. The coupling efficiency of reflected light has a maximum value at a certain transmission distance. For example, the reflected light power up to 140 W is obtained when the transmission distance is 1500 m, which will largely affect the laser system. The reflected power is affected by the offset angle of optical axis far less than by the transmission distance when transmission increases from 500 m to 2000 m. For example, a change of less than 0.1 W can be obtained when offset angle increases from 0.11° to 0.44°. It is also shown that as the divergence angle changes from 0 to 15'', the coupling power decays nearly exponentially with the divergence angle. The coupling efficiency is close to 1% near 12'', which is almost negligible. The output beam quality of the laser system is also affected by the beam quality of reflected light. Deterioration of the beam quality of reflected light will lead to the deterioration of the laser output beam quality. As the reflected light power enters the fiber laser system and increases, the forward output power will decrease and the backward signal power will increase, and the Raman power will increase rapidly near the fiber output end. When the reflected light is present, the thermal effects caused by selecting the gain fiber with different pump absorption coefficients are very important. The stimulated Raman scattering (SRS) rejection ratio decreases with the increase of pump absorption coefficient. For example, the SRS rejection ratio decreases by 5 dB when pump absorption coefficient increases from 1.5 dB/m to 4.5 dB/m, resulting in a decrease in the signal-to-noise ratio of the laser, which will reduce the reliability of the fiber laser system.In the design and test of spectral beam combining systems for high-power fiber lasers, the attention should be paid to the reflected light in the entire process, which includes the outer optical path and the internal optical path of the laser. The comprehensive constraints of multiple key indicators are analyzed, and the probability of system damage or reliability degradation due to reflected light is evaluated. The research results of this paper are of certain guiding significance in selecting suitable outer optical path layout and system parameters and also in optimizing the design of high energy fiber laser system.
      通信作者: 段磊, duanlei@iscas.ac.cn
      Corresponding author: Duan Lei, duanlei@iscas.ac.cn
    [1]

    Koester C J, Snitzer E 1964 Appl. Opt. 3 1182Google Scholar

    [2]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar

    [3]

    Snitzer E, Po H, Hakimi F, Tumminelli R, McCollum B C 1988 Optical Fiber Sensors. 2 PD5Google Scholar

    [4]

    Nilsson J, Payne D N 2011 Science. 332 6032Google Scholar

    [5]

    周朴, 许晓军, 刘泽金, 陈子伦, 陈金宝, 赵伊君 2008 激光与光电子学进展 45 37

    Zhou P, Xu X J, Liu Z J, Chen Z L, Chen J B, Zhao Y J 2008 Laser & Optoelectronics Progress. 45 37

    [6]

    Wirth C, Schmidt O, Tsybin I, Schreiber T, Eberhardt R, Limpert Y, Tünnermann A, Ludewigt K, Gowin M, Have E T, Jung M 2011 Opt. Lett. 36 3118Google Scholar

    [7]

    肖起榕, 田佳丁, 李丹, 齐天澄, 王泽晖, 于伟龙, 吴与伦, 闫平, 巩马理 2021 中国激光 48 1501004Google Scholar

    Xiao Q R, Tian J D, Li D, Qi T C, Wang Z H, Yu W L, Wu Y L, Yan P, Gong M L 2021 Chin. J. Lasers 48 1501004Google Scholar

    [8]

    潘雷雷, 张彬, 阴素芹, 张艳 2009 物理学报 58 8289Google Scholar

    Pan L L, Zhang B, Yin S Q, Zhang Y 2009 Acta. Phys. Sin. 58 8289Google Scholar

    [9]

    Honea E, Afzal R S, Matthias S L, et al. 2016 Components and Packaging for Laser Systems II San Francisco, California, United States, April 22, 2016 p97300Y

    [10]

    Chen, F, Ma, J, Wei, C, Zhu R, Zhou W C, Yuan Q, Pan S H, Zhang J Y, Wen Y Z, Dou J T 2017 Opt. Express. 25 32783Google Scholar

    [11]

    Huang Y S, Xiao Q R, Li D, Xin J T, Wang Z H, Tian J D, Wu Y L, Gong M L, Zhu L Q, Yan P 2021 Opt. Laser Technol. 133 106538Google Scholar

    [12]

    Carter A, Samson, B N, Tankala K, Machewirth D P, Khitrov V, Manyam U H, Gonthier F, Seguin F 2005 Laser-Induced Damage in Optical Materials Boulder Colorado, United States, February 21, 2005 p561

    [13]

    赵兴海, 高杨, 徐美健, 段文涛, 於海武 2008 物理学报 57 5027Google Scholar

    Zhao X H, Gao Y, Xu M J, Duan W T, Yu H W 2008 Acta. Phys. Sin. 57 5027Google Scholar

    [14]

    李尧, 吴涓, 林佶翔, 王雄飞, 朱辰 2009 激光技术 33 490

    Li Y, Wu J, Lin J X, Wang X F, Zhu C 2009 Laser Technology 33 490

    [15]

    韩旭, 冯国英, 韩敬华, 张秋慧, 李尧, 张大勇 2009 光子学报 38 2468

    Han X, Feng G Y, Han J H, Zhang Q Y, Li Y, Zhang D Y 2009 Acta. Photonica Sinica. 38 2468

    [16]

    Zhang D, Zheng J F, Chen Y L, Li X L 2012 Annual Conference of Optics (laser) Societies of Heilongjiang, Jiangsu, Shandong, Henan and Jiangxi Provinces Zhengzhou, Henan, China, September 1, 2012 p16

    [17]

    盛泉, 司汉英, 张海伟, 张钧翔, 丁宇, 史伟, 姚建铨 2020 红外与激光工程 49 20200009Google Scholar

    Sheng Q, Si H Y, Zhang H W, Zhang Y X, Ding Y, Shi W, Yao J Q 2020 Infrar. Laser Eng. 49 20200009Google Scholar

    [18]

    Chapman T, Michel P, Nicola D J M G, Berger R L, Whitman P K, Moody J D, Manes K R, Spaeth M L, Belyaev M A, Thomas C A, MacGowan B J 2019 J. Appl. Phys. 125 033101Google Scholar

    [19]

    Alig T, Bartels N, Allenspacher P, Balasa I, Böntgen T, Ristau D, Jensen L 2021 Opt. Express 29 14189Google Scholar

    [20]

    朱文越, 钱仙妹, 饶瑞中, 王辉华 2019 红外与激光工程 48 1203002Google Scholar

    Zhu W Y, Qian X M, Rao R Z, Wang H H 2019 Infrar. Laser Eng. 48 1203002Google Scholar

    [21]

    饶瑞中 2022 红外与激光工程 51 20210818Google Scholar

    Rao R Z 2022 Infrar. Laser Eng. 51 20210818Google Scholar

    [22]

    张月姣 2016 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhang Y J 2016 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [23]

    Xu Y, Fang Q, Qin Y, Meng X, Shi W 2015 A. O. 54 9419Google Scholar

    [24]

    Wang Y S, Feng Y G, Ma Y, Chang Z, Peng W J, Sun Y H, Gao Q S, Zhu R H, Tang C 2020 IEEE Photonics J. 12 1Google Scholar

    [25]

    Ren S, Ma P, Li W, Wang G, Chen Y, Song J, Liu W, Zhou P 2022 Nanomaterials. Basel. 12 2541Google Scholar

    [26]

    谢敬辉, 赵达尊, 阎吉祥 2005 物理光学教程 (第一版) (北京: 北京理工大学出版社) 第159—160页

    Xie J H, Zhao D Z, Yan J X 2005 Phys. Optics Course (1st. Ed.) (Beijing: Beijing Institute of Technology Press) pp159–160 (in Chinese)

    [27]

    吕乃光 2006 傅里叶光学 (第二版) (北京: 机械工业出版社) 第121—122页

    Lü N G 2006 Fourier Optices (2nd. Ed.) (Beijing: China Machine Press) pp121–122 (in Chinese)

    [28]

    王小林 张汉伟 史尘 段磊 奚小明 2021 基于SeeFiberLaser的光纤激光建模与仿真 (北京: 科学出版社) 第61—62页

    Wang X L, Zhang H W, Shi C, Duan L, Xi X M 2021 Fiber Laser Simulation and Modeling Based on SeeFiberLaser (1st. Ed.) (Beijing: Science Press) pp61–62 (in Chinese)

  • 图 1  目标反射回光经大气传输耦合到光纤激光器中结构示意图

    Fig. 1.  Schematic diagram of the structure of the target reflected light coupled to the fiber laser through atmospheric transmission.

    图 2  大气传输网格划分和分段传输原理示意图

    Fig. 2.  Schematic diagram of atmospheric transmission grid division and segmented transmission principle.

    图 3  反射回光通过透镜耦合进入光纤示意图

    Fig. 3.  Diagram of reflected light coupling through a lens into an optical fiber.

    图 4  光纤激光器基本结构与边界条件示意图

    Fig. 4.  Schematic diagram of basic structure and boundary conditions of fiber laser.

    图 5  不同位置处的反射回光 (a) 目标回光激光光斑形态; (b) 经过大气传输后光斑形态; (c)透镜孔径内光斑形态; (d) 透镜焦面光斑形态; (e) 光纤端面处光斑; (f) 光纤纤芯耦合光斑

    Fig. 5.  Reflected light at different locations: (a) The morphology of the laser spot of the target return light; (b) the pattern of light spots after atmospheric transmission; (c) the pattern of light spots in the aperture of the lens; (d) the morphology of focal spot of lens; (e) light spots on the end face of the optical fiber; (f) fiber core coupling spot.

    图 6  光纤端面处反射回光功率和纤芯处接受到功率随传输距离的变化

    Fig. 6.  Reflected power at the end face of the fiber and the received power at the core change with the transmission distance.

    图 7  光轴偏移角度对耦合功率的影响

    Fig. 7.  Effect of optical axis offset angle on coupling power.

    图 8  光纤端面功率及耦合功率随光束中心位置偏移量的变化关系

    Fig. 8.  Relationship of fiber end power and coupling power with the offset of beam center position.

    图 9  发散角与纤芯耦合功率的关系

    Fig. 9.  Relationship between divergence angle and core coupling power.

    图 10  MOPA光纤激光器结构示意图

    Fig. 10.  Schematic diagram of fiber laser structure of MOPA.

    图 11  仿真结果 (a) 输出端增益光纤功率分布; (b) 光谱分布; (c) 中心轴向温度分布; (d) 径向横截面温度分布

    Fig. 11.  Simulation results: (a) Output gain fiber power distribution; (b) spectral distribution; (c) central axial temperature distribution; (d) temperature distribution in radial cross section.

    图 12  不同回光功率下激光功率和拉曼功率分布

    Fig. 12.  Distribution of laser power and Raman power under different optical return power.

    图 13  不同泵浦吸收系数下光纤径向横截面温度分布

    Fig. 13.  Temperature distribution of fiber radial cross section under different pump absorption coefficients.

    图 14  不同泵浦吸收系数下的信号光光谱, 内插图为掺镱光纤泵浦吸收系数1.5 dB@975 nm时的信号光光谱图

    Fig. 14.  Signal light spectrum under different pump absorption coefficients. The inner illustration shows the signal light spectrum at the pump absorption coefficient of ytterbium-doped fiber 1.5 dB@975 nm.

    图 15  输出光束质量因子与回光光束质量因子的关系

    Fig. 15.  Relationship between the out light beam quality factor and the reflected light beam quality factor

    表 1  仿真中使用的参数

    Table 1.  Parameters used in the simulation.

    参数数值参数数值
    回光激光功率 Plaser/W1000泵浦光中心波长 λp/nm976
    高斯束腰半径 ω0/m0.005纤芯直径 rcore/μm20
    激光中心波长 λ/nm1080包层直径 rclad/μm400
    目标回光孔径 Robj/m0.08泵浦重叠因子 Γp0.00774
    大气传输距离 Zatm/m500—3000信号填充因子 Γs1
    大气相干长度 r0/m0.0384上能级粒子数寿命 τ/ms0.85
    大气透过率 Ttrans0.095光纤长度 L/m20
    通光孔径 Rlens/m0.1泵浦吸收系数 β/dB@976 nm1.5—4.8
    耦合透镜焦距 f/m0.4环境温度 T/℃25
    光轴倾斜角度偏移量 θ/(°)0—0.44换热系数 κ/(W·m–2·K–1)1200
    光轴偏移位置偏移量 Δz/mX/Y: 0—0.06纤芯直径 Rcore/μm20
    包层直径 Rclad/μm400
    下载: 导出CSV
  • [1]

    Koester C J, Snitzer E 1964 Appl. Opt. 3 1182Google Scholar

    [2]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar

    [3]

    Snitzer E, Po H, Hakimi F, Tumminelli R, McCollum B C 1988 Optical Fiber Sensors. 2 PD5Google Scholar

    [4]

    Nilsson J, Payne D N 2011 Science. 332 6032Google Scholar

    [5]

    周朴, 许晓军, 刘泽金, 陈子伦, 陈金宝, 赵伊君 2008 激光与光电子学进展 45 37

    Zhou P, Xu X J, Liu Z J, Chen Z L, Chen J B, Zhao Y J 2008 Laser & Optoelectronics Progress. 45 37

    [6]

    Wirth C, Schmidt O, Tsybin I, Schreiber T, Eberhardt R, Limpert Y, Tünnermann A, Ludewigt K, Gowin M, Have E T, Jung M 2011 Opt. Lett. 36 3118Google Scholar

    [7]

    肖起榕, 田佳丁, 李丹, 齐天澄, 王泽晖, 于伟龙, 吴与伦, 闫平, 巩马理 2021 中国激光 48 1501004Google Scholar

    Xiao Q R, Tian J D, Li D, Qi T C, Wang Z H, Yu W L, Wu Y L, Yan P, Gong M L 2021 Chin. J. Lasers 48 1501004Google Scholar

    [8]

    潘雷雷, 张彬, 阴素芹, 张艳 2009 物理学报 58 8289Google Scholar

    Pan L L, Zhang B, Yin S Q, Zhang Y 2009 Acta. Phys. Sin. 58 8289Google Scholar

    [9]

    Honea E, Afzal R S, Matthias S L, et al. 2016 Components and Packaging for Laser Systems II San Francisco, California, United States, April 22, 2016 p97300Y

    [10]

    Chen, F, Ma, J, Wei, C, Zhu R, Zhou W C, Yuan Q, Pan S H, Zhang J Y, Wen Y Z, Dou J T 2017 Opt. Express. 25 32783Google Scholar

    [11]

    Huang Y S, Xiao Q R, Li D, Xin J T, Wang Z H, Tian J D, Wu Y L, Gong M L, Zhu L Q, Yan P 2021 Opt. Laser Technol. 133 106538Google Scholar

    [12]

    Carter A, Samson, B N, Tankala K, Machewirth D P, Khitrov V, Manyam U H, Gonthier F, Seguin F 2005 Laser-Induced Damage in Optical Materials Boulder Colorado, United States, February 21, 2005 p561

    [13]

    赵兴海, 高杨, 徐美健, 段文涛, 於海武 2008 物理学报 57 5027Google Scholar

    Zhao X H, Gao Y, Xu M J, Duan W T, Yu H W 2008 Acta. Phys. Sin. 57 5027Google Scholar

    [14]

    李尧, 吴涓, 林佶翔, 王雄飞, 朱辰 2009 激光技术 33 490

    Li Y, Wu J, Lin J X, Wang X F, Zhu C 2009 Laser Technology 33 490

    [15]

    韩旭, 冯国英, 韩敬华, 张秋慧, 李尧, 张大勇 2009 光子学报 38 2468

    Han X, Feng G Y, Han J H, Zhang Q Y, Li Y, Zhang D Y 2009 Acta. Photonica Sinica. 38 2468

    [16]

    Zhang D, Zheng J F, Chen Y L, Li X L 2012 Annual Conference of Optics (laser) Societies of Heilongjiang, Jiangsu, Shandong, Henan and Jiangxi Provinces Zhengzhou, Henan, China, September 1, 2012 p16

    [17]

    盛泉, 司汉英, 张海伟, 张钧翔, 丁宇, 史伟, 姚建铨 2020 红外与激光工程 49 20200009Google Scholar

    Sheng Q, Si H Y, Zhang H W, Zhang Y X, Ding Y, Shi W, Yao J Q 2020 Infrar. Laser Eng. 49 20200009Google Scholar

    [18]

    Chapman T, Michel P, Nicola D J M G, Berger R L, Whitman P K, Moody J D, Manes K R, Spaeth M L, Belyaev M A, Thomas C A, MacGowan B J 2019 J. Appl. Phys. 125 033101Google Scholar

    [19]

    Alig T, Bartels N, Allenspacher P, Balasa I, Böntgen T, Ristau D, Jensen L 2021 Opt. Express 29 14189Google Scholar

    [20]

    朱文越, 钱仙妹, 饶瑞中, 王辉华 2019 红外与激光工程 48 1203002Google Scholar

    Zhu W Y, Qian X M, Rao R Z, Wang H H 2019 Infrar. Laser Eng. 48 1203002Google Scholar

    [21]

    饶瑞中 2022 红外与激光工程 51 20210818Google Scholar

    Rao R Z 2022 Infrar. Laser Eng. 51 20210818Google Scholar

    [22]

    张月姣 2016 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhang Y J 2016 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [23]

    Xu Y, Fang Q, Qin Y, Meng X, Shi W 2015 A. O. 54 9419Google Scholar

    [24]

    Wang Y S, Feng Y G, Ma Y, Chang Z, Peng W J, Sun Y H, Gao Q S, Zhu R H, Tang C 2020 IEEE Photonics J. 12 1Google Scholar

    [25]

    Ren S, Ma P, Li W, Wang G, Chen Y, Song J, Liu W, Zhou P 2022 Nanomaterials. Basel. 12 2541Google Scholar

    [26]

    谢敬辉, 赵达尊, 阎吉祥 2005 物理光学教程 (第一版) (北京: 北京理工大学出版社) 第159—160页

    Xie J H, Zhao D Z, Yan J X 2005 Phys. Optics Course (1st. Ed.) (Beijing: Beijing Institute of Technology Press) pp159–160 (in Chinese)

    [27]

    吕乃光 2006 傅里叶光学 (第二版) (北京: 机械工业出版社) 第121—122页

    Lü N G 2006 Fourier Optices (2nd. Ed.) (Beijing: China Machine Press) pp121–122 (in Chinese)

    [28]

    王小林 张汉伟 史尘 段磊 奚小明 2021 基于SeeFiberLaser的光纤激光建模与仿真 (北京: 科学出版社) 第61—62页

    Wang X L, Zhang H W, Shi C, Duan L, Xi X M 2021 Fiber Laser Simulation and Modeling Based on SeeFiberLaser (1st. Ed.) (Beijing: Science Press) pp61–62 (in Chinese)

  • [1] 尚向军, 李叔伦, 马奔, 陈瑶, 何小武, 倪海桥, 牛智川. 量子点单光子源的光纤耦合. 物理学报, 2021, 70(8): 087801. doi: 10.7498/aps.70.20201605
    [2] 夏情感, 肖文波, 李军华, 金鑫, 叶国敏, 吴华明, 马国红. 光纤激光器中包层功率剥离器散热性能的优化. 物理学报, 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [3] 杨文海, 刁文婷, 蔡春晓, 宋学瑞, 冯付攀, 郑耀辉, 段崇棣. 1064 nm固体激光器和光纤激光器在制备压缩真空态光场实验中的对比研究. 物理学报, 2019, 68(12): 124201. doi: 10.7498/aps.68.20182304
    [4] 马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和. 基于飞秒锁模光纤激光脉冲基频光的差频产生红外光梳. 物理学报, 2018, 67(9): 094207. doi: 10.7498/aps.67.20172503
    [5] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [6] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [7] 张鑫, 胡明列, 宋有健, 柴路, 王清月. 大模场面积光子晶体光纤耗散孤子锁模激光器. 物理学报, 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
    [8] 杨薇, 刘迎, 肖立峰, 杨兆祥, 潘建旋. 声光可调谐环形腔掺铒光纤激光器. 物理学报, 2010, 59(2): 1030-1034. doi: 10.7498/aps.59.1030
    [9] 宋有建, 胡明列, 谢辰, 柴路, 王清月. 输出近百纳焦耳脉冲能量的光子晶体光纤锁模激光器. 物理学报, 2010, 59(10): 7105-7110. doi: 10.7498/aps.59.7105
    [10] 蒋建, 常建华, 冯素娟, 毛庆和. 基于光纤激光器的中红外差频多波长激光产生. 物理学报, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [11] 饶云江, 李立, 贾新鸿, 冉曾令, 张田虎. 基于拉曼组合放大的长距离光纤传输系统. 物理学报, 2010, 59(7): 4682-4686. doi: 10.7498/aps.59.4682
    [12] 延凤平, 魏淮, 傅永军, 王琳, 郑凯, 毛向桥, 刘鹏, 彭健, 刘利松, 简水生. 石英基掺Tm3+包层抽运光纤激光器. 物理学报, 2009, 58(9): 6300-6303. doi: 10.7498/aps.58.6300
    [13] 张远宪, 普小云, 祝昆, 韩德昱, 江楠. 回音壁模式光纤激光器的阈值特性研究. 物理学报, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [14] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [15] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究. 物理学报, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [16] 王建明, 段开椋, 王屹山. 两光纤激光器相干合成的实验研究. 物理学报, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [17] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定. 物理学报, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [18] 许 鸥, 鲁韶华, 简水生. 用于单频光纤激光器的光纤光栅双腔Fabry-Perot结构传输谱特性理论研究. 物理学报, 2008, 57(10): 6404-6411. doi: 10.7498/aps.57.6404
    [19] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
    [20] 于海鹰, 崔碧峰, 陈依新, 邹德恕, 刘 莹, 沈光地. 一种与光纤高效耦合的新型大光腔大功率半导体激光器. 物理学报, 2007, 56(7): 3945-3949. doi: 10.7498/aps.56.3945
计量
  • 文章访问数:  3427
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 修回日期:  2023-03-06
  • 上网日期:  2023-03-28
  • 刊出日期:  2023-05-20

/

返回文章
返回