-
半导体量子点在低温下产生谱线细锐的激子发光可制备单光子源. 光纤耦合可避免低温共聚焦装置扫描定位和振动影响, 是实现单光子源即插即用和组件化的关键技术. 在耦合工艺上, 基于微区定位标记发展出拉锥光纤与光子晶体腔或波导侧向耦合、大数值孔径锥形端面光纤与量子点样片垂直耦合等技术; 然而, 上述工艺需要多维度精密调节以避免柔软光纤的畸形弯曲实现对准和高效耦合. 陶瓷插针或石英V槽封装的光纤无弯曲且具有大平滑端面, 只要与单量子点样片对准贴合就可保证垂直收光, V槽封装的排式光纤还可通过盲对粘合避免扫描对准, 耦合简单. 本文在前期排式光纤粘合少对数分布Bragg反射镜(distributed Bragg reflector, DBR)微柱样片实现单光子输出基础上, 经理论模拟采用多对数DBR腔提升样片垂直出光和光纤收光效率, 使光纤输出单光子计数率大大提升.
-
关键词:
- 量子点单光子源 /
- 光纤耦合 /
- 分布Bragg反射镜腔 /
- 垂直出光
Semiconductor quantum dot (QD) at low temperature will create excitons with sharp spectral lines for single photon emission. Optical fiber coupling avoids scanning for positioning and vibration influence in low-temperature confocal setup, and is a key technology in realizing the plug-play and componentization of QD single photon sources. For the fiber coupling techniques, the lateral coupling of a photonic crystal cavity or waveguide with a tapered fiber, or normal coupling of a QD chip with a tapered facet fiber in a large numerical aperture has been developed based on mask in a micro-region; however, the above techniques require multi-dimensional precise adjusting in order to avoid abnormally bending a soft fiber to realize alignment and high-efficiency coupling. Ceramic ferrule or silica V-shaped groove-mounted fiber has a large smooth facet and no bending; it can collect light in the normal direction by being aligned with bonding QD chip; V-shaped groove-mounted fiber array also enables a random adhesion and avoid scanning for alignment, which is simple in technique. This work is based on the previous realization of single photon output by random adhesion of few-pair DBR micropillar chip with V-shaped groove-mounted fiber array, and uses many-pair DBR cavity chip with theoretical simulation optimization to improve the normal light extraction and its fiber collection efficiency, and greatly improves the fiber output of single photon count rate.-
Keywords:
- quantum dot single photon source /
- optical fiber coupling /
- distributed Bragg reflector cavity /
- light normal extraction
[1] Wang H, He Y, Li Y H, Su Z E, Li B, Huang H L, Ding X, Chen M C, Liu C, Qin J, Li J P, He Y M, Schneider C, Kamp M, Peng C Z, Hofling S, Lu C Y, Pan J W 2017 Nat. Photonics 11 361Google Scholar
[2] Pooley M A, Ellis D J P, Patel R B, Bennett A J, Chan K H A, Farrer I, Ritchie D A, Shields A J 2012 Appl. Phys. Lett. 100 211103Google Scholar
[3] Feng L, Zhang M, Xiong X, Chen Y, Wu H, Li M, Guo G P, Guo G C, Dai D X, Ren X F 2019 npj Quant. Inform. 5 2Google Scholar
[4] Lu L, Xia L, Chen Z, Chen L, Yu T, Tao T, Ma W, Pan Y, Cai X, Lu Y, Zhu S, Ma X 2020 npj Quant. Inform. 6 30Google Scholar
[5] Paesani S, Borghi M, Signorini S, Maïnos A, Pavesi L, Laing A 2020 Nat. Commun. 11 2505Google Scholar
[6] Wu R, Lin J, Wang M, Fang Z, Chu W, Zhang J, Zhou J, Cheng Y 2019 Opt. Lett. 44 4698Google Scholar
[7] Qiang X, Zhou X, Wang J, Wilkes C M, Loke T, Gara S O, Kling L, Marshall G D, Santagati R, Ralph T C, Wang J B, O’Brien J L, Thompson M G, Matthews J C F 2018 Nat. Photonics 12 534Google Scholar
[8] Najafi F, Mower J, Harris N C, Bellei F, Dane A, Lee C, Hu X, Kharel P, Marsili F, Assefa S, Berggren K K, Englund D 2015 Nat. Commun. 6 5873Google Scholar
[9] Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2016 Optica 3 1274Google Scholar
[10] Chen Z S, Ma B, Shang X J, Ni H Q, Wang J L, Niu Z C 2017 Nanoscale Res. Lett. 12 378Google Scholar
[11] Lee C M, Lim H J, Schneider C, Maier S, Hofling S, Kamp M, Lee Y H 2015 Sci. Rep. 5 14309Google Scholar
[12] Davanco M I, Rakher M T, Wegscheider W, Schuh D, Badolato A, Srinivasan K 2011 Appl. Phys. Lett. 99 121101Google Scholar
[13] Chonan S, Kato S, Aoki T 2014 Sci. Rep. 4 4785Google Scholar
[14] Ma B, Chen Z S, Wei S H, Shang X J, Ni H Q, Niu Z C 2017 Appl. Phys. Lett. 110 142104Google Scholar
[15] Muller A, Flagg E B, Metcalfe M, Lawall J, Solomon G S 2009 Appl. Phys. Lett. 95 173101Google Scholar
[16] Gazzano O, Vasconcellos S M, Arnold C, Nowak A, Galopin E, Sagnes I, Lanco L, Lemaitre A, Senellart P 2013 Nat. Commun. 4 1425Google Scholar
[17] Ding X, He Y M, Duan Z C, Gregersen N, Chen M C, Unsleber S, Maier S, Schneider C, Kamp M, Hofling S, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 116 020401Google Scholar
[18] Li S L, Chen Y, Shang X J, Yu Y, Yang J W, Huang J H, Su X B, Shen J X, Sun B Q, Ni H Q, Su X L, Wang K Y, Niu Z C 2020 Nanoscale Res. Lett. 15 145Google Scholar
[19] Shang X J, Ma B, Ni H Q, Chen Z S, Li S L, Chen Y, He X W, Su X L, Shi Y J, Niu Z C 2020 AIP Adv. 10 085126Google Scholar
[20] Makhov I S, Panevin V Y, Sofronov A N, Firsov D A, Vorobjev L E, Vinnichenko M Y, Vasil'ev A P, Maleev N A 2017 Superlattices and Microstruct. 112 79Google Scholar
[21] Typical Properties of Norland Optical Adhesive (NOA) 61, Norland Products Inc. www.norlandprod.com/adhesives/NOA%2061.html [2020-12-10]
-
图 2 单模光纤粘合SQD微柱的收光模拟 (a) 静态腔场分布; (b)左: 腔内(inner)和顶部(top)的静态腔场强度; 右: 光纤提取效率随上DBR对数的变化. 同时列出共聚焦收光效率(空心点)作比较, (c) 模拟结构示意图
Fig. 2. Simulation of light collection from single mode fiber-bonded SQD micropillar: (a) Steady cavity field distribution; (b) Left: steady cavity mode intensity inside (inner) or on top of (top) the cavity; right: light extraction efficiency of fiber, as a function of the upper DBR pairs. Red hollow points: that of confocal setup for comparison; (c) schematic of the simulation structure.
图 4 光纤粘合SQD样品A的光谱. 分别在10和77 K下用高(红线)和低(黑线)激发功率测试; 插图: 滤光后的分束单路光谱和
${g}^{2}(\tau)$ 及退卷积拟合(蓝线)Fig. 4. Sample A of fiber coupled SQD, spectra measured at 10 and 77 K under high (red) and low (black) excitation powers. Insets: One-beam spectra after filtering and
${g}^{2}(\tau)$ with deconvoluted fitting (blue).图 5 光纤粘合SQD样品B (a)光谱(左)和
${g}^{2}(\tau)$ 及退卷积拟合(右), 在10, 40和70 K下变激发功率测试(如蓝、红、黑线, 垂直平移以便显示; 虚线示意腔模; 虚线框示意QD1); (b)三个温度的滤光后光谱(1.1 μW激发功率测试); (c) 10 K温度下QD1的X/X*光谱双线细致结构、强度-激发功率依赖曲线, X显示劈裂, 如光谱峰拟合绿线; (d)退卷积$ {g}^{2}\left(\tau \right) $ 、滤光后APD实测光子计数率随激发功率的变化Fig. 5. Sample B of fiber coupled SQD: (a) PL spectra (left) and
${g}^{2}(\tau)$ with deconvoluted fitting (right), measured at 10, 40 and 70 K with variable excitation power (i.e. blue, red and black, offset vertically for clarity; dash line indicates cavity mode, CM, dashed rectangular indicate QD1); (b) spectra after filtering at the three temperatures (measured under excitation power of 1.1 μW); (c) X/X* peak fine structure and intensity excitation power dependence, X shows splitting as the green spectral fittings indicate; (d) deconvoluted${g}^{2}(\tau)$ and photon count rate at APDs after filtering, as a function of the excitation power.表 1 样品光纤输出单光子计数率汇总
Table 1. Summary of fiber output single photon count rate of the samples.
样品及
温度/K光谱峰值强度(面积) 单光子计数率 原光纤输出/s–1 滤光后
分束单路/s–1APD两路
实测/(106 s–1)估算原光纤
输出/(106 s–1)${g}^{2}(0)$ 净单光子
计数率/(106 s–1)A(10) 28747(125205) 1608(9911) 0.04 1.3 0.10 1.2 A(77) 12611(626890) 922(38097) 0.13 4.3 0.05 4.1 B(10) 101360(1124015) 7491(71768) 0.32 9.2 0.70 5.0 B(40) 77800(2591945) 9305(186679) 0.88 22.0 0.70 12.0 B(70) 47840(3945870) 6479(277165) 1.10 29.0 0.70 16.0 B(70a) 15121(5604040) 10045(406237) 1.88 47.0 0.80 21.0 注: 在激发功率2.4 μW下测试, 其他未标注的为在1.1 μW下测试. -
[1] Wang H, He Y, Li Y H, Su Z E, Li B, Huang H L, Ding X, Chen M C, Liu C, Qin J, Li J P, He Y M, Schneider C, Kamp M, Peng C Z, Hofling S, Lu C Y, Pan J W 2017 Nat. Photonics 11 361Google Scholar
[2] Pooley M A, Ellis D J P, Patel R B, Bennett A J, Chan K H A, Farrer I, Ritchie D A, Shields A J 2012 Appl. Phys. Lett. 100 211103Google Scholar
[3] Feng L, Zhang M, Xiong X, Chen Y, Wu H, Li M, Guo G P, Guo G C, Dai D X, Ren X F 2019 npj Quant. Inform. 5 2Google Scholar
[4] Lu L, Xia L, Chen Z, Chen L, Yu T, Tao T, Ma W, Pan Y, Cai X, Lu Y, Zhu S, Ma X 2020 npj Quant. Inform. 6 30Google Scholar
[5] Paesani S, Borghi M, Signorini S, Maïnos A, Pavesi L, Laing A 2020 Nat. Commun. 11 2505Google Scholar
[6] Wu R, Lin J, Wang M, Fang Z, Chu W, Zhang J, Zhou J, Cheng Y 2019 Opt. Lett. 44 4698Google Scholar
[7] Qiang X, Zhou X, Wang J, Wilkes C M, Loke T, Gara S O, Kling L, Marshall G D, Santagati R, Ralph T C, Wang J B, O’Brien J L, Thompson M G, Matthews J C F 2018 Nat. Photonics 12 534Google Scholar
[8] Najafi F, Mower J, Harris N C, Bellei F, Dane A, Lee C, Hu X, Kharel P, Marsili F, Assefa S, Berggren K K, Englund D 2015 Nat. Commun. 6 5873Google Scholar
[9] Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2016 Optica 3 1274Google Scholar
[10] Chen Z S, Ma B, Shang X J, Ni H Q, Wang J L, Niu Z C 2017 Nanoscale Res. Lett. 12 378Google Scholar
[11] Lee C M, Lim H J, Schneider C, Maier S, Hofling S, Kamp M, Lee Y H 2015 Sci. Rep. 5 14309Google Scholar
[12] Davanco M I, Rakher M T, Wegscheider W, Schuh D, Badolato A, Srinivasan K 2011 Appl. Phys. Lett. 99 121101Google Scholar
[13] Chonan S, Kato S, Aoki T 2014 Sci. Rep. 4 4785Google Scholar
[14] Ma B, Chen Z S, Wei S H, Shang X J, Ni H Q, Niu Z C 2017 Appl. Phys. Lett. 110 142104Google Scholar
[15] Muller A, Flagg E B, Metcalfe M, Lawall J, Solomon G S 2009 Appl. Phys. Lett. 95 173101Google Scholar
[16] Gazzano O, Vasconcellos S M, Arnold C, Nowak A, Galopin E, Sagnes I, Lanco L, Lemaitre A, Senellart P 2013 Nat. Commun. 4 1425Google Scholar
[17] Ding X, He Y M, Duan Z C, Gregersen N, Chen M C, Unsleber S, Maier S, Schneider C, Kamp M, Hofling S, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 116 020401Google Scholar
[18] Li S L, Chen Y, Shang X J, Yu Y, Yang J W, Huang J H, Su X B, Shen J X, Sun B Q, Ni H Q, Su X L, Wang K Y, Niu Z C 2020 Nanoscale Res. Lett. 15 145Google Scholar
[19] Shang X J, Ma B, Ni H Q, Chen Z S, Li S L, Chen Y, He X W, Su X L, Shi Y J, Niu Z C 2020 AIP Adv. 10 085126Google Scholar
[20] Makhov I S, Panevin V Y, Sofronov A N, Firsov D A, Vorobjev L E, Vinnichenko M Y, Vasil'ev A P, Maleev N A 2017 Superlattices and Microstruct. 112 79Google Scholar
[21] Typical Properties of Norland Optical Adhesive (NOA) 61, Norland Products Inc. www.norlandprod.com/adhesives/NOA%2061.html [2020-12-10]
计量
- 文章访问数: 7108
- PDF下载量: 138
- 被引次数: 0