-
激光外差干涉测量是非接触振动探测的重要手段,随着探测目标距离拓展,人们对激光测振仪能量利用率和测量分辨力提出了更高的要求。基于菲涅尔衍射积分、光纤耦合等相关理论,建立了收发一体式光纤激光测振仪光场传递模型,并基于散粒噪声受限假设,提出粗糙目标回光情况仪器噪声基底评价方法。结果表明收发望远镜焦距、口径共同决定系统能量利用率分布情况,并进一步影响仪器测量分辨力。针对激光波长为1550nm,光纤模场半径为5μm,对准距离为1km的典型应用场景进行数值仿真实验,收发透镜最优F数为3.3,验证了模型的正确性,仿真结果可作为光纤激光测振仪、激光测风雷达等收发镜头设计的依据。The Laser Doppler Vibrometer (LDV) utilizes the laser Doppler effect to real-time acquire target displacement, velocity, and acceleration. Fiber optic laser vibrometers have garnered widespread attention in recent years due to their strong environmental adaptability and high integration advantages. With the expansion of detection target distances, there has been a higher demand for the measurement resolution of laser vibrometers. LDV systems typically employ a transceiver integrated telescope structure for laser emission and target return light reception. The aperture and focal length of the transceiver telescope determine its basic structure, directly affecting the emission and reception efficiency of laser energy. Additionally, the speckle effect generated by the scattering of rough targets affects the coupling of light energy entering the fiber optic for interference, thereby influencing LDV measurement resolution.
Based on relevant theories such as Gaussian beam waist transmission, rough target generation, Fresnel diffraction integration, and fiber optic coupling, a transceiver integrated fiber optic laser vibrometer optical field transmission model is established. Numerical simulation and analysis of the emission transmission process of ideal Gaussian laser and the coupling process of surface target echoes reception are conducted. Based on the assumption of laser vibrometer speckle noise limitation, an evaluation scheme for the instrument's noise baseline under rough target return light conditions is proposed. Numerical simulation experiments are conducted for a typical fiber LDV application scenario with an alignment distance of 1 km, a single-mode fiber mode field radius of 5 μm, and a laser wavelength of 1550 nm. The results indicate that the focal length and aperture of the transceiver telescope determine the distribution of system energy utilization and further affect the instrument's noise baseline. Simulation results show that when the F-number of the transceiver lens reaches 3.3, LDV achieves the highest system energy utilization at this focal length, verifying the correctness of the simulation model. The simulation results can serve as a basis for the design of transceiver lenses for fiber optic laser vibrometers, laser anemometers, and other devices.-
Keywords:
- Laser Doppler effect /
- wave propagation /
- speckle /
- fiber coupling
-
[1] Peng R, Xu B, Li G, Zheng C, Li X 2018IEEE 23rd International Conference on Digital Signal Processing, Shanghai, China, Nov 19-21, 2018, p1
[2] Cheng X 2021M.S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [程傒2021硕士学位论文(哈尔滨:哈尔滨工业大学)]
[3] Li Y C, Zhang L, Yang Y L, Gao L, Xu B, Wang C H 2009Acta Phys. Sin. 58 5473(in Chinese) [李彦超, 章亮, 杨彦玲, 高龙, 徐博, 王春晖2009物理学报58 5473]
[4] Shang J, He Y, Wang Q, Li Y, Ren L 2020Sensors 20 5801
[5] Liu C P, Zang C P, Zhang G B 2021Journal of Aerospace Power 36 477(in Chinese) [刘翠红, 臧朝平, 张根辈2021航空动力学报 36477]
[6] Chen K H 2020M.S. Dissertation (Beijing: University of Chinese Academy of Science) (in Chinese) [陈鸿凯2020硕士学位论文(北京:中国科学院大学)]
[7] Du S J 2017 M.S. Dissertation (Zibo: Shandong University of Technology) (in Chinese) [杜召杰2017硕士学位论文(山东理工大学)]
[8] Li W W, Wu J, Zhao Z L, Wang D L, Ye Z Y, Yu Y M 2012High Power Laser and Particle Beams 24 2549(in Chinese) [李斐斐, 吴谨, 赵志龙, 王东蕾, 叶征宇, 于彦明2012强激光与粒子束24 2549]
[9] Wang X L, Zhou P, Ma Y X, Ma H T, Li X, Xu X J, Zhao Y J 2011Acta Phys. Sin. 60 249(in Chinese) [王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君2011物理学报60 249]
[10] Dräbenstedt A 2014AIP Conference Proceedings, Ancona, Italy, May 27, 2014, p263
[11] Iverson T Z, Watson E A 2017Laser Radar Technology and Applications XXII, Anaheim, CA, United States, May 5, 2017, p108
[12] Rzasa J R, Cho K, Davis C C 2015 Appl. Opt., 54 6230
[13] Ruilier C, Paris O D 2007Proc Spie 3350 319
[14] Winzer P J, Leeb W R 1998Opt. Lett., 23 986
[15] Kong X X, Zhang W X, Cai Q S, Wu Z, Dai Y, Xiang L B 2020Acta Phys. Sin. 69 118(in Chinese) [孔新新, 张文喜, 才啟胜, 伍洲, 戴玉, 相里斌2020物理学报69 118
[16] Yan C H, Wang T F, Zhang H Y, Lv T, Wu S S, 2017Acta Phys. Sin. 66 198(in Chinese) [晏春回, 王挺峰, 张合勇, 吕韬, 吴世松2017物理学报66 198]
[17] Liu D M, Sun J Q, Lu P, Sun Q Z, Xia L, 2008Fiber Optics (Beijing: Science Press) p103(in Chinese) [刘德明, 孙军强, 鲁平, 孙琪真, 夏历2008光纤光学(北京: 科学出版社) p103]
[18] Zhou B K, Gao Y Z, Chen T R, Chen J H, 2009Principles of Laser (Beijing: National Defense Industry Press) p70(in Chinese) [周炳琨, 高以智, 陈倜嵘, 陈家骅2009激光原理(北京: 国防工业大学) p70]
[19] Ji X L, Lv B D, 2003Acta Phys. Sin. 522149(in Chinese) [季小玲, 吕百达2003物理学报522149
[20] Born M, Wolf E (translated by Yang J S) 2019Principles of Optics (Beijing: Publishing House of Electronics Industry) p343(in Chinese) [波恩M, 沃尔夫E著(杨葭荪译) 2019光学原理(北京: 电子工业出版社) p343]
[21] Deng H, Zhang R Z 2014High Power Laser and Particle Beams 26 121009(in Chinese) [邓慧, 张蓉竹2014强激光与粒子束26 121009]
[22] Fang Z B, Miao B Q 2011Random Process (Beijing: Science Press) p80(in Chinese) [方兆本, 缪柏其2011随机过程(北京: 科学出版社) p80]
计量
- 文章访问数: 35
- PDF下载量: 0
- 被引次数: 0