搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

收发望远镜参数对光纤激光测振仪测量分辨力影响分析

沈杨翊 戴玉 孔新新 赵思泽鹏 张文喜

引用本文:
Citation:

收发望远镜参数对光纤激光测振仪测量分辨力影响分析

沈杨翊, 戴玉, 孔新新, 赵思泽鹏, 张文喜

Analysis of the influence of transmitting and receiving telescope parameters on the measurement resolution of fiber laser doppler vibrometer

Yangyi Shen, Yu Dai, Xinxin Kong, Sizepeng Zhao, Wenxi Zhang
PDF
导出引用
  • 激光外差干涉测量是非接触振动探测的重要手段,随着探测目标距离拓展,人们对激光测振仪能量利用率和测量分辨力提出了更高的要求。基于菲涅尔衍射积分、光纤耦合等相关理论,建立了收发一体式光纤激光测振仪光场传递模型,并基于散粒噪声受限假设,提出粗糙目标回光情况仪器噪声基底评价方法。结果表明收发望远镜焦距、口径共同决定系统能量利用率分布情况,并进一步影响仪器测量分辨力。针对激光波长为1550nm,光纤模场半径为5μm,对准距离为1km的典型应用场景进行数值仿真实验,收发透镜最优F数为3.3,验证了模型的正确性,仿真结果可作为光纤激光测振仪、激光测风雷达等收发镜头设计的依据。
    The Laser Doppler Vibrometer (LDV) utilizes the laser Doppler effect to real-time acquire target displacement, velocity, and acceleration. Fiber optic laser vibrometers have garnered widespread attention in recent years due to their strong environmental adaptability and high integration advantages. With the expansion of detection target distances, there has been a higher demand for the measurement resolution of laser vibrometers. LDV systems typically employ a transceiver integrated telescope structure for laser emission and target return light reception. The aperture and focal length of the transceiver telescope determine its basic structure, directly affecting the emission and reception efficiency of laser energy. Additionally, the speckle effect generated by the scattering of rough targets affects the coupling of light energy entering the fiber optic for interference, thereby influencing LDV measurement resolution.
    Based on relevant theories such as Gaussian beam waist transmission, rough target generation, Fresnel diffraction integration, and fiber optic coupling, a transceiver integrated fiber optic laser vibrometer optical field transmission model is established. Numerical simulation and analysis of the emission transmission process of ideal Gaussian laser and the coupling process of surface target echoes reception are conducted. Based on the assumption of laser vibrometer speckle noise limitation, an evaluation scheme for the instrument's noise baseline under rough target return light conditions is proposed. Numerical simulation experiments are conducted for a typical fiber LDV application scenario with an alignment distance of 1 km, a single-mode fiber mode field radius of 5 μm, and a laser wavelength of 1550 nm. The results indicate that the focal length and aperture of the transceiver telescope determine the distribution of system energy utilization and further affect the instrument's noise baseline. Simulation results show that when the F-number of the transceiver lens reaches 3.3, LDV achieves the highest system energy utilization at this focal length, verifying the correctness of the simulation model. The simulation results can serve as a basis for the design of transceiver lenses for fiber optic laser vibrometers, laser anemometers, and other devices.
  • [1]

    Peng R, Xu B, Li G, Zheng C, Li X 2018IEEE 23rd International Conference on Digital Signal Processing, Shanghai, China, Nov 19-21, 2018, p1

    [2]

    Cheng X 2021M.S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [程傒2021硕士学位论文(哈尔滨:哈尔滨工业大学)]

    [3]

    Li Y C, Zhang L, Yang Y L, Gao L, Xu B, Wang C H 2009Acta Phys. Sin. 58 5473(in Chinese) [李彦超, 章亮, 杨彦玲, 高龙, 徐博, 王春晖2009物理学报58 5473]

    [4]

    Shang J, He Y, Wang Q, Li Y, Ren L 2020Sensors 20 5801

    [5]

    Liu C P, Zang C P, Zhang G B 2021Journal of Aerospace Power 36 477(in Chinese) [刘翠红, 臧朝平, 张根辈2021航空动力学报 36477]

    [6]

    Chen K H 2020M.S. Dissertation (Beijing: University of Chinese Academy of Science) (in Chinese) [陈鸿凯2020硕士学位论文(北京:中国科学院大学)]

    [7]

    Du S J 2017 M.S. Dissertation (Zibo: Shandong University of Technology) (in Chinese) [杜召杰2017硕士学位论文(山东理工大学)]

    [8]

    Li W W, Wu J, Zhao Z L, Wang D L, Ye Z Y, Yu Y M 2012High Power Laser and Particle Beams 24 2549(in Chinese) [李斐斐, 吴谨, 赵志龙, 王东蕾, 叶征宇, 于彦明2012强激光与粒子束24 2549]

    [9]

    Wang X L, Zhou P, Ma Y X, Ma H T, Li X, Xu X J, Zhao Y J 2011Acta Phys. Sin. 60 249(in Chinese) [王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君2011物理学报60 249]

    [10]

    Dräbenstedt A 2014AIP Conference Proceedings, Ancona, Italy, May 27, 2014, p263

    [11]

    Iverson T Z, Watson E A 2017Laser Radar Technology and Applications XXII, Anaheim, CA, United States, May 5, 2017, p108

    [12]

    Rzasa J R, Cho K, Davis C C 2015 Appl. Opt., 54 6230

    [13]

    Ruilier C, Paris O D 2007Proc Spie 3350 319

    [14]

    Winzer P J, Leeb W R 1998Opt. Lett., 23 986

    [15]

    Kong X X, Zhang W X, Cai Q S, Wu Z, Dai Y, Xiang L B 2020Acta Phys. Sin. 69 118(in Chinese) [孔新新, 张文喜, 才啟胜, 伍洲, 戴玉, 相里斌2020物理学报69 118

    [16]

    Yan C H, Wang T F, Zhang H Y, Lv T, Wu S S, 2017Acta Phys. Sin. 66 198(in Chinese) [晏春回, 王挺峰, 张合勇, 吕韬, 吴世松2017物理学报66 198]

    [17]

    Liu D M, Sun J Q, Lu P, Sun Q Z, Xia L, 2008Fiber Optics (Beijing: Science Press) p103(in Chinese) [刘德明, 孙军强, 鲁平, 孙琪真, 夏历2008光纤光学(北京: 科学出版社) p103]

    [18]

    Zhou B K, Gao Y Z, Chen T R, Chen J H, 2009Principles of Laser (Beijing: National Defense Industry Press) p70(in Chinese) [周炳琨, 高以智, 陈倜嵘, 陈家骅2009激光原理(北京: 国防工业大学) p70]

    [19]

    Ji X L, Lv B D, 2003Acta Phys. Sin. 522149(in Chinese) [季小玲, 吕百达2003物理学报522149

    [20]

    Born M, Wolf E (translated by Yang J S) 2019Principles of Optics (Beijing: Publishing House of Electronics Industry) p343(in Chinese) [波恩M, 沃尔夫E著(杨葭荪译) 2019光学原理(北京: 电子工业出版社) p343]

    [21]

    Deng H, Zhang R Z 2014High Power Laser and Particle Beams 26 121009(in Chinese) [邓慧, 张蓉竹2014强激光与粒子束26 121009]

    [22]

    Fang Z B, Miao B Q 2011Random Process (Beijing: Science Press) p80(in Chinese) [方兆本, 缪柏其2011随机过程(北京: 科学出版社) p80]

  • [1] 杨春林. 散斑场的随机波数及其参量非线性效应. 物理学报, doi: 10.7498/aps.73.20231235
    [2] 段磊, 徐润亲, 宋云波, 谭姝丹, 梁成斌, 徐帆江, 刘朝晖. 基于目标反射回光对高功率光纤激光器影响的理论模型和数值研究. 物理学报, doi: 10.7498/aps.72.20222464
    [3] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏. 基于散斑光场偏振共模抑制性的宽谱散射成像技术. 物理学报, doi: 10.7498/aps.70.20210703
    [4] 尚向军, 李叔伦, 马奔, 陈瑶, 何小武, 倪海桥, 牛智川. 量子点单光子源的光纤耦合. 物理学报, doi: 10.7498/aps.70.20201605
    [5] 尹君, 王少飞, 张俊杰, 谢佳谌, 陈宏宇, 贾源, 胡徐锦, 于凌尧. 基于动态散斑照明的宽场荧光显微技术理论研究. 物理学报, doi: 10.7498/aps.70.20211022
    [6] 胡耀华, 刘艳, 穆鸽, 秦齐, 谭中伟, 王目光, 延凤平. 基于多模光纤散斑的压缩感知在光学图像加密中的应用. 物理学报, doi: 10.7498/aps.69.20191143
    [7] 孔新新, 张文喜, 才啟胜, 伍洲, 戴玉, 相里斌. 基于多光束混合外差干涉的相位增强技术研究. 物理学报, doi: 10.7498/aps.69.20200281
    [8] 程志远, 李治国, 折文集, 夏爱利. 激光相干场成像散斑噪声复合去噪方法. 物理学报, doi: 10.7498/aps.68.20181578
    [9] 杨春林. 等离子体中散斑光场的传输特性. 物理学报, doi: 10.7498/aps.67.20171795
    [10] 陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利. 基于全相位谱分析的剪切光束成像目标重构. 物理学报, doi: 10.7498/aps.66.024203
    [11] 宋洪胜, 刘桂媛, 张宁玉, 庄桥, 程传福. 大散射角散斑场中有关相位奇异新特性的研究. 物理学报, doi: 10.7498/aps.64.084210
    [12] 宋洪胜, 庄桥, 刘桂媛, 秦希峰, 程传福. 菲涅耳深区散斑强度统计特性及演化. 物理学报, doi: 10.7498/aps.63.094201
    [13] 王峰, 彭晓世, 梅鲁生, 刘慎业, 蒋小华, 丁永坤. 基于速度干涉仪的冲击波精密调速实验技术研究. 物理学报, doi: 10.7498/aps.61.135201
    [14] 常宏, 杨福桂, 董磊, 王安廷, 谢建平, 明海. 激光光斑形状和尺寸对扫描显示中散斑对比度的影响. 物理学报, doi: 10.7498/aps.59.4634
    [15] 宋洪胜, 程传福, 滕树云, 刘曼, 刘桂媛, 张宁玉. 参考光干涉提取复振幅的散斑统计函数的实验研究. 物理学报, doi: 10.7498/aps.58.7654
    [16] 宋洪胜, 程传福, 刘曼, 滕树云, 张宁玉. 散斑场相位涡旋及其传播特性的实验研究. 物理学报, doi: 10.7498/aps.58.3887
    [17] 于海鹰, 崔碧峰, 陈依新, 邹德恕, 刘 莹, 沈光地. 一种与光纤高效耦合的新型大光腔大功率半导体激光器. 物理学报, doi: 10.7498/aps.56.3945
    [18] 郭冠军, 邵 芸. 激光散斑效应对激光雷达探测性能的影响. 物理学报, doi: 10.7498/aps.53.2089
    [19] 程传福, 亓东平, 刘德丽, 滕树云. 高斯相关随机表面及其光散射散斑场的模拟产生和光强概率分析. 物理学报, doi: 10.7498/aps.48.1635
    [20] 王迺权, 张洪钧, 鄂云. 偏振激光散斑的积分光强的统计特性. 物理学报, doi: 10.7498/aps.32.124
计量
  • 文章访问数:  35
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-28

/

返回文章
返回